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Abstract

Behavioral scientists increasingly collect intensive longitudinal data (ILD), in which phenomena 

are measured at high frequency and in real time. In many such studies, it is of interest to describe 

the pattern of change over time in important variables as well as the changing nature of the 

relationship between variables. Individuals' trajectories on variables of interest may be far from 

linear, and the predictive relationship between variables of interest and related covariates may also 

change over time in a nonlinear way. Time-varying effect models (TVEMs; see Tan, Shiyko, Li, 

Li, & Dierker, 2012) address these needs by allowing regression coefficients to be smooth, 

nonlinear functions of time rather than constants. However, it is possible that not only observed 

covariates but also unknown, latent variables may be related to the outcome. That is, regression 

coefficients may change over time and also vary for different kinds of individuals. Therefore, we 

describe a finite mixture version of TVEM for situations in which the population is heterogeneous 

and in which a single trajectory would conceal important, inter-individual differences. This 

extended approach, MixTVEM, combines finite mixture modeling with non- or semi-parametric 

regression modeling, in order to describe a complex pattern of change over time for distinct latent 

classes of individuals. The usefulness of the method is demonstrated in an empirical example from 

a smoking cessation study. We provide a versatile SAS macro and R function for fitting 

MixTVEMs.

Questions, comments or other correspondence are welcomed by John Dziak, The Methodology Center, 204 E. Calder Way, Suite 400, 
State College, PA 16801, jjd264@psu.edu, or by Runze Li, rzli@psu.edu. 

HHS Public Access
Author manuscript
Psychol Methods. Author manuscript; available in PMC 2016 December 01.

Published in final edited form as:
Psychol Methods. 2015 December ; 20(4): 444–469. doi:10.1037/met0000048.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

time-varying effects; intensive longitudinal data; mixture modeling; latent classes; nonlinear 
modeling; semiparametric modeling

Intensive longitudinal data (ILD) are increasingly prevalent in the behavioral sciences, 

because of improved data-collection techniques and dynamic theories of human functioning. 

Collection of ILD is encouraged by reduced cost of technology and by benefits of ILD such 

as improved ecological validity and minimized recall bias. ILD are collected in studies 

under different names, including ecological momentary assessments (EMA; Stone & 

Shiffman, 1994; Shiffman, Stone, & Hufford, 2008), experience sampling (Larson & 

Csikszentmihalyi, 1983), ambulatory assessment (Fahrenberg, Myrtek, Pawlik, & Perrez, 

2007), and diary studies (Bolger, Davis, & Rafaeli, 2003). ILD are generally characterized 

by a large number of repeated assessments designed to capture personal experiences and 

environmental conditions at or near the time of their occurrence. Applications of ILD are 

diverse and growing, and a few examples include studies of addictive behaviors (Shiffman, 

2009), eating disorders (Munsch et al., 2009), and physical activity (Sternfeld et al., 2012). 

While rich and detailed, ILD pose numerous analytical challenges in order to make fuller 

use of the information available (Walls & Schafer 2006). Two important challenges are 

heterogeneity (important differences exist between study participants that are not fully 

captured by measured covariates) and nonlinearity (trajectories of variables cannot always 

be modeled as simply linear or quadratic). In this paper we describe a modeling approach, 

MixTVEM (mixture of time-varying effect models), which address both of these issues and 

offers a framework for investigating novel research questions.

The goals of this paper are threefold. The first is to introduce MixTVEM to behavioral 

scientists. Similar models were proposed before in the statistical literature (Lu and Song, 

2012) but have not been put to use in the psychological literature. The second goal is to 

provide convenient software to fit MixTVEMs; no such software has previously been 

available. The third goal is to provide an example data analysis using MixTVEM, with 

recommendations for model selection and for using the results of the fitted model to 

investigate important scientific questions.

MixTVEM is an extension of the time-varying effect model (TVEM) described by Tan, 

Shiyko, Li, Li, and Dierker (2012). As in TVEM, MixTVEM addresses nonlinearity by 

modeling regression coefficients as smooth functions of time rather than as constants. 

Additionally, MixTVEM allows for direct modeling of interpersonal heterogeneity by 

assuming that each participant belongs to one of multiple latent classes (analogously to the 

group-based trajectory modeling of Nagin, 1999) with class-specific regression functions.

In the sections that follow, we discuss issues of nonlinearity and participant heterogeneity, 

introduce MixTVEM as a possible solution, and briefly review the literature and reasoning 

underlying MixTVEM. An empirical examination of smoking withdrawal symptoms during 

a quit attempt serves as a practical demonstration. A SAS macro and R function for fitting 

these models and a discussion on practical issues related to model fitting and interpretation 

are provided to promote a broader application of the method.
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Motivation for MixTVEM

To illustrate the motivation for MixTVEM, we first review some existing methods and some 

of their limitations. Suppose that for each individual i = 1,…, N, an outcome variable y (e.g., 

self-rated urge to smoke) is measured at each of ni measurement times tij, j=1,…,ni. Suppose 

an investigator wishes to fit a model to predict the change in the average value of y as a 

function of time t. As a starting point, the simplest possible way to model change would be a 

linear model,

(1)

where the residuals eij are assumed to be independent and normally distributed with mean 0 

and variance σ2. This model represents the mean growth curve over time by a straight line β0 

+ β1t. It also assumes that each individual follows the same underlying growth pattern. This 

very restrictive model would not allow the investigation of important questions about (a) 

how the relationship between variables differs over time as a process evolves, or (b) how the 

relationship differs between individuals due to differing personal characteristics. These 

restrictions are overcome by nonparametric regression on one hand, and mixture modeling 

on the other hand. We review two specific approaches in the literature, TVEM (a kind of 

nonparametric regression) and group-based trajectory modeling (a kind of mixture 

modeling), which generalize model (1) in different ways. We then describe how to combine 

them in an extended approach, which we call MixTVEM. MixTVEM is suitable for 

exploring more nuanced questions about ILD, specifically about the heterogeneity of 

nonlinear, time-varying relationships between variables.

Modeling Nonlinearity

For traditional longitudinal data, the linearity assumption can be relaxed in several ways (see 

the review by Aunola & Nurmi, 2004). For example, if there are only a few measurement 

time points tij shared by all individuals, then the mean observed y can be estimated 

separately within each time point j, with no a priori restrictions on the shape or pattern of 

change. Similarly, in a latent basis or free-slope-loading model (e.g., Meredith & Tisak, 

1990; Muthén & Khoo, 1998), the values of y at each measurement time are estimated in 

terms of factor loadings. These approaches are not very practical for ILD, in which 

observations can vary in frequency and timing across participants and are not arranged in 

regular waves (hence cannot easily be organized as a single N × n matrix).

Another way of relaxing linearity is to allow the growth curve to be some polynomial of 

order greater than one, such as quadratic or cubic. This approach often works quite well 

(recent examples of the use of quadratic trajectories include Cofta-Woerpel et al., 2011, and 

Javitz, Lerman & Swan, 2012) but still has some limitations. It limits modeling to only a few 

basic shapes (e.g., flat, rising, falling, rising and then falling, or falling and then rising, in the 

case of quadratic trajectories). Higher-order polynomials are possible, but involve very high 

sampling variability and an unnecessarily complex appearance with potential for spurious 

peaks and valleys; therefore they can be impractical to interpret (Weisberg, 2005). If there is 

a theoretical reason to expect a parametric curve with a specific nonlinear shape, such as a 
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logistic curve (see, e.g., Kelley, 2008), then this could be a better, more interpretable option 

than a high-order polynomial. However, in other settings there is no specific family of 

parametric curves to propose.

Another approach to estimating nonlinear growth is to allow different linear or quadratic 

trajectories for theoretically distinct time periods (e.g., middle versus high school, Crawford, 

Pentz, Chou, Li, & Dwyer 2003; prequit versus postquit, McCarthy, Piasecki, Fiore & 

Baker, 2006). In smoking cessation, for example, one could study how prequit and postquit 

slopes are related. This piece-wise approach is versatile and interpretable, but still imposes a 

linear (or other simple and known) form of growth during each time period. It also requires a 

priori knowledge of these distinct time periods.

In order to estimate growth more flexibly, consider replacing model (1) with

(2)

where β(t) is a smooth function of t, unknown beforehand but estimated nonparametrically 

from the data, and eij∼N(0, σ2) independently for each measurement time. Model (2) 

generalizes Model (1) by removing the assumption that the underlying trajectory is linear. 

The shape of β can be flexibly and smoothly modeled using splines (see Eilers & Marx, 

1996), as described later (other estimation approaches are also available; see Tan et al., 

2012). Model (2) can easily be extended to include covariates. The values of the covariates 

may be either constant over time (e.g., gender or treatment group) or time-varying (e.g., like 

stress level, time of day). In addition, their relationship with the response (their effects in a 

regression sense) can also be time-varying:

(3)

Tan, Shiyko, Li, Li and Dierker (2012) called Equation (3) the time-varying effect model 

(TVEM), to emphasize that covariates may have substantively different relationships with y 

at different time points. For example, a covariate might be a more important predictor near 

the beginning of a process than near the end. Because TVEM allows the coefficients to be 

functions of time, a rich description of the changes in processes over time is possible. 

TVEM can be described as an application of varying-coefficients regression (Hastie & 

Tibshirani, 1993) to longitudinal data. Alternatively, if the predictors are considered to be 

functions of time, it is essentially equivalent to what Ramsay and Silverman (2005) call the 

concurrent functional dependent variable form of the functional linear model. Model (2) is a 

very simple case of model (3), containing only a time-varying intercept.

In the TVEM framework, there are several possibilities for the relationship between y and a 

given covariate xk,; these progress from the simplest to the most general.

• If βk(t) is 0 for all t, then xk is always unrelated to y after conditioning upon other 

covariates (i.e., xk is excluded from the model).
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• If βk(t) is a nonzero constant (i.e., βk(t) = βk for some number βk) then the regression 

effect of xk on predicted y at any given measurement time is the same regardless of 

the time of assessment. A unit difference in xk between subjects at a given time 

predicts a difference of βk in y at that time, and this difference is assumed to be the 

same regardless of the measurement time. A covariate cannot be more important at 

the beginning of the study than at the end, nor vice versa.

• If βk(t) is equal to a linear function of t, then xk can be said to have an interaction 

with time in the usual multiple linear regression sense (i.e., both xijk and xijktij are 

included in the regression model). This could be extended to a quadratic or other 

nonlinear parametric shape.

• Most generally, if βk(t) is a nonparametric function, then xk interacts with time in a 

nonlinear way. Thus, it is possible for differences between subjects in xk to be 

positively related, negatively related, or unrelated, to differences between subjects 

in y, at different times during the study.

Nonparametric βk(t) functions can be estimated in a straightforward way using splines, and 

their basic form (zero, constant, linear, quadratic, cubic, or general) can be selected by using 

graphical or model-based fit criteria.

Modeling Heterogeneity

The TVEM approach as described above will provide a flexible curve for the regression 

functions. However, it does not capture interindividual differences in trajectories over time. 

Such an aggregate model may not be a good representation of all, or even any, of the 

observed individuals (Hertzog & Nesselroade, 2003). There are three common ways to 

generalize a parametric regression model to allow different growth curves for different 

subjects (see Muthén, 2004; Muthén & Asparouhov, 2009; Reinecke, 2006; Erosheva, 

Matsueda, & Telesca, 2014). Multilevel models (see overview in Singer & Willett, 2003) 

incorporate random effects (i.e., different regression parameters for each subject, assumed to 

come from continuous latent distributions). Latent class growth analysis, also called group-

based trajectory modeling (Nagin, 1999, 2005), assumes that subjects come from different 

latent classes with different regression coefficient values for each class (Nagin, 1999). 

Growth mixture modeling (see Muthén & Shedden, 1999; Muthén & Muthén, 2000) 

assumes not only different classes but also random effects within each class.

In latent class growth analysis or growth mixture modeling, individuals come from distinct 

latent classes with different growth parameter values for each class. Each class has its own 

underlying linear or quadratic trajectory and may also have its own regression coefficients 

for substantive covariates. This can be extended to allow each class to have its own TVEM; 

we call the resulting approach MixTVEM. This marriage has important advantages. Users of 

latent class growth analysis or growth mixture modeling often assume that the regression 

effects of covariates are constant over time. At best, they assume that the effect changes in a 

linear way (such as allowing a baseline covariate to affect the linear slope of the growth 

curve, effectively specifying a linear interaction between covariate and time). TVEM allows 

regression coefficients to change flexibly over time, but the same TVEM is often assumed to 

apply to all participants. In MixTVEM it is possible to ask how people differ in terms of the 
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patterns of change in the relationships of multiple variables over time. This may not only 

facilitate exploratory empirical research but also may ultimately help psychologists 

formulate and test theories and hypotheses in a richer and more precise way.

A conceptually identical approach to what we call MixTVEM was previously proposed by 

Lu and Song (2012) as “finite mixture varying coefficient models” and implemented by 

them in a Bayesian context. Related works include Pleydell and Chrétien (2010), who 

worked with data arranged in space rather than time, and who used a nonlinear but still 

somewhat restrictive specification of the coefficient functions. Lu and Song (2012) focused 

on Bayesian inference, and estimated the model parameters using the Metropolis-Hastings 

algorithm, a kind of Monte Carlo Markov chain (MCMC) algorithm. In this paper we take a 

frequentist approach instead and estimate the model parameters using the expectation-

maximization (EM) algorithm. More importantly, although they provided a conceptual 

framework, Lu and Song (2012) did not provide software for routine use of their algorithm. 

Here we provide SAS and R software for conveniently implementing our approach. As 

studied by Celeux, Hurn, and Robert (2000) and Frühwirth-Schnatter (2001), the MCMC 

method for mixture models needs to be used carefully because of potential label switching 

during the course of the MCMC procedure, which could cause bias. Lu and Song (2012) 

recommend imposing appropriate constraints to keep the class order identified during the 

procedure. However, it may be difficult to find the right constraints because of the complex 

and unknown nature of the true model in nonparametric mixture regression models. This 

may be a relative advantage of EM in this situation.

We also handle serial correlation differently from Lu and Song (2012), and in a way which 

we argue to be more realistic, at least for some examples. However, both approaches share 

some common advantages and limitations. The assumptions of each approach are described 

in the following section.

The Model: MixTVEM

The previous section described the motivations for MixTVEM as an extension both of 

TVEM and of latent class growth analysis. In this section we explain the Lu and Song 

implementation of MixTVEM and our implementation of MixTVEM in more detail.

Definition of the Model

A MixTVEM analysis (or equivalently a finite mixture varying coefficient model) consists 

of two parts: a multinomial logistic model to predict class membership c for each individual, 

and a linear model to predict measured responses y1,…, yni within each individual 

conditional upon class membership c. While c is a categorical variable, the responses y1, …, 

yni are assumed multivariate normal conditional on the latent c. Non-normally distributed 

responses (in particular binary y) are possible, but for simplicity we consider only the 

normal case here.

Model for c—We follow the common approach of allowing latent class membership to be 

the outcome of a multiple-category logistic regression model. This has been done before 

with categorical latent class analysis (Dayton & Macready, 1988; Lanza, Collins, Lemmon, 
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& Schafer, 2007) and with analyses of trajectories on a numerical variable (e.g., Shi & 

Wang, 2008; Lu & Song, 2012). Conditional upon time-invariant subject-level covariates s1,

…, sQ, individual i has a probability πic of belonging to a given class c, where

(4)

For model identifiability in this case, one of the classes has its γ parameters constrained to 0 

and is treated as a baseline or comparison group. If there are no time-invariant covariates of 

interest (Q=0), then Model (4) simplifies to assuming that there is simply an unknown 

population proportion πc for each class.

Model for mean of y—Within each class, the mean model is essentially the same as the 

TVEM in Tan et al. (2012). Specifically, conditional upon time tij, upon the individual's 

class membership ci, and upon the observation-level covariates x1, …, xp, the response yij is 

modeled as normal with true expected value

(5)

The investigator can allow all of the coefficients to be time-varying or can optionally restrict 

some coefficients to be constant over time. Model (5) generalizes Model (3), but allows the 

regression parameters to be class-specific (i.e., to depend on ci). Note that the values of time 

tij may be individual-specific (as in the random electronic assessments used in many ILD 

applications), but the form of the function βkc(t) is assumed constant for each class.

Models for variance of y—While Model (5) provides the conditional expected value of 

the response, it does not specify the covariance structure. The simplest option would be to 

assume that all responses are independent, conditional on class. That is, all differences 

between individuals are accounted for by class. This would generally not be a realistic 

model for longitudinal data, unless the number of observations per subject is small 

compared to the number of classes. Ignoring within-subject correlation will tend to require 

more classes to adequately account for the observed data, relative to an approach that 

considers within-subject correlation (see Bauer & Curran, 2003; Lubke & Neale, 2006; 

Muthén, 2004; Petras & Masyn, 2010).

In contrast, the richest possible approach would be to have a truly multilevel regression 

within each class. For example, each βkc(t) in (5) could be replaced by a mean function 

βkc0(t) plus some random Gaussian process bik(t) with mean zero. This general idea might be 

implemented by adding a random effect to each column of the spline expansion. James and 

Sugar (2003) followed this approach for a model closely similar to (2). However, it might be 

difficult to get such a model to converge in the case of multiple covariates such as in Model 

(5).
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A reasonable compromise approach, taken by Lu and Song (2012), is to add a parametric 

random effects structure within each class. Thus, for example,

(6)

where μij is given by Model (5), ai and bi are independently normally distributed at the 

subject level, and eij are independently normally distributed at the observation level. There 

may also be random effects of  or even . The number of random effects presents another 

tradeoff. It is not clear why subject-specific effects should be linear when mean trajectories 

are nonlinear. However, the more random effects are added, especially to a model that 

already contains a latent categorical variable, the harder it will be to find the global optimum 

of the likelihood function. Thus, keeping the random effects structure reasonably simple is 

wise.

A disadvantage of a random effects model such as Model (6) is that it forces a particular 

kind of heteroskedasticity over time. Model (6) suggests that the marginal within-class 

variance at time tij is , where , , and  are the variances of the three 

random terms. Thus, whichever time is designated as time zero must have the lowest 

marginal error variance, and the variance must increase monotonically thereafter in each 

class. In the substantive example we provide below, which involves smoking urges during a 

cessation attempt, it is not clear whether the variance should necessarily be increasing in this 

way, especially if latent class membership has already been taken into account. Therefore, 

we wished to use a parametric covariance structure such as AR-1 (autoregressive of order 

one) instead of using random effects. In studies with equally spaced measurements, AR-1 

specifies that the overall variance is constant and that the correlation between two 

measurements depends on the number of measurement intervals between them: ρ (say, .1) 

for a lag of one unit, ρ2 (say, .01) for two units, and so on, for some parameter ρ (see, e.g., 

Liang & Zeger, 1986). In many ILD studies, especially those involving EMA, this seems 

unreasonable because measurements are not taken in evenly spaced waves; one lag might 

involve an hour, while another involves a day. That problem can be addressed by 

generalizing the AR-1 definition so that the correlation is Corr(yij, yij′) = ρ|tij−tij′|, allowing t 

to be a continuous rather than integer-valued variable (see Diggle, 1988; Schwartz & Stone, 

1998). Shi and Wang (2008) followed a somewhat similar approach in their work with 

longitudinal mixture modeling.

However, even with this extension, AR-1 has some limitations. We were not able to fit it to 

our sample data, even after extending it to allow unequal lags. This was because an AR-1 

structure would specify that either distant observations are essentially uncorrelated (if ρ is 

low), or else adjacent observations (for which the time lag is very small) must be essentially 

identical (if ρ is high). Examination of the data showed that for many subjects the urge 

trajectories had a chaotic appearance, with very low values sometimes followed by very 

high ones or vice versa. This led to numerical instability in estimating ρ, and thus failure to 

converge, if we assumed a simple autoregressive error process. Therefore, it is necessary to 

allow for a measurement error or “nugget” effect (see Banerjee, Carlin, & Gelfand, 2015) 
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that is specific to a particular time, in addition to the smooth autoregressive process. Adding 

a nugget to AR-1 structure leads to

(7)

This structure implies that the total variance at any time period is , and the 

within-subject covariance is Corr(yij, yij′) = (1 − pe)ρ|tij−tij′|, where we denote 

as the proportion nugget. We allow different values of the overall noise level  for each 

class. However, to improve convergence, we assume a shared value of pe.

The autocorrelation structure with nugget is intuitively plausible. It posits that variations in 

observations are partly due to a smooth, subject-specific process, and partly due to 

observation-specific noise. It also does not require variance to increase monotonically, as 

would be required by adding random coefficients of time, time squared, and so on to the 

model. However, it is not as computationally burdensome as making each spline coefficient 

random. Thus, it appears to be a very satisfactory covariance model, and we consequently 

implemented it in our software and empirical example. As an aside, in the special case of 

equally spaced data the AR(1) structure with nugget is equivalent to the ARMA(1,1) 

structure, a simple autoregressive moving average covariance structure (see SAS Institute, 

2008, pp. 2192, 2203).

Summary—MixTVEM accomodates heterogeneity and nonlinearity by allowing different 

nonparametric regression function shapes for each of multiple latent classes of subjects. We 

write Model (5) as a normal linear model, although generalized linear models (such as a 

binary logistic response) are also possible. Although the model for the mean of y is 

nonparametric (i.e., its exact form is not specified by the model), we still use a parametric 

normal probability distribution for the errors to enable computation of posterior 

probabilities. We also use a parametric autoregressive moving average structure for the 

correlation of observations within subjects. An entirely nonparametric mixture regression 

model would be very difficult to identify or estimate. Thus MixTVEM might better be 

considered semiparametric than nonparametric.

Estimation of Model Parameters

The two main challenges in estimating the coefficients for MixTVEM are the fact that the 

class memberships c are latent rather than observed and the fact that the β coefficients are 

functions rather than single numbers. Both of these technical challenges, however, have 

relatively straightforward technical solutions: the EM algorithm (Dempster, Laird, & Rubin, 

1977) and spline-basis expansion (Schoenberg, 1946; Eilers & Marx, 1996), respectively.

EM Algorithm—As in other finite mixture models (see McLachlan & Peel, 2000), the EM 

algorithm is very useful in estimating the coefficients for each latent class. It involves 

iterating between estimating individuals' posterior probabilities of belonging to each class (E 

step) and using these probabilities as weights for estimating the parameters of each class (M 

step). To begin this iterative process, starting values are randomly generated (in our 
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MixTVEM software we do this by randomly generating initial posterior probabilities). It is 

important to use multiple random starts to increase the probability of finding the best 

available solution. This algorithm is implemented for MixTVEM in our SAS macro and R 

function, included in the online appendix.

The EM algorithm as we implement it for MixTVEM takes into account the fact that that the 

observations are clustered within individuals. That is, it assigns posterior probabilities to 

individuals as a whole rather than to particular observations. This is especially important 

because the identifiability of a mixture of nonparametric trajectories depends upon at least 

some individuals having multiple measurements and upon the assumption that each 

individual belongs to one and only one latent class without switching classes. As a 

hypothetical example, consider panel A in Figure 1. The hypothetical data could be fit just 

as well by at least two different two-class structures: one with a rising trajectory and another 

with a falling trajectory (panel B), or one with a concave trajectory and another with a 

convex trajectory (panel C). However, once individual-level information is available as in 

panel D, it becomes clearer which model is more appropriate: the one in panel B, in this 

case. Huang, Li, and Wang (2013) provide more specific information on identifiability 

conditions for nonparametric trajectories.

Spline Basis Expansion—There are various ways to estimate a nonparametric function 

β(t). In this paper we use the penalized B-spline approach of Eilers and Marx (1996). As in 

polynomial regression, we approximate β(t) by a linear combination of several functions of 

t. However, instead of a simple polynomial basis, we use a spline basis, constructed using 

several “knots” at τ1,…, τK, which are prespecified time points at which the shape of the 

trajectory function changes. This method is described further in the Appendix.

Spline models resemble piecewise models in that both allow the slope or curve of the growth 

trajectory to change at specific times. Piecewise models have only one or a few knots, each 

corresponding to a theoretically important change point caused by a known event or 

transition. However, in the spline approach, there may be many knots, and the knots are 

primarily a mathematical device for allowing a smooth function estimate without specifying 

a shape in advance. Between any two knots of the spline, the trajectory may be assumed to 

be linear, quadratic, or cubic. Each time a knot is passed, the model effectively allows the 

parameters that describe the shape to change, and therefore any smooth function can be 

approximated reasonably well if there are enough knots.

To keep the resulting fit from being too “wiggly,” (i.e., too prone to spuriously recognizing 

small-scale sampling variability as replicable features; Eilers & Marx, 1996, p. 98) we adjust 

the log-likelihood with a second-order difference penalty function on the regression 

coefficients for the knots, in order to reduce the size of the changes occurring at each knot 

(see Eilers & Marx, 1996, for details). It is necessary to choose the strength of the penalty 

using some data-driven criterion.

One option is to use a weighted form of the generalized cross validation (GCV) statistic (see 

Craven & Wahba, 1979; Eilers & Marx, 1996), adjusted for the presence of multiple classes 

(replacing the residual sum of squares in the numerator of the usual GCV formula with a 
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weighted residual sum of squares, and summing the effective number of parameters across 

classes). Eilers and Marx (1996) used a simple AIC-like criterion, consisting of the deviance 

(or -2 log-likelihood) plus twice the effective number of parameters. AIC performs similarly 

to GCV and both have favorable properties for estimating nonparametric functions (Shao, 

1997; Hastie, Tibshirani, & Friedman, 2001). However, we found that in the mixture 

context, this criterion seemed to be overfitting. We therefore implemented a more 

parsimonious version; specifically, we used a penalty multiplier of log(N) instead of 2, 

where N is the number of subjects, basing this on the form of the BIC statistic. This is likely 

to lead to a smooth function, because BIC tends to be quite resistant to overfitting (see, e.g., 

Dziak, Coffman, Lanza & Li, 2012). In addition, Wang, Li, and Tsai (2007) used a similar 

BIC-based function to choose a penalty tuning parameter in a different context (that of high-

dimensional variable selection). To summarize, in our R and SAS functions, we choose the 

size of the penalty function automatically using a BIC-like criterion in order to provide a 

smooth and parsimonious shape.

Choosing the Number of Classes

Theory to provide the number or nature of classes a priori will often be unavailable (Petras 

& Masyn, 2010), so some data-driven approach is desirable. Likelihood-based fit criteria 

such as AIC (Akaike, 1973) or BIC (Schwarz, 1978) seem to beobvious candidates, but they 

face some limitations in the context of MixTVEM. First, assumptions about the asymptotic 

behavior of the information criteria are not necessarily met in a mixture context (see 

McLachlan & Peel, 2000, pp. 202-212; Steele & Raftery, 2010, p. 118). Second, because of 

the large number of observations per subject available in ILD and the complicated and 

unknown nature of the true within-subject covariance structure, the model may have a 

statistically significant lack of fit for any interpretable number of classes. Hence, the 

information criteria will sometimes indicate that an impractically large number of classes 

should be fit. Lu and Song (2012), despite using a relatively richand realistic model for the 

within-subject covariance structure, found in their empirical example that their fit criterion 

suggested the largest available model; therefore they had to choose a model size based 

largely on substantive interpretability.

Thus, in addition to AIC and BIC, in this paper we consider a heuristic approach similar to 

the “elbow plot” or “scree plot”frequently used in factor analysis. Petras and Masyn (2010) 

used elbow plots to help in choosing the number of classes in a parametric growth mixture 

analysis. A measure of in-sample prediction inaccuracy (such as sum of squared errors or a 

log-likelihood-based criterion) is plotted against a measure of model size (such as number of 

classes). Because the model is being fit and evaluated with the same data, the fit of the 

model to the observed data improves as model size increases (one gets closer and closer to 

merely “connecting the dots”). Thus, a plot of inaccuracy against model size will tend to be 

a decreasing function, but not necessarily linearly decreasing. One should examine the plot 

for the “elbow”: a model size that, if decreased, gives dramatically worse performance, but 

if increased, does not give dramatically better performance. While a subjective 

determination, this approach has the advantage of being straightforward and easily 

interpretable. In order to create an elbow plot, a measure of model fit is required. A common 

measure of regression model fit is the residual sum of squared errors 
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, where ŷij is a predicted value for Yij from the fitted model. 

However, this formula cannot be used directly in MixTVEM because the model provides 

several different predictions for yij, one for each class to which individual i might belong. If 

individual i were known to belong to class c, one could use Model (5) to calculate a class-

specific prediction ŷij|c for each observed tij. However, because class membership is latent 

rather than observed, all that is available here is the posterior probability of class 

membership, ωic, for each individual i and class c (see McLachlan & Peel, 2000). Therefore, 

one could examine an elbow plot of a weighted measure of predictive accuracy such as 

weighted residual sum of squares:

(8)

where N is the number of individuals and ni is the number of observations for the ith 

individual. Using this measure, the importance of a particular class's model fitting an 

individual's observed trajectory well (in terms of low sum of squared errors, 

) is determined by the estimated posterior probability ωic of the individual 

belonging to that class. Another option would be to examine an elbow plot of the log-

likelihood itself. The WRSS approach would treat all classes equally, but the log-likelihood 

approach would weight errors according to the estimated error variance in each class.

A final consideration for model selection is the degree of confidence in the identification of 

the global maximum likelihood solution. This can be assessed in terms of the dependence of 

the solution on the random starting value. If many random starts are used, and most of them 

lead to essentially the same fitted model (after permutation of the class labels if necessary), 

then it is reasonable to suppose that this fitted model is the best available given the model 

and data. If they lead to many different solutions, so that the best-fitting estimate available is 

reached by only one or a few of the starting values, then it is not clear that even this estimate 

is truly the global maximum. We assess this by comparing several starting values, with the 

level of the penalty tuning parameter held constant, and recording the proportion of starting 

values that lead to a log-likelihood agreeing (to within, say, .1 units) with the best log-

likelihood available.

Standard Errors

As in any kind of regression model, standard errors are of interest for summarizing 

uncertainty about the coefficient estimates. In our implementation of MixTVEM we 

calculate standard error estimates by combining the mixture regression information 

approach (used because of the uncertainty about true class membership) of Louis (1982) and 

Turner (2000), with the “sandwich” or “robust” formula (used because of the unknown true 

covariance of the observations within subject, and analogous to working-independence 

GEE; see Liang & Zeger, 1986). We also treat the covariance parameters as known when 

calculating confidence intervals for the regression parameters, which is a common practice 
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in multivariate regression and would be difficult to avoid given the rather complicated 

covariance structure. Some further research would be useful here, especially in light of 

concerns about possible undercoverage with the sandwich approach (Kauermann & Carroll, 

2001); as Ma and Zhong (2008) pointed out, construction of frequentist standard errors and 

confidence intervals for nonparametric models is challenging. The standard error formulas 

do not account for bias which can occur if an overly high penalty parameter is selected and 

the functions are oversmoothed; however, this bias should generally operate in a 

conservative way (against the spurious discovery of new features). The current approach 

appears to be the most plausible available method without using resampling.

Bootstrap methods would be computationally quite costly because of the requirement for 

running an EM algorithm for each of many starting values within each of many bootstrap 

replications. However, they might provide more accurate standard errors. We do not 

investigate bootstrap standard errors in the current paper. Note that bootstrapping in a finite 

mixture context such as MixTVEM would require considerable care and modification in 

order to deal with label switching (i.e., the meaning of “Class 2” changing from one 

bootstrap replication to the next) without introducing new bias through inappropriate 

constraints on the true parameters. Therefore, more study on its advantages and 

disadvantages is required.

Summary

In summary, MixTVEM provides a solution for describing complex within-person changes, 

identifying clusters of individuals with similar change patterns, and characterizing clusters 

based on covariates, thus satisfying essential goals of longitudinal data analysis (see Bollen 

& Curran, 2006). In the following section, empirical data from a smoking-cessation study is 

analyzed with MixTVEM for demonstration.

Smoking Cessation Example

In this section, we describe two applications of MixTVEM to data from an EMA study 

(Shiffman, Hickcox et al., 1996; Shiffman, 1997) that investigated personal and contextual 

factors related to smoking cessation. Urge to smoke, as well as other self-reported variables, 

were repeatedly assessed in a sample of highly motivated quitters for about two weeks 

before, and up to about four weeks after, a planned quit date. Participants were prompted at 

random times by an electronic device, typically multiple times per day, to answer questions 

about their current mood and smoking urge intensity. (Participants were also given event-

driven prompts in certain situations, but we consider only the random prompts in the current 

paper, in order to treat the observation times as non-informative.)

Heterogeneity and nonlinearity are both very relevant to the study of smoking cessation 

because of the dynamic and personal nature of smoking behavior. Shiffman and colleagues 

(1997) found that craving declined over time for this sample as a whole, but this could mask 

substantial heterogeneity. Conceptually, some individuals may have rapidly improving 

withdrawal symptoms, some might not improve at all, and some might improve and then 

plateau or perhaps even rebound (a phenomenon that could not be modeled by simply 

allowing linear slopes). Indeed, past research has suggested important between-person 
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heterogeneity in withdrawal trajectories (e.g., Piasecki, Fiore, & Baker, 1998, McCarthy et 

al., 2006).

Not only negative affect and urge, but also the relationship between them, may differ 
among people. This may be because people have qualitatively different reasons for smoking 

in the first place or because they have different underlying levels of physiological addiction. 

Past research suggests that smokers report diverse motivations and triggers for smoking, but 

negative affect or desire to relieve it is often among the most prominent (see Brandon, 1994; 

Baker, Piper, McCarthy, Majeski & Fiore, 2004; Leung, Gartner, Dobson, Lucke & Hall, 

2011; UW Center for Tobacco Research and Intervention, 2002). In addition to differing 

among people, the relationship between negative affect and urge for a given person may 
change over time during the quitting process. For example, Zinser, Baker, Sherman, & 

Cannon (1992) suggested that urge to smoke may be associated with positive affect when 

smoking ad libitum, but with negative affect after quitting. The dataset of interest has been 

previously analyzed using TVEM (although not MixTVEM), and it was found that the 

marginal relationship between negative affect and urge to smoke indeed tended to weaken 

over time for the sample in general, although it might temporarily peak in the few days 

immediately following quit date (see Li, Root, & Shiffman, 2006; Shiyko, Lanza, Tan, Li & 

Shiffman, 2012). Nicotine withdrawal should fade over time, which would cause the 

association between smoking and nicotine withdrawal (which is marked by negative affect) 

to decrease, with external cues perhaps becoming more important over time. This would 

suggest a weakening or change in the relationship between negative affect and craving.

If the classes found in a MixTVEM analysis are valid constructs, one would expect that they 

should predict other constructs. Craving or urge has been shown to be a powerful predictor 

of lapse and relapse during smoking attempts (Piper et al., 2008; also see review in Bagot, 

Heishman & Moolchan, 2007). As a symptom of withdrawal, it should presumably also be 

higher in those who were more severely addicted prior to the quit attempt. These 

relationships would be expected to be maintained even if urge is expressed in terms of 

classes or trajectories rather than a single numerical value. In light of these considerations, 

we consider the following questions:

1. Diversity of trajectories. How does the urge to smoke change over time, and do 

change trajectories differ across latent classes of participants?

2. Diversity of covariate-adjusted trajectories. How does the relationship of 

negative affect (see Brandon, 1994; Shiffman & Waters, 2004) to urge to smoke 

change over time, and do these changes differ across latent classes of participants?

3. Relationship of trajectory to subject-level predictors. Are the latent class 

variables identified in questions 1 and 2 related to subject characteristics, especially 

prior measures of addiction severity?

4. Relationship of trajectory to subject-level outcome. Do the latent class variables 

identified in questions 1 and 2 predict later relapse?

We explored these questions using our R MixTVEM software. We also verified the most 

important analyses using our SAS MixTVEM software.
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Sample

We study a subsample of 200 participants from a smoking cessation study (Shiffman, 

Hickcox, et al., 1996; Shiffman, Paty, et al., 1996; Shiffman et al., 1997). This subsample 

consisted of those who had at least one week of postquit data, who abstained successfully 

for at least a day, and who did not experience full relapses during the first week. Relapse 

was defined as smoking at least 5 cigarettes for 3 consecutive days. Participants received 

behavioral counseling, but were not using pharmacological therapy such as nicotine 

replacement. We consider the first seven days after the designated quit date, and consider 

observations having full data for the emotion questions and the urge to smoke question 

described below. This period provides a total of 4,975 observations, with each individual 

contributing a total of 2 to 53 observations (mean=24.9, SD=11.0), averaging about 3 

observations per person per day.

Measures

Urge to Smoke—Participants rated their urge to smoke on a 0 (no urge) to 10 (the 

strongest urge) scale on each measurement occasion.

Negative Affect—Participants responded to questions about their mood on a scale of 1 

(strongly no) to 4 (strongly yes). A negative affect (NegAff) scale was created by averaging 

responses to items on miserable, irritable, tense, frustrated/angry, sad, happy, and contented 

(with the last two states reverse-coded). This was roughly based on the first factor in the 

factor analysis reported by Shiffman and colleagues (Shiffman, Hickcox, et al, 1996). The 

item set had a Cronbach alpha of .84 (95% confidence interval .83 to .85), suggesting a 

fairly cohesive measure of negative affect.

As a caveat, the confidence interval for alpha above is calculated for the dataset as a whole 

and treating all observations as independent. Considering only the first observation from 

each individual in order to force independence would give a Cronbach alpha of .79 (95% 

confidence interval of .74 to .83). The Cronbach's alpha should still be considered only a 

heuristic description here, because the items are not normally distributed: first, they are 

limited to values of 1, 2, 3, and 4, and second, some of them (particularly miserable, 

frustrated/angry, and sad) are heavily right-skewed. The confidence intervals for alpha were 

calculated using the psychometric R package (Fletcher, 2010) using the formulas of Feldt, 

Woodruff, and Salih (1987), which assume normal distributions, although Feldt, Woodruff, 

and Salih (1987) provided some evidence to suggest that their results were fairly robust to 

violations of this assumption.

Relapse Status—Relapse status was considered to be a dichotomous variable expressing 

whether the subject was recorded as relapsing to regular smoking during a follow-up period 

of four weeks following quit date (i.e., three weeks following the week of data used in the 

model; recall that to be included in the analysis at all, participants had to quit for at least 24 

hours and then avoid relapse for at least one week).
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Results: Question 1

We first sought a descriptive picture of how average urge changes over time for different 

groups of participants. This involves an intercept-only MixTVEM in which, for 

measurement occasion j on member i belonging to latent class c, the predicted value of urge 

is

(9)

where tij denotes time since quit (expressed in units of days for convenience, but allowing 

fractional values). The error term eij is assumed N(0, ) with class-specific .

Spline model details—In Model (9), we estimated the function β0|c for each class as a 

penalized B-spline (Eilers & Marx, 1996). Several choices must be made when 

implementing a penalized B-spline, especially the degree ds of the spline, the degree dp of 

the penalty, and the number of internal knots used to partition the interval of interest. The 

literature offers general advice for these choices, but no specific rules. These choices could 

be made by trying many alternative values and choosing the best AIC or BIC. Engel and 

Kneip (1996) support this approach, suggesting that both the tuning parameter (penalty 

strength) and the number of knots be chosen using AIC. For this illustrative example, 

however, we simply chose a reasonable value for each, as described below.

It is common practice to use a quadratic or cubic spline (ds=2 or ds=3), and often not much 

difference is observed between them. We recommend a cubic spline (ds=3). A higher ds is 

possible in principle, but in practice researchers who are seeking a more flexible function 

can simply add more knots or reduce the strength of the penalty function. A linear spline 

(ds=1) will look very different, and we do not recommend it because it will look jagged 

instead of smooth (that is, it will not have a continuous first derivative at the knots).

Eilers and Marx (1996, p. 116) recommend ds = 3 and dp = 3 as a rule of thumb, although 

they note dp = 2 is consistent with past literature. We use a slightly more parsimonious dp = 

2, which means, heuristically, that the penalty function will bias the estimated function in 

the direction of a straight line (Eilers & Marx, 1996, p. 91). This does not mean that the 

estimated function will be linear, only that it will be close to linear wherever the data does 

not clearly indicate otherwise. Eilers and Marx (1996) observe that a dp = 1 would lead to a 

jagged-looking piecewise linear fit, while a higher dp (biasing the result towards a quadratic 

or higher-order polynomial instead of a line) could make computation more complicated.

In the absence of a penalty function, using too many knots would cause the model to 

severely overfit the data, leading to a highly unstable, uninterpretable estimate with spurious 

features (rises and falls which are actually just the result of sampling error or noise). 

However, the penalty function is used to help prevent this from happening. Thus, in the 

presence of a penalty, it is generally advised that while using too few knots may reduce the 

accuracy of the estimate, using too many knots simply slows down computation without 

appreciably changing the final estimated function (see Ruppert, Wand, and Carroll, 2003). 

From this perspective, a prudent researcher should err on the side of more knots. However, 
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there is some evidence that even when a penalty is being used, too many knots can lead to 

too high sampling variability, although there is not a clear rule for the correct number of 

knots for a given sample size (Claeskens, Krivobokova, and Opsomer, 2009). From this 

perspective, the number of knots presents a bias-variance tradeoff, where using too few 

knots make it impossible to fit a complicated nonlinear function adequately, while using too 

many adds noise.

There is little specific guidance on choosing the number of knots for splines in a mixture 

model context. Lu and Song (2012) used 10 internal knots. In a non-mixture context, Eilers 

and Marx (1996, p. 93) stated that generally 10-20 basis functions are used, which suggests 

about 6-16 internal knots for a cubic B-spline (see the Appendix for an explanation of the 

additional four basis functions). Ruppert, Wand, and Carroll (2003, pp. 125-6) suggest a rule 

of thumb of either 35 internal knots, or one fourth as many knots as there are unique 

measurement time values, whichever is lower. In the empirical example used in this paper, 

time is measured on a continuous scale so there are essentially hundreds of unique 

measurement times, and so this rule of thumb would suggest 35 knots.

However, in a mixture context it may be wise to use fewer knots than one would use for 

estimating just a single function, because the larger number of functions being estimated 

may pose more risk for overfitting at least some of them. In the current example, there are 

good reasons to believe that the underlying mean function, although not linear, will have a 

fairly simple shape. First, we are not trying to model effects related to diurnal rhythms in 

this analysis, and we have only a few observations per person per day, so changes on a scale 

much smaller than a day may be of less interest here. Second, participants are not all 

necessarily following the same daily schedule. Thus, although individual participants will 

experience sudden rises and falls in urge caused by internal or external stressors, there is no 

particular reason why these should be synchronized among large numbers of subjects. In 

other words, mean trajectories should be expected to be much smoother than individual 

trajectories. For example, if we were to find a class with a small number of members which 

was characterized by a spike in urge on the second half of day 3 and an inexplicable dip on 

day 5 and 6, it would probably more reasonable to treat this as random than to report it as a 

substantive new clinical finding. Thus, it seems parsimonious to use rather fewer knots.

With these considerations in mind, we allowed six knots per spline, that is, one between 

each day, and allowed the function to have a cubic shape between any pair of knots, 

allowing the third derivative of the function to change at each knot. This was thought to be 

enough to describe the trend over the week. If there had been more observations per day for 

each participant, more knots could have be included to describe the changes within each 

day. However, this would have made the model more complicated and would also not be the 

best way to handle within-day changes, which might be better viewed as a periodic function. 

Thus, we used only six knots, an adequate complexity for this illustrative example. 

Fortunately, the exact choice of number of knots is often not crucial, and a sensitivity 

analysis can be performed. To check the robustness of the solution to our choice of knots, 

we repeated the three-class analysis for this example using quadratic or cubic B-splines and 

using 2, 5, or 30 knots. The resulting estimated trajectories were all visually 

indistinguishable, and the class proportions were also the same to two significant digits. This 
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occurs because the penalty function prevents overfitting and forces a reasonably 

parsimonious shape.

Number of classes—Similarly to other kinds of mixture models, we performed model 

selection by sequentially fitting the simplest model (one-class) through more complex 

models, comparing models with one through seven classes. For each candidate number of 

classes, we used 50 random starting values and then refitted the model using the starting 

value that led to the best fit (highest fitted penalized log-likelihood). We used a very high 

penalty strength (thus temporarily forcing an effectively parametric solution) when selecting 

the best starting value, in order to make the log-likelihood surface being searched more 

regular; we then estimated the optimal level of the tuning parameter using a BIC-like 

statistic, treating the starting value and the initial estimates of ρ and proportion nugget as 

fixed. Finally, we re-fit the model to find the regression coefficients, assuming these 

estimates of the tuning parameter, of ρ, and of proportion nugget. Fit statistics for models 

with one through seven classes are shown in Table 1.

An elbow plot of the weighted RSS statistic as given in Model (8) was rather inconclusive, 

except for making it clear that at least three or four classes were needed (the plot is shown in 

Figure 2). The three-class model also had a well-identified estimate (all of the starting values 

agreed on approximately the best solution). The optimum solution for larger model sizes 

was less clear; it is doubtful that the global maximum likelihood was identified for the 4, 6, 

or 7-class models. The AIC progressively improved from the one-class through the seven-

class models, and the BIC improved until at least the five-class model, but models with so 

many classes would be difficult to use and interpret in this context, especially because they 

seem to be rather poorly identified. Furthermore, with only 200 subjects total, a model with 

many classes would necessarily have some classes with very few members, perhaps too few 

for a good estimate of the coefficient functions. Therefore, we choose the three-class model 

for further analysis. Lu and Song (2012) followed a similar reasoning in their empirical 

example, emphasizing identifiability and interpretability over fit statistics.

Coefficient estimates—Estimated trajectories for the three-class model are presented in 

Figure 3. The mean urge trajectories that characterize the classes can be described as 

follows:

• Rapidly Declining Urge (62% of the sample)

• Gradually Declining Urge (19% of the sample)

• Persistently High Urge (19% of the sample).

Approximate 95% confidence intervals for class proportions were estimated using Cramer's 

delta method (Taylor linearization) as follows: 40% to 83% for the rapidly declining class 

and 13% to 25% for each of the two other classes.

The figure suggests that initial level of urge was related to the rate of decline. Individuals in 

the Rapidly Declining Urge class started with a relatively smaller level of mean urge, then 

had a rapid decline in urge over the first two days, after which the trajectory levels off and 

the participants generally report minimal urges. Individuals in the Gradually Declining Urge 
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class began at an intermediate level and also had an intermediate rate of decline. Individuals 

in the Persistently High Urge class reported the highest urges immediately after the quit 

attempt and showed relatively little decline in urge over time, perhaps even increasing 

slightly for a few days. Thus, the three classes could be roughly interpreted as characterized 

by low, medium and high urge, both in terms of initial level and in terms of rate of decline.

As the figure shows, individuals in the Rapidly Declining class or Persistently High class 

had a rather nonlinear trajectory of change. Individuals in the medium-urge class appear to 

experience a relatively linear decline. The nonlinearity of the Rapidly Declining trajectory 

may simply have been caused by the truncated scale (because urge cannot be negative). The 

nonlinearity of the Persistently High trajectory may be more substantively interesting as a 

steady or gradually increasing level followed by a gradual decrease, although the differences 

over time are for this class not clearly statistically significant because the confidence 

intervals for different times overlap. These confidence intervals are pointwise; joint intervals 

(which might be computed using bootstrapping) would be even wider. The wide intervals 

are a result of the relatively small number of individuals in the high class (total N=200, 

estimated 19% prevalence, suggesting an effective sample size less than 40) and the highly 

volatile response variable (see Figure 4, described below). If parametric shapes (such as 

straight lines) were assumed for the trajectories, the standard errors might have been smaller, 

but at a cost of increased bias; this is a basic tradeoff between parametric approaches and 

nonparametric or semiparametric approaches.

Standard deviations and covariance structure—Subjects were assumed independent 

from each other, with the dependence within subject assumed to follow an AR-1 variance 

structure with nugget as given in Model (7). To make computation and identification more 

feasible, we assume that the nugget proportion  and the autoregressive 

parameter ρ are constant across classes, and we estimate them before choosing the final 

tuning parameter. We allow the total variance  to vary across classes.

In the three-class model, the estimated pe was .592, and the estimated ρ was .577, with time 

measured in units of days. Using (7), this suggests that the residuals for two urge 

measurements taken a few hours apart (|tij−tij′| ≈.1) would be moderately correlated (r ≈.

39); those taken a day apart (|tij − tij′| ≈ 1) would be more weakly correlated (r ≈.24). 

However, because these residuals are deviations from class-specific means, the 

interpretation of the error correlations is conditional on the model; if more (or fewer) classes 

had been specified, there would have been less (or more) leftover correlation to be 

accounted for by the autoregressive model. In particular, if all participants were forced to 

share a single mean trajectory, then one would expect a higher estimated autocorrelation 

parameter and/or smaller nugget proportion, because the autocorrelation would have to 

account for the between-subjects variability that class differences were no longer able to 

account for.

The Gradually Declining Urge class had a higher estimated total standard deviation (σ̂total 

=3.40) than the Rapidly Declining Urge class ((σ̂total =1.93) or the Consistently High Urge 

class (σ̂total =2.54). This is partly due to floor and ceiling effects. Many members of this 
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class were not consistently giving medium responses, but alternately giving low and high 

responses. Indeed, plots of raw data from individual participants demonstrate that observed 

urge trajectories often consist of sharp peaks and valleys. In past literature, the experience of 

cravings during cessation has been described as often being episodic or phasic (Ferguson & 

Shiffman, 2009), with important implication for theory (suggesting the urges may derive as 

much or more from exposure to situational stimuli and/or stressors, than from nicotine 

withdrawal). The episodic nature of cravings also has implications for treatment (suggesting 

a need to provide smokers with strategies to cope with these episodic peaks in urge 

intensity). Data from four randomly selected individuals classified into each of the three 

classes are plotted in Figure 4. While some individuals report gradual changes, others seem 

to oscillate between periods of very high and very low urge.

Conclusions—In general, individuals with higher initial urge seem to have a slower 

decline in urge and more volatility in urge. The model could easily be made richer in order 

to provide more accurate predictions, such as by including indicator variables for times of 

day and for weekends. However, we have left these out for simplicity because our main goal 

is to demonstrate MixTVEM. Similarly, a more thorough analysis should test the 

relationship of class membership to baseline characteristics such as the assessed degree of 

addiction severity, the prequit mean urge, or the prequit mean negative affect. It would be 

reasonable to conjecture in this case that the Persistently High Urge class may consist of 

more addicted individuals and/or individuals who are more sensitive to distress related to 

withdrawal. We explore this hypothesis later as Question 3.

This simple example shows the usefulness of MixTVEM in describing trajectories of 

change. Note that Piasecki et al. (1998, 2000) fit a model something like Model (9) with a 

smoking cessation data set: namely, they performed a cluster analysis of nonlinear 

trajectories for describing the self-reported affective states of participants. However, their 

approach was limited in that it involved considering a small, regularly timed set of 

measurements for each individual, treating each as a single multivariate vector. This 

approach is not ideal for ecological momentary assessment datasets having many unevenly 

spaced measurements per individual, unless the researcher is willing to considerably 

compress the data (e.g., to an average for each day in order to create a regular grid). In 

contrast, MixTVEM allows information to be pooled across many irregular measurement 

times without coarsening time to an integer grid, and MixTVEM similarly allows 

coefficients to be smooth nonparametric functions of time rather than treating days as 

separate discrete units.

Results: Question 2

To evaluate the time-varying relationship between smoking urges (Urge) and negative affect 

(NegAff) across time in the different latent classes of study participants, a MixTVEM was 

constructed as follows:

(10)
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The time-varying covariate NegAffij was centered at the overall mean of approximately 

1.74. The residuals, eij, are assumed to be correlated according to the structure in Expression 

(7). The β1|c function represents the strength of the association between NegAff and Urge for 

each latent class at each time point across the week of observations.

Number of classes—Based on a model-selection process similar to the first example, a 

three-class model was chosen again. The three-class solution was well identified (40 of 50 

starting values arrived at the best obtained log-likelihood) and strongly favored by an elbow 

plot of WRSS (as shown in Figure 5).

Coefficient estimates—The coefficient functions for the three latent classes are 

summarized in Figure 6, with β0|c(t) trajectories shown in the upper panel and β1|c(t) 

trajectories in the lower. In all three classes, β0 was either always gently declining or else 

first declining and then leveling off, and β1 was either always gently increasing or increasing 

and then leveling off. However, while the changes of the trajectories over time were roughly 

similar, the overall levels of the trajectories differed greatly. The three classes can be 

characterized as follows:

• Low β0 Low β1 (49% of the sample)

• Medium β0 High β1 (20% of the sample)

• High β0 High β1 (31% of the sample).

Confidence intervals for the class proportions are 42% to 57%, 10% to 30%, and 26% to 

36% respectively.

Unlike in Model (9), the exact shapes of the β0|c trajectories in Model (10) are not of much 

intrinsic interest. The β0|c trajectories in Model (10) would be equivalent to the predicted 

mean trajectories of Urge only if NegAff were imagined to be held constant, which is not 

very realistic. Recall that even in classic linear regression, the meaning of the intercept can 

sometimes be unclear if the predictor variable is not centered to have mean zero;and it is 

infeasible to center ILD within all time points and all latent classes at once. Therefore, the 

main focus of interest is on the class-specific β1|c functions presented in the lower panel.

Individuals in the Low β0, Low β1 class have only a relatively weak relationship between 

negative affect and urge at any given time. Figure 6 suggests that this may be largely a 

consequence of truncated range, as urge cannot take on negative values, and members of the 

low class do not often report very high-urge episodes. Interestingly, however, individuals in 

the medium-intercept class have as strong a relationship between negative affect and urge, 

or perhaps stronger, relative to those in the high-intercept class. For all classes, the 

relationship between negative affect and urge seems to strengthen over the first few days, 

even though the intercept for urge lessens. This is further discussed below. The estimated 

trajectories seem to suggest that the Medium β0, High β1 class has a roughly linear increase 

in β1|c (t) over the week, while the High β0, High β1 class has a sharp increase followed by a 

leveling off and the beginning of a decrease. However, the significance of the apparent 

difference in shapes is unclear, especially because the confidence intervals for the β1|c(t) 

trajectories are quite wide.
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Membership in classes—The vast majority of participants (84%) were classified in 

analogous classes under Models (9) and (10). That is, low-level (Rapidly Declining Urge) 

class members in Model (9) were typically in the low-level (Low β0, Low β1) class in Model 

(10). Medium (Gradually Declining Urge) class members in Model (9) were typically in the 

medium (Medium β0, High β1) class in Model (10). High (Persistently High Urge) class 

members in Model (9) were typically in the high (High β0 High β1) class in Model (10). 

Another 4% of individuals were in neighboring classes (low and medium, or medium and 

high).

However, 12% of participants were somewhat anomalous. They were classified as Rapidly 

Declining Urge when negative affect was not accounted for, but High β0, High β1 when 

negative affect was accounted for. The reverse situation was not observed. That is, certain 

individuals are “low” for Figure 3 but “high” for Figure 6. We call these 23 individuals 

“discrepant” on class membership. This suggests high covariate-adjusted urge is not the 

same as high urge. Closer examination revealed that the discrepant participants had typically 

very low self-assessed negative affect, which made their urge to smoke relatively high in 

comparison to what might be expected. This could perhaps be an issue of measurement; this 

subset of individuals may have felt that it was socially desirable to report being in a good 

mood almost all the time, even if they were suffering from withdrawal symptoms, but they 

were able to report their urge to smoke more candidly. It is not known whether such 

individuals might have been engaging in something like repressive coping (see Mund & 

Mitte, 2012) in dealing with their withdrawal symptoms.

Alternatively, these individuals may actually have been experiencing urge in the absence of 

negative emotions. That is, they may really have been feeling well, but still experiencing 

some appetitive desire to smoke despite not being much bothered by either aversive 

withdrawal symptoms or external stress. They may even have tended to associate the desire 

to smoke with positive emotional events such as social celebrations. However, for reasons 

described in the Univariate Descriptive Statistics subsection below, these do not seem to be 

the main reasons for the discrepancy.

Covariance parameters—The estimate for the nugget proportion was .644 for this 

analysis. The estimate for the autoregressive parameter ρ was .48, suggesting modest 

correlation of urge over time after controlling for negative affect. The total variability was 

strikingly different for the three classes, with σ̂total estimates of 1.59 for the Low β0, High β1 

class, 3.04 for the Medium β0, High β1 class, and 2.19 for the High β0, High β1 class. As in 

Model 9, the medium class is the most variable.

Univariate trajectories—For each class, the observed data points and smoothed 

trajectories for negative affect and urge are plotted in Figure 7. This figure shows that 

members of the classes with typically medium and high adjusted urge (i.e., the Medium β0, 

High β1 class and the High β0, High β1 class) had about the same mean trajectory of negative 

affect, ignoring urge; but different trajectories of urge, ignoring negative affect. This 

supports the interpretability of the difference in adjusted urge.
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Univariate descriptive statistics—Ignoring measurement time, class membership 

uncertainty, and within-subject correlation, the sample means and standard deviations of 

reported negative affect were 1.62 (SD=0.50) for the low-β0 individuals, 1.83 (SD=0.72) for 

the medium-β0 individuals, 2.03 (SD 0.66) for the nondiscrepant high-β0 individuals, and 

1.56 (SD=0.51) for the discrepant high-β0 individuals. The sample means and standard 

deviations for reported urge were 1.31 (SD=1.79), 2.82 (SD=3.49), 5.83 (SD=2.60), and 

3.51(SD=2.04) for these four groups, respectively. Finally, the sample correlation between 

negative affect and urge, still ignoring time, class uncertainty, and within-person correlation, 

was 0.29, 0.40, 0.51, and 0.35 for the low, medium, high nondiscrepant, and high discrepant 

individuals, respectively. This is obviously a rather crude analysis but does provide some 

information. Negative affect was positively related to urge to smoke for everyone, but the 

relationship was weaker for people who had either very low reported urge (the low-β0 

group) or very low reported negative affect (the discrepant high-β0 group).

Conclusions—Within each class, time and negative affect apparently interact in 

predicting urge. That is, negative effect has a time-varying relationship with urge, and is a 

stronger predictor after a few days into the quitting attempt. While these participants were 

regularly smoking, they managed their urge by smoking regularly, and may also have 

stabilized affect by this mechanism (Baker et al., 2004). However, after quitting, urges may 

have become less regular and more triggered by external stress than habit.

An alternative interpretation could be that participants usually felt well, but occasionally had 

brief but intense episodes of withdrawal causing both high negative affect and high urge. 

Indeed, previous analyses of data from this study (Shiffman et al., 1997) have shown that 

although the participants' average urge did decline, they continued to have occasional 

“temptation” episodes (more than one per day on average during the first week), which were 

associated with much higher urges. Both interpretations are plausible (i.e., stress causes 

negative affect which causes urge, or withdrawal causes episodes of urge and negative 

affect), and they are are not mutually exclusive. Either way, as urge became less prominent 

as a routine part of daily life, the remaining high-urge episodes became statistically more 

related to negative affect.

Results: Question 3

When comparing the three trajectories found in Questions 1 and 2, we conjectured that the 

classes whose members were experiencing higher urge were also those whose members 

were more addicted before beginning the quit attempt. To explore this question, we consider 

two objective measures of prequit smoking severity: mean number of cigarettes smoked per 

day and mean minutes between awakening in the morning and smoking one's first cigarette.

The baseline average numbers of cigarettes per day for each class in Question 1 (using hard 

assignment) were essentially equal, namely 25, 27, and 27 for the low, medium and high 

classes, respectively. However, this is not surprising, because the number of cigarettes 

smoked per day has been found (Donny, Griffin, Shiffman, and Sayette, 2008) to be only a 

weak indicator of dependence. In contrast, the baseline average minutes to first cigarette for 
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each class were 22.1, 10.8, and 12.4, suggesting that (at least by this measure) the Rapidly 

Declining urge class tended to represent individuals who were less addicted.

To provide a significance test for minutes to first use as a predictor, Model (9) was refit 

using baseline minutes to first cigarette as a class membership predictor. This predictor was 

not statistically significant for the contrast between the rapidly declining and gradually 

declining class, persistently high and gradually declining class, or rapidly declining and 

persistently high class. However, the distribution of time to first cigarette was noted to have 

a large positive skew; within each class, the mean was over twice the median and the 

observed maximum was over ten times the median. The log-transformed minutes to first 

cigarette did almost significantly predict membership in the low versus medium class. 

Specifically, there was a logistic regression coefficient of 0.31 for the effect of log-

transformed covariate on membership in the low class, (SE=0.16, z=1.96, p=.0505), treating 

medium as the reference or baseline class. This does lend some evidence to the reasonable 

conjecture that less addicted individuals are in the lower urge class.

A similar analysis was also done with the classes in Model (10), with broadly similar results. 

The mean minutes to first cigarette were 23, 10 and 15.45 for the low β0/high β1, medium β0/

high β1, and high β0/high β1 classes, respectively. The mean cigarettes per day were 25, 26, 

and 27, respectively. However, these differences were not statistically significant at the .05 

level. Perhaps adjusting for negative affect attenuated the relationship with prior addiction. 

This could quite plausibly occur if withdrawal-related negative affect mediates the 

relationship between prior addiction and current urge to smoke.

Results: Question 4

It is of interest to investigate whether defined latent classes are associated with the ultimate 

outcome of the smoking cessation attempt. If so, this would provide not only some construct 

validation for the classes, but also a possible way to predict participants' success from their 

experiences very early in the attempt. One approach for handling this latent predictor 

variable is “modal assignment” (using terminology from Bolck, Croon & Hagenaars, 2004) 

to assign each individual to a latent class based on highest posterior probability, and then to 

treat this as if it were an observed variable. This is convenient and intuitive, but it has the 

disadvantage of ignoring uncertainty about class membership. A second approach is 

“random assignment” (see Bolck, Croon & Hagenaars, 2004). This involves doing a 

multiple imputation class memberships from the distribution defined by the posterior 

probabilities, then analyzing each imputed sample separately, and finally combining the 

results. This approach is intended to take class membership uncertainty into account when 

testing whether the classes differ on a covariate. A third approach (“one-step” in the 

terminology of Bolck, Croon & Hagenaars, 2004) is to include the distal outcome as a 

covariate, even though its occurence in time is after the process being measured. This is not 

illogical, even though time seems to be reversed, because MixTVEM is a regression model 

rather than a causal model.

The proportions of individuals experiencing a relapse within the rapidly declining, gradually 

declining, and consistently high trajectory classes in Model (9) were 9%, 19%, and 20%, 

respectively. This was not statistically significant even under modal assignment (χ2=4.89, 
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df=2, p=0.09) and therefore would not be statistically significant using the more 

conservative random assignment approach. It did, however, significantly predict 

membership in the persistently high versus rapidly declining class when included as a 

covariate (logistic regression coefficient 1.23, SE=.52, z=-2.35, p=.019).

Statistical power is a problem for this kind of analysis. Piasecki, Jorenby, Smith, Fiore, & 

Baker (2003) pointed to power as a possible disadvantage of a class-based approach versus 

an approach based on a continuous latent variable. That is, when there are several classes 

treated as levels of a nominal variable, rather than a single dimension of low to high, it may 

become more difficult to distinguish between the levels on a distal outcome.

An Alternative Analysis Using Individually Recentered Data

In addition to modeling within-subject correlations, it might be advantageous to better 

distinguish between-subjects from within-subjects effects. In Model (10) as presented here, 

the regression equations within each class are presented in the form of marginal models 

relating time and negative affect to urge for class members, and therefore do not distinguish 

between the effect of having an unusually high-negative-affect day and the effect of being 

an unusually high-negative-affect person. Because these effects are unlikely to be truly the 

same, it might be better to include both the person's mean value of negative affect and the 

momentary value centered around the person's mean. This is analogous to the “frog pond” 

approach in multilevel models of educational attainment within schools (see Kreft, de 

Leeuw, & Aiken, 1994), except that the cluster here is the person rather than a school. For 

example, mean negative affect (whether from baseline data, postquit data, or both) could be 

included as a predictor of class membership in (4), and momentary deviations from this level 

could be included as a predictor of momentary response in (5).

We explored this approach in an alternative analysis for Model (10), using a subject-specific 

baseline mean calculated during the most recent week of random assessment data prior to 

the designated quit date (i.e., days negative seven through zero). We proceeded as described 

in the section for Question 2 above, except that we centered each participant's data by the 

participant's own prequit mean, rather than the sample-wide postquit mean, and additionally 

we included the subject-level prequit mean negative affect as a class membership covariate. 

The fitted coefficient functions were similar to the grand-mean-centered version shown in 

Figure 6, although the medium β0/high β1 class now had an even higher β1 in the early part 

of the interval, and the high β0/high β1 class now had a somewhat lower β1 in the early part 

of the interval. The estimated class proportions were somewhat different, with 29% in the 

high β0/high β1 class, 18% in the medium β0/high β1 class, and 53% in the low β0/low β1 

class. Higher prequit mean negative affect was significantly related to odds of being in the 

high β0/high β1 class versus the low β0/low β1 class (logistic regression coefficient 1.88, 

SE=0.45, z=4.08, p<.001), although it was not significantly related to the odds of being in 

the high versus the medium-urge trajectory. In other words, the low urge trajectory class 

appears to consist of people who either are somewhat less prone to negative affect over the 

long term, or who are at least somewhat less willing to admit to unpleasant emotions. The 

other classes may tend to have higher trait negative affectivity.
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Note that the prequit mean was calculated using the last week of observations prior to the 

designated quit date, although these data were not included in the coefficient function 

trajectories being modeled. We did not try individually centering the postquit data on the 

subject-specific postquit mean, as this would make it quite difficult to interpret the 

coefficient functions for early time points. That is, if we had centered by the subject-specific 

postquit means, then a high value of the predictor variable could indicate either that the 

individual has especially high negative affect now, or that the individual is going to have 

especially low negative affect at a later time. It would be difficult to interpret a model in 

which the past is effectively changed by the future, so we did not implement it. This 

interpretational problem does not occur in the analyses we presented earlier in this paper, 

because we either center only by the grand mean, or only by prequit (i.e., baseline) subject-

level means.

Discussion

In this paper we introduce the MixTVEM approach for modeling ILD in the social and 

behavioral sciences. MixTVEM addresses the important challenges of modeling subject 

heterogeneity and modeling nonlinear trajectories of change. We emphasize that different 

individuals follow markedly different processes of change and that these changes are not 

necessarily well described by linear or quadratic models. To handle this, MixTVEM 

considers the population to be a mixture of latent classes, in which each latent class has a 

different shape for its mean trajectory and a different relationship between time-varying 

covariates and the outcome. MixTVEM combines ideas from latent class growth analysis 

with TVEM. We provide a SAS macro and an R function to assist in fitting MixTVEM in 

these commonly used environments.

Related Approaches

The MixTVEM approach as presented here is related in several ways to previously 

introduced models for longitudinal data. The simplest possible MixTVEM, in which only 

β0c is time-varying as in Model (9), could be seen as a latent class growth model (Nagin, 

2005) with nonparametric shapes for the trajectories. Of course, nonlinear growth mixtures 

have been fit before. For example, Galatzer-Levy, Bonanno, and Mancini (2010) used a 

growth mixture model to describe subjective well-being in unemployed persons, following a 

piecewise linear approach with four phases. This could be seen as a linear spline, although 

with only three knots. Similarly, mixtures of classes with quadratic or cubic trajectories have 

been fit in many studies (e.g., Gaffney & Smith, 2003; Jones, Nagin & Roeder, 2001; Nagin, 

1999; Swartout, Swartout & White, 2011). However, these models restrict the shape of the 

mean trajectory more than MixTVEM does. Mixtures of growth trajectories modeled by 

splines have recently been proposed in the statistics literature (James & Sugar, 2003; Shi & 

Wang, 2008), but have not yet been extensively used in social and behavioral sciences. 

Furthermore, some of the past work on finite mixtures of growth trajectories often either 

omits covariates or treats the effects of covariates as time-invariant even when the covariate 

itself is time-varying. In contrast, MixTVEM allows both the intercept and the substantive 

regression coefficients to have nonparametric shapes.
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To the best of our knowledge, the basic approach of MixTVEM with covariates (i.e., models 

of the form of (4) and (5)) was first proposed, although in a Bayesian form, by Lu and Song 

(2012). They used a rich Bayesian framework that added informative priors and also 

multiple parametric random effects, and which required some special care to ensure 

identifiability. It is possible that for many datasets, their model might be too rich to converge 

easily in a frequentist context. Earlier, Ma and Zhong (2008) had used a model similar to 

(5), although without the subject-level Model (4). The Ma and Zhong (2008) model was 

parameterized in a somewhat different way, which potentially allowed nonparametric 

interactions between covariates; for simplicity we do not explore that specification here. 

Lastly, the very general R package flexmix (Grün & Leisch, 2008) is able to fit longitudinal 

mixtures of many kinds of models, including some semi-parametric models such as spline 

growth curves and generalized additive models, which are similar to MixTVEM. However, 

we suspect that for many researchers our specialized SAS macro or R function may be 

considerably easier to use and interpret for MixTVEM analyses specifically. Our paper is 

intended as a practical introduction, and accordingly we use a relatively simple approach.

TVEM and MixTVEM as described here describe the changes in momentary association 

between variables. For example, they can describe how the regression relationship between 

negative affect at time t and urge to smoke at time t changes as a function of t. A related 

question would be how the regression relationship between negative affect at time t0 and 

urge to smoke at time t0+t changes as a function of t. TVEM and MixTVEM as described 

here do not address this second question. Approaches to the second question are described in 

detail by Selig, Preacher, and Little (2012), who also emphasize the importance of 

considering nonlinear shapes (at least quadratic or exponential) for the changes in 

relationship over time. The approaches described in Selig et al. are focused on situations in 

which the variable is measured at only a very small number of times (often twice) per 

participant, although they could be extended to more general settings. In contrast, TVEM 

and MixTVEM are intended for studies with several or many observations per participant 

(Tan et al., 2012).

Simplifying MixTVEMs

A disadvantage of both TVEM and MixTVEM is that the regression coefficients of interest 

cannot be described as concisely or parsimoniously as the parameters of a linear or quadratic 

model, because they are now functions instead of single numbers. However, after fitting a 

MixTVEM, a researcher could move on to a more parsimonious model if desired. Tan et al. 

(2012) suggested that investigators who prefer a simpler parametric description might still 

wish to use TVEM first for exploratory or diagnostic purposes (i.e., to choose a parametric 

form). In Model (9) in this paper, the sample was classified into low-urge, medium-urge and 

high-urge classes, perhaps suggesting an underlying continuum. This suggests that instead of 

a finite mixture, one might use a model with a normally distributed random effect 

incorporated into a common nonlinear but parametric form (see Lindstrom & Bates, 1990; 

Blozis, 2004; Cudeck & Harring, 2007). The model could be simplified by doing away with 

the nonparametric coefficients, the differing latent classes, or both. Thus, one could try 

linear or quadratic trajectories with random effects, a parametric finite mixture distribution, 

or both; this might be especially effective if the lower truncation of the scale were taken into 
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account (as in Grün & Hornik, 2012). Yet another possibility would be a mixture of curves 

sharing a prespecified parametric family of nonlinear shapes such as logistic curves (see 

Kelley, 2008; Grün & Hornik, 2012) or an ordinal TVEM (see Dziak, Li, Zimmerman, & 

Buu, 2014). There are many possibilities, but MixTVEM is relatively general and 

interpretable and therefore provides a good place to start. In summary, MixTVEM is not 

always needed to describe a given dataset, but even in situations in which a more 

parsimonious model is later selected, MixTVEM can be useful as a tool for exploratory 

description, diagnostics, and data visualization.

Sample Size

The sample size requirements of MixTVEM are not yet known but can be investigated using 

simulations in the future. As with other mixture models, the question is complex and the 

answer is likely to depend on the number of classes and covariates in the model, the 

marginal distributions of the response and covariates, and especially the goal of analysis. 

The goal might involve attaining a particular width for the confidence interval for some 

quantity, a particular power for the successful detection of some hypothesized feature of a 

specified size, or the correct choice of number of classes according to some given selection 

method. Different goals and assumptions would require different sample sizes. However, 

Tan et al. (2012) tentatively suggested that 100 participants with 10-25 observations per 

participant seemed sufficient for getting reasonable results from TVEM with a normally 

distributed outcome. Following this heuristic, in the context of MixTVEM one would hope 

to see at least 100 participants per class, and preferably more in order to better inform the 

model for distinguishing between the classes. This implies that a larger sample size will be 

needed if there are many classes or if some classes are very small. In our empirical example 

with a three-class model, there were 200 participants and the smallest class proportion was 

about 20%, so the smallest class had only about 40 subjects. The limited sample size per 

class partially explains why the confidence intervals in the figures are rather wide and the 

significance tests for relationships with other constructs were inconclusive or nonsignificant. 

However, despite the limited sample size, MixTVEM provided promising exploratory 

insights into the data.

Limitations of the Current Approach and Topics for Future Research

As with other mixture models, the different classes in MixTVEM may be considered either 

as representing actual distinct subpopulations, such as different alleles on an unknown gene; 

or else simply as convenient points used in summarizing a continuum, such as the “low,” 

“medium,” and “high” levels of some construct. There is an important and continuing debate 

in the literature about the implications of this distinction (see, e.g., Bauer & Curran, 2003, 

with discussions; Muthén, 2004; Erosheva, Matsueda, & Telesca, 2014). In the former 

interpretation, assumptions about normality and about random effects structures become 

extremely important in order to avoid choosing the wrong number of classes or 

misrepresenting the relationship between class membership and covariates. For example, it 

appears in Figure 4 that the data in the empirical example are not actually normally 

distributed, due to the constraints above and below, as well as the seemingly chaotic spikes 

reported by some participants.
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In the latter interpretation, there may not be an unequivocal true answer to the number of 

classes. For example, either a division into “low,” “medium,” and “high” or into “very low,” 

“low,” “medium,” “medium high,” and “veryhigh” might lead to similar substantive 

interpretations. In such a case, the question of the true meaning of the classes would seem 

less urgent, and the emphasis would simply be to provide a rich but interpretable picture of 

the data.

Researchers differ in views about whether it is feasible to distinguish between categorical 

and continuous latent variables (see Cudeck & Henly, 2003; Lubke & Neale, 2006), and 

hence to tell whether different classes are conceptually distinct entities or merely regions on 

an underlying continuum. In the nonparametric regression case, as in MixTVEM, the 

situation might be even more complicated. We cannot attempt to resolve these questions 

here. It is important that predicted class memberships not be treated as exact diagnoses or 

complete descriptions of people (Nagin & Tremblay, 2005; Walters, 2011). However, a 

latent-class-based approach can be a useful tool for describing data in practice, regardless of 

whether the classes can be reified in a particular field of study (Nagin, 2005; Petras & 

Masyn, 2010). Thus, the question of whether the classes are really distinct entities might not 

be as much a limitation as it first seems.

A more practical limitation is that both TVEM and MixTVEM assume that time is measured 

on a common scale, with a zero point that is meaningful for all participants. Otherwise, it 

would not be clear how to interpret systematic changes over time. In practice, this means 

that TVEM and MixTVEM are most suitable for studying processes that lead up to and/or 

follow from a definable event. In developmental research spanning years, the time variable 

is likely to be age, which provides milestones that can be at least approximately aligned 

(such as birth or puberty). In research involving an intervention, the time variable may be 

the number of hours or days since the beginning of the intervention. Observations before the 

beginning of the intervention can also be included (i.e., time can be negative), and the role 

of the beginning of the intervention may be played by a natural or social event rather than 

one imposed by the investigators. However, there still must be some meaningful event by 

which to align the data of disparate participants. In the absence of such a shared event, the 

interpretation of a mean trajectory would be unclear. Calendar date by itself is unlikely to be 

useful except for studies specifically addressing historical change. Growth curve models and 

growth mixture models can be extended to allow different people to have different starting 

points or rates of change but the same underlying shape (e.g., curve registration; see Ramsay 

& Silverman, 2005; Erosheva, Matsueda, & Telesca, 2014). This could probably be done 

with TVEM and MixTVEM, although it could further complicate the estimation process. 

However, in order to make the TVEM coefficient functions meaningful, the process being 

studied would still need to have one or more shared starting or anchoring points, with the 

same meaning or characteristics for all participants even if the exact timing were different.

Thus, in situations in which variables are being sampled from different participants over 

some length of time, but no systematic change is being hypothesized to occur over that time, 

TVEM and MixTVEM would not be very useful. Other methods that conceive of change in 

terms of cycles or even random walks (see review in Chow, Hamaker, Fujita, & Boker, 

2009) rather than trajectories, might be more useful in such settings. As a caveat, some of 
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these latter methods may be more difficult to apply to unevenly timed measurements such as 

those found in our empirical example. It is also possible to do something like TVEM using 

sines and cosines instead of splines as a basis for the coefficient functions, in order to 

measure cyclical functions rather than processes with beginnings in time (see Fok & 

Ramsay, 2006), or to study ILD as a pattern of changes from an equilibrium by using 

parametric differential equations (see Hu, Boker, Neale, & Klump, 2014; Trail et al., 2014), 

but these are beyond the scope of this paper.

Finally, a MixTVEM such as (5) focuses on modeling the distribution of Y conditioning on 

the X variables, not the multivariate joint distribution of X and Y together. This may 

occasionally cause complications, such the “discrepant” individuals in the empirical analysis 

who had only modest levels on the response variable, but high covariate-adjusted levels, 

because of unusually low values on the covariate. This difficulty is not unique to 

MixTVEM, but is a special case of a general caution for regression models with many 

parameters. The relationship of the distribution of Y|X to a variable such as class 

membership or time is not necessarily the same as the relationship of Y itself to X, because X 

itself may also be related to the other variable.

Summary

Despite its limitations, MixTVEM is a promising new way of modeling change over time 

without making strong assumptions about the shape of change processes and without 

assuming that this shape is the same for all participants. MixTVEM belongs to an emerging 

class of new methods that combine both variable-centered and group- or pattern-centered 

theory into a single model (Kelley, 2008; Muthén Muthén, 2000; Nagin, 1999). The 

flexibility of MixTVEM to allow not only the values but also the effects of covariates to 

change over time, and to do so differently for different latent groups, offers new possibilities 

for research and theory.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: Resources for Fitting MixTVEM

In this appendix we briefly review the properties of penalized B-splines. We then briefly 

explain how to use our SAS macro and R function for MixTVEM estimation. Copies of the 

Dziak et al. Page 30

Psychol Methods. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SAS and R files are included in the online supplemental material for this article. They are 

also freely downloadable from the Methodology Center website at http://

methodology.psu.edu/downloads/mixtvem.

Penalized B-Splines

B-splines, or “basis splines” were introduced by Schoenberg (1946), and are further 

described in de Boor (1972, 1993) and Eilers and Marx (1996). Like polynomial regression, 

they are used to approximate a function with unknown shape as a linear combination 

(weighted sum) of several “basis functions” with known shape. When modeling the growth 

of a variable with polynomial regression over time t, the basis functions are 1, t, t2, t3, etc. 

The basis becomes richer as more terms become available, which means that more complex 

functions can be expressed. The well-known flaw of polynomial regression is that its basis 

functions are highly intercorrelated, leading to computational and inferential problems. B-

splines are an alternative system of functions, constructed so that most of the functions in 

the basis will be independent or nearly independent from one another. The polynomial basis 

functions are each monotone functions of time from some starting point, and are never zero 

except at t=0. However, the B-spline basis functions each have a “hump” or “hill” shape (de 

Boor, 1972, p. 51) instead. Each hill is nonzero only over a limited interval, which begins or 

ends at special points called knots. The knots are usually either equally spaced through the 

interval of interest, or at equal quantiles of the data. However, neither the knots nor the data 

points need to be equally spaced.

Importantly, as Eilers and Marx (1996) point out, the regression coefficient for each basis 

function has no interpretation by itself; the basis functions are used together to estimate the 

function of interest, somewhat like pixels in an image or primary colors in a compound 

color. Thus, there are no “significant” or “non-significant” knots or basis functions. The 

exact shape of each hill depends on the degree d of the B-spline basis. In general, each hill is 

a function B(t) composed of d+1 pieces, each a polynomial of degree d, and is nonzero over 

d+1 of the intervals marked off by the knots. Thus, for a linear B-spline, the hill is triangular 

with one line segment rising from the time of one knot until the time of the next knot, and 

then one line segment falling from the time of this second knot to a third. Several such hills 

are included in a basis: one for each knot, sometimes with extra knots and hills placed 

automatically just beyond the ends of the interval, in order to specify the behavior of the 

function at the edges. The actual shape and placement of the functions in the basis is not 

easy to describe intuitively. Their span (the range of functions that can be created by 

weighting and summing them) consists of functions that are polynomial of degree d between 

the knots, and continuous in the (d-1)th derivative at each knot. Thus, for functions 

estimated by linear B-splines, the estimate will be made of linear pieces connected at the 

knots. Given an adequate number of knots, a d of 2 or 3 is adequate to estimate a reasonably 

good portrayal of practically any smooth and bounded function; in our examples we use d=3 

(cubic).

Eilers and Marx (1996) have recommended about 10 to 20 basis functions (apparently 

including the d-1 basis functions at both the lower and upper bound of the interval, and 

hence apparently suggesting a total of 6 to 16 interior knots) as a reasonable number. 
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However, that was in a non-mixture context; it may be reasonable, as we argued in the 

empirical example, to have fewer knots than this because of the additional complexity of 

having to fit the model on each of several latent classes. To avoid overfitting, AIC or BIC 

can be used to choose the number of knots. However, it is sometimes easier to simply 

choose a fairly large number of knots and then enforce parsimony by adding a regularization 

penalty to the model, somewhat as in ridge regression. Such a penalty is essentially a zero-

mean, finite-variance prior on the size of the change which occurs in the function at each 

knot. Thus, as the penalty weight (or the inverse prior variance) approaches infinity, the 

estimated function becomes a polynomial of degree d over the whole interval, no matter how 

many knots there are (in other words, the knots will have no effect, so that the overall curve 

is a simple polynomial). In our application, we use a BIC-like criterion to choose the weight 

of the penalty. One can penalize either the difference between consecutive knots or a higher-

order difference (e.g., difference between consecutive differences). We use here a spline of 

degree 3 and difference penalty of degree 2. Thus, instead of an ordinary maximum-

likelihood solution, we are actually finding a matrix-weighted penalized maximum 

likelihood with a weighted quadratic penalty on the coefficients. Equivalently, we are 

finding a prior mode, with a multivariate normal prior on the coefficients. The process by 

which the weighting matrix of the penalty (precision matrix of the prior) is determined is 

described further in Eilers and Marx (1996). In the case of our Model (9), there are ten hills, 

as shown in Figure 8. Six of them correspond to the six internal knots; the others essentially 

handle the edges. Thus, a time of t=1 is represented as B1(t)=0, B2(t)=0.167, B3(t)=0.667, 

B4(t)=0.167, B5(t)=B6(t)=B7(t)=B8(t)=B9(t)=B10(t)=0. Given estimates of posterior 

probabilities from the E step of the EM algorithm, the best weights for combining these 

functions to estimate the coefficient function within a class are determined by doing a 

penalized linear regression of y within each class on the ten B functions, weighting by each 

individual's posterior probability of class membership. The resulting estimates for Model (9) 

are shown in Table 3. To fit Model (10), the response (urge) in each class is regressed on 

B1(t), B2(t), …, B10(t), B1(t) ×X, B2(t)×X, …, B10(t) ×X where X is the negative affect 

measure. In order to save space, we omit the equivalent of Table 3 for Model (10).

Tan et al. (2012) and Shiyko et al. (2012) also used penalized splines when fitting non-

mixture TVEMs. However, they used different basis functions:truncated power functions, 

which have some similarities to polynomial regression and some to B-splines. They also 

used a simpler penalty function (a penalty on the sum of squared coefficients for the knots, 

treating them somewhat like random effects as described in Ruppert, Wand, & Carroll, 

2003). The software for non-mixture TVEM by Yang, Tan, Li, and Wagner (2012) allows 

either a penalized truncated power spline approach or an unpenalized B-spline approach; 

both are explained in the user's guide for this software. Because of the extra computational 

demands in the mixture context, it was decided for the MixTVEM macro that B-splines were 

more desirable than truncated power splines (due to their low intercorrelation) but that a 

penalty was also desirable. In practice, penalized truncated power splines are sometimes 

called P-splines, but the term P-spline was originally coined by Eilers and Marx (1996) for 

penalized B-splines rather than truncated power splines; this is a potential source of 

confusion when reading the literature.
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TVEM_Mix_Normal R Function

Example

The MixTVEM example in the paper, with relapse as a subject-level covariate and centered 

negative affect as a time-varying effects covariate, could be fit using the following code.

answer <- TVEMMixNormal(id=firstWeekCessationData$id,

 time=firstWeekCessationData$timeDays,

 dep=firstWeekCessationData$urge,

 doPlot=TRUE,

 numInteriorKnots=6,

 numClasses=3,

 scov=firstWeekCessationData$relapse3WeeksPost,

 tcov=cbind(1,

  firstWeekCessationData$centeredNegAff),

 numStarts=100,

 useRoughnessPenalty=TRUE,

 getSEs=TRUE);

This assumes that the data of interest are stored in a dataset called 

“FirstWeekCessationData,” including the variable “timeDays” (time in fractional days), 

“urge” (self-rated urge, which is here used as the dependent or response variable), “id” 

(subject ID), “relapse3WeeksPost” (whether the subject relapsed), and “centeredNegAff” 

(for centered negative affect). The dependent variable is specified by “dep=”, the assessment 

time by “time=”, the subject-level covariates by “scov=”, and the time-varying effects 

covariates by “tcov=”. Additional time-varying covariates with non-time-varying effects 

could be specified using the optional “xcov=” argument. The dataset is assumed to be have 

one row per observation (hence multiple rows per person), but the subject-level covariates 

(here, Relapse3WeeksPost) must be the same for all rows within a given person (this can be 

accomplished using R's merge() function). Three latent classes are fit (numClasses=3). The 

two time-varying coefficients are modeled as splines with 6 interior knots each. “numStarts” 

specifies how many random starts should be used to try to find the maximum of the 

penalized likelihood function.

Inputs

The function takes many inputs, but most of them can be omitted, and sensible defaults will 

be used. R is case-sensitive, so case (lower or upper) matters. The following represent the 

input data and should have one row per assessment (multiple rows per subject):

• dep is the dependent variable vector.

• id is the subject ID vector.

• scov (optional) is the matrix of time-invariant covariates for predicting class 

membership.

• tcov is the matrix of time-varying or time-invariant covariates assumed to have 

time-varying effects.
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• time is the assessment time.

• xcov (optional) is the matrix of time-varying or time-invariant covariates assumed 

to have time-invariant effects.

Other options tell how to fit the model, and include these among others:

• getSEs tells whether to compute standard errors. Setting it to FALSE saves time for 

an initial exploration.

• numInteriorKnots is the number of knots for the splines.

• numClasses is the number of distinct classes assumed to exist.

• numStarts tells the number of starting values to use.

Comments in the R function code file describe further optional inputs that are available.

Outputs

Results about the estimated model are shown on the screen, and output is also returned as an 

R list structure. The components of the list are documented inside the R file. The most 

important ones are listed below. Suppose that the answer is stored in the R object “answer” 

as in the R code above. Then

• answer$bestFit$converged tells whether the EM algorithm converged.

• answer$bestFit$enp tells the effective number of parameters (see Eilers & Marx, 

1996) for the best-fitting model.

• answer$bestFit$weightedRSS tells the weighted RSS fit statistic for the best-fitting 

model.

• answer$bestFit$proportionNugget, answer$bestFit$rho, answer$bestFit$sigsq.total 

tell the estimated variance parameters for each class.

• answer$beta is a list. Each element of the list corresponds to one of the time-

varying coefficients in the model and is a matrix with one column per class. Each 

column tells, for that class, the fitted value of the coefficient at each observed time 

point. There are as many rows as observations in the input dataset (not counting 

observations that were excluded because of missingness).

• answer$betaByGrid is similar to answer$beta except that it provides fitted values of 

the coefficients on a regular grid of time points (by default 1000 points).

• answer$betaSE and answer$betaSEByGrid provide pointwise standard error 

estimates corresponding to each entry in answer$beta and answer$betaByGrid.

• answer$fittedValues is a matrix with one row for each non-excluded observation in 

the dataset and one column for each class. It tells the predicted value of the 

response variable for each subject, assuming that the subject belongs to that class.

• answer$knotLocations tells the locations of the knots used for the spline fit.

• answer$logisticRegOutput provides the output for the logistic regression of 

predicting class membership from the subject-level covariates. There is always at 
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least one subject-level covariate, the intercept (which we denote as “S1” meaning 

the first column of subject-level data).

Cautions

Evenly spaced observations or equal numbers of observations per subject are not required. 

However, observations (dataset rows) with any missing data in the response, in the time 

variable, or in any of the predictors and covariates in the model, are excluded from the 

analysis. They are also excluded from counts of the number of observations. Exclusion is 

done by row (i.e., observation), rather than by subject, so a whole subject is not necessarily 

excluded just because one of his or her observation times is excluded. To avoid possible 

confusion in interpreting fitted values, it is recommended to either delete or impute 

assessments with some variables missing before calling the function. Also, if informative 

dropout occurs (e.g., participants missing appointments or dropping out of the study for 

reasons related to the response variable) then the results may be biased by it, because 

trajectories at a given time point can reflect only the subjects with data available near that 

time point.

TVEM_Mix_Normal SAS Macro

Example

The MixTVEM example in the paper, with relapse as a subject-level covariate and centered 

negative affect as a time-varying effects covariate, could be fit using the following code. 

The variable “Intercept” was defined in an earlier DATA step as simply Intercept=1 for all 

rows.

%TVEM_Mix_Normal(mydata = FirstWeekCessationData,

 time = TimeDays,

 dep = urge,

 id = id,

 deg = 2,

scov = Relapse3WeeksPost,

 tcov = Intercept CenteredNegAff,

 latent_classes = 3,

 ref = 1,

 knots = 6 6,

 use_roughness_penalty = yes,

 num_starts = 100,

 std_err_option= yes);

This assumes that the data of interest are stored in a dataset called 

“FirstWeekCessationData,” including the variable “TimeDays” (time in fractional days), 

“urge” (self-rated urge), “id” (subject ID), “Relapse3WeeksPost” (whether the subject 

relapsed), “Intercept” (previously defined as a column of all 1's in the dataset) and 

“CenteredNA” (for negative affect). The dataset is assumed to be have one row per 

observation (hence multiple rows per person), but the subject-level covariate 
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“Relapse3WeeksPost” must be the same for all rows within a given person. Three latent 

classes are fit; the first is the reference class against which the others are compared. The two 

time-varying coefficients are modeled as splines with 6 interior knots each.

Inputs

The following inputs are required. Case (upper or lower) does not matter.

• MyData gives the name of the dataset containing the variables to be analyzed.

• Time gives the name of the variable for time tij in MyData.

• Dep gives the name of the variable for response yij in MyData.

• ID gives the name of the variable for subject ID.

• Latent_Classes gives the number of classes to be fit (1 or more, but no more than 9 

is recommended).

• TCov gives the names of covariates assumed to have time-varying effects (their 

values may be time-varying or not). The first TCov variable should usually be 

defined to have a value of 1 in each row (it could be named Intercept).

• Knots gives the number of knots for each TCov variable (0 or more), not counting 

the endpoints of the interval.

The following two inputs are only needed for certain models.

• Cov gives the names, if any, of covariates assumed to have non-time-varying 

effects (their values may be time-varying or not)

• SCov gives the names, if any, of covariates used to predict class membership (these 

must be the same for all measurements on a single individual). A column of 1s 

should not be provided for SCov because, unlike in the case of TCov, an intercept 

column is included automatically by the code.

Finally, the inputs below are more technical and can be left at default values if desired.

• Ref is the number of the class to be used as a reference class (this is only important 

if there are SCov covariates). The default is one.

• Deg is the degree of the polynomial assumed to exist between any two knots. It 

should be 1, 2, or 3, where 1 is linear, 2 is quadratic and 3 is cubic. The default is 3.

• Std_Err_Option is yes if standard errors are to be calculated, and no if they are to 

be omitted. Standard errors can be omitted if several different models are being 

tried (e.g., different numbers of classes) just to compare their fit statistics; this will 

save much computational time.

• Roughness_Penalty is yes to use a second-order difference penalty as in Eilers and 

Marx (1996) to reduce overfitting and estimate smoother-looking coefficient 

curves, and no otherwise.
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• Initial_Seed is the initial random number seed. The default is arbitrarily set at 

100000. This seed is used to generate further random seeds, one for each starting 

value.

• Num_Starts is the number of different starting values to try. The default is 5 in 

order to provide a quick initial estimate, but a higher number such as 100 or 500 is 

recommended.

Some other, more technical options are omitted in this appendix. They can be left at their 

defaults.

Outputs

Results about the estimated model are shown on the screen. The macro also automatically 

generates many output datasets, each with a name prefixed by “MixTVEM.” The most 

important are called MixTVEMGridBeta#, where # is a number ranging from 1 to the 

number of variables specified as TCov. Each dataset contains estimates, as well as estimated 

pointwise confidence intervals, for the corresponding time-varying regression coefficient 

over a series of points in time. For instance, in our example, there is MixTVEMGridBeta1 

for the Intercept variable and MixTVEMGridBeta2 for Centered NegAff. To avoid 

confusion, notice that MixTVEMGridBeta1 is actually β0t in the notation of our article, 

since it represents the intercept term. However, it is automatically labeled with the number 1 

because it is the first time-varying covariate.

To plot the three trajectories, one can use SAS code such as the following.

PROC GPLOT DATA=MixTVEMGridFittedBeta1;

 PLOT Class1*TimeDays Class2*TimeDays

  Class3*TimeDays/OVERLAY;

RUN;

To plot one of the trajectories with confidence intervals, one can use code like the following.

PROC GPLOT DATA=MixTVEMGridFittedBeta1;

 PLOT Class1*TimeDays Upper_Class1*TimeDays

  Lower_Class1*TimeDays/OVERLAY;

RUN;

In case it is of interest to know the underlying spline basis terms and the estimated 

coefficients for each term, they are in datasets called MixTVEMTimeBasis# and 

MixTVEMTheta. However, rather than trying to interpret each of these coefficients, it is 

better to interpret the plots of the resulting β coefficients as described above.

BesidesMixTVEMGridFittedBeta#, the macro automatically generates many other SAS 

datasets, some of which contain very technical information. Some of the most useful 

datasets are these:

• MixTVEMFitStatistics contains the fit statistics such as the log-likelihood, the 

weighted RSS, and hard-classified RSS.
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• MixTVEMFittedValues contains fitted values for each observation

• MixTVEMPostProbs contains the estimated posterior probabilities for each subject 

of belonging to each class under the assumed model.

• MixTVEMRandomSeeds contains the different random seeds that were used in 

trying to find the best likelihood, and the fit statistics obtained for each.

There are several ways in which this macro could be expanded in the future. The current 

version of the macro, while allowing error variance to depend on class, does not allow error 

variance to depend on time. Thus, it would be desirable to allow for heteroskedastic data 

(e.g., variance increasing with time) in future versions. It would also be desirable to allow 

binary, Poisson, truncated or other non-normal data. Nagin's PROC TRAJ (Jones, Nagin, & 

Roeder, 2001) handled non-normal outcomes in the case of a mixture of parametric (e.g., 

linear) growth curves. Non-normal outcomes with non-mixture TVEM are handled in 

existing software from The Methodology Center (see Yang, Tan, Li,& Wagner, 2012; 

Dziak, Li, Zimmerman, & Buu, 2014).

Lastly, it would be desirable to be able to model the dropout process somehow to reduce the 

risk of bias caused by nonignorable dropout. This might be done using a joint modeling 

approach or a latent frailty parameter (see Albert & Follman, 2009; Muthén, Asparouhov, 

Hunter, & Leuchter, 2011). However, it would make estimation more complicated and 

therefore might require a large dataset.

Both the R function and SAS macro assume an autoregression parameter ρ greater than zero 

in expression (7). However, we also make available a simpler version of the R and SAS 

software, which handles the rarer case in which errors are assumed to be independent. We 

do not discuss this simpler version further here, because it does not seem likely to be widely 

applicable except perhaps in simulations.

The R and SAS files, along with tutorials for using them, are available at the Pennsylvania 

State University Methodology Center website (http://methodology.psu.edu/downloads/

mixtvem) as well as the GitHub repository (https://github.com/dziakj1/MixTVEM) and the 

archival site ScholarSphere (https://scholarsphere.psu.edu/collections/x346dv602).

References

Akaike, H. Information theory and an extension of the maximum likelihood principle. In: Petrov, BN.; 
Csaki, F., editors. Second international symposium on information theory. Budapest, Hungary: 
Akademai Kiado; 1973. p. 267-281.

Albert, PS.; Follman, DA. Shared-parameter models. In: Fitzmaurice, G.; Davidian, M.; Verbeke, G.; 
Molenberghs, G., editors. Longitudinal data analysis. Boca Raton: Chapman & Hall/CRC Press; 
2009. p. 433-452.

Aunola K, Nurmi JE. Maternal affection moderates the impact of psychological control on a child's 
mathematical performance. Developmental Psychology. 2004; 40:965–978. [PubMed: 15535751] 

Baer JS, Kamarck T, Lichtenstein E, Ransom CC Jr. Prediction of smoking relapse: Analyses of 
temptations and transgressions after initial cessation. Journal of Consulting and Clinical 
Psychology. 1989; 57:623–627. [PubMed: 2794182] 

Dziak et al. Page 38

Psychol Methods. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://methodology.psu.edu/downloads/mixtvem
http://methodology.psu.edu/downloads/mixtvem
http://https://github.com/dziakj1/MixTVEM
http://https://scholarsphere.psu.edu/collections/x346dv602


Bagot KS, Heishman SJ, Moolchan ET. Tobacco craving predicts lapse to smoking among adolescent 
smokers in cessation treatment. Nicotine & Tobacco Research. 2007; 9:647–652. [PubMed: 
17558821] 

Baker TB, Piper ME, McCarthy DE, Majeskie MR, Fiore MC. Addiction motivation reformulated: An 
affective processing model of negative reinforcement. Psychological Review. 2004; 111:33–51. 
[PubMed: 14756584] 

Banerjee, S.; Carlin, BP.; Gelfand, AE. Hierarchical modeling and analysis for spatial data. 2nd. Boca 
Raton, FL: CRC Press; 2015. 

Bauer DJ, Curran PJ. Distributional assumptions of growth mixture models: implications for 
overextraction of latent trajectory classes. Psychological Methods. 2003; 8:338–363. [PubMed: 
14596495] 

Blozis SA. Structured latent curve models for the study of change in multivariate repeated measures. 
Psychological Methods. 2004; 9:334–353. [PubMed: 15355152] 

Bolck A, Croon M, Hagenaars J. Estimating latent structure models with categorical variables: One-
step versus three-step estimators. Political Analysis. 2004; 12:3–27.

Bollen, KA.; Curran, PJ. Latent curve models: a structural equation perspective. Hoboken, NJ: Wiley; 
2006. 

Bolger N, Davis A, Rafaeli E. Diary methods: Capturing life as it is lived. Annual Review of 
Psychology. 2003; 54:579–616.

Brandon TH. Negative affect as motivation to smoke. Current Directions in Psychological Science. 
1994; 3:33–37.

Brandon, TH.; Tiffany, ST.; Baker, TB. The process of smoking relapse. In: Tims, FM.; Leukefeld, 
CG., editors. Relapse and recovery in drug abuse. Rockville, MD: National Institute of Drug 
Abuse; 1986. p. 104-117.NIDA Research Monograph No. 72

Bray BC, Lanza ST, Tan X. Eliminating bias in classify-analyze approaches for latent class analysis. 
Structural Equation Modeling: A Multidisciplinary Journal. 2015; 22(1):1–
11.10.1080/10705511.2014.935265 [PubMed: 25614730] 

Chow SM, Hamaker EL, Fujita F, Boker SM. Representing time-varying cyclic dynamics using 
multiple-subject state-space models. British Journal of Mathematical and Statistical Psychology. 
2009; 62:683–716. [PubMed: 19200409] 

Claeskens G, Krivobokova T, Opsomer JD. Asymptotic properties of penalized spline estimators. 
Biometrika. 2009; 96:529–544.

Cleveland, WS.; Grosse, E.; Shyu, WM. Local regression models. In: Chambers, JM.; Hastie, TJ., 
editors. Statistical models in S. New York, NY: Wadsworth & Brooks/Cole; 1992. p. 309-376.

Cofta-Woerpel L, McClure JB, Li Y, Urbauer D, Cinciripini PM, Wetter DW. Early cessation success 
or failure among women attempting to quit smoking: Trajectories and volatility of urge and 
negative mood during the first postcessation week. Journal of Abnormal Psychology. 2011; 
120:596–606. [PubMed: 21574667] 

Craven P, Wahba G. Smoothing noisy data with spline functions: Estimating the correct degree of 
smoothing by the method of generalized cross-validation. Numerische Mathematik. 1979; 31:377–
403.

Crawford AM, Pentz MA, Chou CP, Li C, Dwyer JH. Parallel developmental trajectories of sensation 
seeking and regular substance use in adolescents. Psychology of Addictive Behaviors. 2003; 
17:179–192. [PubMed: 14498812] 

Cudeck R, Henly SJ. A Realistic Perspective on Pattern Representation in Growth Data: Comment on 
Bauer and Curran (2003). Psychological Methods. 2003; 8:378–383. [PubMed: 14596498] 

Cudeck R, Harring JR. The analysis of nonlinear patterns of change with random coefficient models. 
Annual Review of Psychology. 2007; 58:615–637.

Dayton CM, Macready GB. Concomitant-variable latent-class models. Journal of the American 
Statistical Association. 1988; 83:173–178.

de Boor C. On calculating with B-splines. Journal of Approximation Theory. 1972; 6:50–62.

de Boor, C. B(asic)-spline basics. In: Piegl, L., editor. Fundamental developments of computer-aided 
geometric modeling. Academic Press; London: 1993. p. 27-49.at ftp://ftp.cs.wisc.edu/Approx/
bsplbasic.pdf [Accessed April 2014]

Dziak et al. Page 39

Psychol Methods. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ftp://ftp.cs.wisc.edu/Approx/bsplbasic.pdf
http://ftp://ftp.cs.wisc.edu/Approx/bsplbasic.pdf


Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM 
algorithm. Journal of the Royal Statistical Society, Series B. 1977; 39:1–38.

Diggle PJ. An approach to the analysis of repeated measurements. Biometrics. 1988; 44:959–971. 
[PubMed: 3233259] 

Donny EC, Griffin KM, Shiffman S, Sayette MA. The relationship between cigarette use, nicotine 
dependence, and craving in laboratory volunteers. Nicotine & Tobacco Research. 2008; 10:934–
942. [PubMed: 18569770] 

Dziak, JJ.; Coffman, DL.; Lanza, ST.; Li, R. University Park, PA: The Methodology Center, The 
Pennsylvania State University; 2012. Sensitivity and specificity of information criteria 
(Methodology Center Technical Report 12-119). Available at http://methodology.psu.edu/media/
techreports/12-119.pdf

Dziak JJ, Li R, Zimmerman MA, Buu A. Time-varying effect models for ordinal responses with 
applications in substance abuse research. Statistics in Medicine. 2014; 33:5126–5137. [PubMed: 
25209555] 

Eilers PHC, Marx BD. Flexible smoothing with B-splines and penalties. Statistical Science. 1996; 
11:89–121.

Engel J, Kneip A. Comment on Flexible Smoothing with B-splines and Penalties. Statistical Science. 
1996; 11:109–110.

Erosheva EA, Matsueda RL, Telesca D. Breaking bad: Two decades of life-course data analysis in 
criminology, developmental psychology, and beyond. Annual Review of Statistics and Its 
Application. 2014; 1:301–32.

Fahrenberg J, Myrtek M, Pawlik K, Perrez M. Ambulatory assessment—monitoring behavior in daily 
life settings: A behavioral-scientific challenge for psychology. European Journal of Psychological 
Assessment. 2007; 23:206–213.

Ferguson SG, Shiffman S. The relevance and treatment of cue-induced cravings in tobacco 
dependence. Journal of Substance Abuse Treatment. 2009; 36:235–243. [PubMed: 18715743] 

Feldt LS, Woodruff DJ, Salih FA. Applied Psychological Measurement. 1987; 11:93–103.

Fletcher, TD. psychometric: Applied Psychometric Theory. R package version 2.2. 2010. Available 
online at http://CRAN.R-project.org/package=psychometric

Fok, CTF.; Ramsay, JO. Fitting curves with periodic and nonperiodic trends and their interactions with 
intensive longitudinal data. In: Walls, TA.; Schafer, JL., editors. Models for intensive longitudinal 
data. New York, NY: Oxford University Press; 2006. p. 109-123.

Gaffney, SJ.; Smyth, P. Curve clustering with random effects regression mixtures. In: Bishop, CM.; 
Frey, BJ., editors. Proceedings of the Ninth International Workshop on Artificial Intelligence and 
Statistics; Jan 3-6, 2003; Key West, FL. 2003. Available online at http://
research.microsoft.com/en-us/um/cambridge/events/aistats2003/proceedings/181.pdf

Galatzer-Levy IR, Bonanno GA, Mancini AD. From Marianthal to latent growth mixture modeling: A 
return to the exploration of individual differences in response to unemployment. Journal of 
Neuroscience, Psychology and Economics. 2010; 3:116–125.

Grün B, Hornik K. Modelling human immunodeficiency virus ribonucleic acid levels with finite 
mixtures for censored longitudinal data. Journal of the Royal Statistical Society, C (Applied 
Statistics). 2012; 61:201–218.

Grün B, Leisch F. FlexMix version 2: Finite mixtures with concomitant variables and varying and 
constant parameters. Journal of Statistical Software. 2008; 28:1–35.

Hastie T, Tibshirani R. Varying-coefficient models. Journal of the Royal Statistical Socety, Series B. 
1993; 55:757–796.

Hastie, T.; Tibshirani, R.; Friedman, J. The elements of statistical learning: Data mining, inference and 
prediction. New York: Springer; 2001. 

Hertzog C, Nesselroade JR. Assessing psychological change in adulthood: An overview of 
methodological issues. Psychology and Aging. 2003; 18:639–57. [PubMed: 14692854] 

Hu Y, Boker S, Neale M, Klump KL. Coupled latent differential equation with moderators: Simulation 
and application. Psychological Methods. 2014; 19:56–71. [PubMed: 23646992] 

Huang M, Li R, Wang S. Nonparametric mixture of regression models. Journal of American Statistical 
Association. 2013

Dziak et al. Page 40

Psychol Methods. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://methodology.psu.edu/media/techreports/12-119.pdf
http://methodology.psu.edu/media/techreports/12-119.pdf
http://CRAN.R-project.org/package=psychometric
http://research.microsoft.com/en-us/um/cambridge/events/aistats2003/proceedings/181.pdf
http://research.microsoft.com/en-us/um/cambridge/events/aistats2003/proceedings/181.pdf


James GM, Sugar CA. Clustering for sparsely sampled functional data. Journal of the American 
Statistical Association. 2003; 98:397–408.

Javitz HS, Lerman C, Swan GE. Comparative dynamics of four smoking withdrawal symptom scales. 
Addiction. 2012; 107:1501–1511. [PubMed: 22321019] 

Jones BL, Nagin DS, Roeder K. A SAS procedure based on mixture models for estimating 
developmental trajectories. Sociological Methods & Research. 2001; 29:374–393.

Kauermann G, Carroll RJ. A note on the efficiency of sandwich covariance matrix estimation. Journal 
of the American Statistical Association. 2001; 96:1387–1396.

Kelley K. Nonlinear change models in populations with unobserved heterogeneity. Methodology. 
2008; 4(3):97–112.

Kreft, IGG.; de Leeuw, J.; Aiken, LS. The effect of different forms of centering in hierarchical linear 
models Technical Report 30. National Institute of Statistical Sciences; 1994. Available at http://
www.niss.org/sites/default/files/pdfs/technicalreports/tr30.pdf

Lanza ST, Collins LM, Lemmon DR, Schafer JL. PROC LCA: A SAS procedure for latent class 
analysis. Structural Equation Modeling. 2007; 14:671–694. [PubMed: 19953201] 

Larson R, Csikszentmihalyi M. The experience sampling method. New Directions for Methodology of 
Social and Behavioral Science. 1983; 15:41–56.

Leung J, Gartner C, Dobson A, Lucke J, Hall W. Psychological distress is associated with tobacco 
smoking and quitting behaviour in the Australian population: Evidence from national cross-
sectional surveys. Australian and New Zealand Journal of Psychiatry. 2011; 45:170–178. 
[PubMed: 21080851] 

Li, R.; Root, TL.; Shiffman, S. A local linear estimation procedure of functional multilevel modeling. 
In: Walls, T.; Schafer, JL., editors. Models for intensive longitudinal data. New York: Oxford 
University Press; 2006. p. 63-83.

Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986; 
73:13–22.

Lindstrom MJ, Bates DM. Nonlinear mixed effects models for repeated measures data. Biometrics. 
1990; 46:674–687.

Louis TA. Finding the observed information matrix when using the EM algorithm. Journal of the 
Royal Statistical Society, Series B. 1982; 44:226–233.

Lubke G, Neale MC. Distinguishing between latent classes and continuous factors: resolution by 
maximum likelihood? Multivariate Behavioral Research. 2006; 41:499–532.

Lu Z, Song X. Finite mixture varying coefficient models for analyzing longitudinal heterogenous data. 
Statistics in Medicine. 2012; 31:544–560. [PubMed: 22161474] 

Ma P, Zhong W. Penalized clustering of large-scale functional data with multiple covariates. Journal 
of the American Statistical Association. 2008; 103:625–636.

McCarthy DE, Piasecki TM, Fiore MC, Baker TB. Life before and after quitting smoking: An 
electronic diary study. Journal of Abnormal Psychology. 2006; 115:454–466. [PubMed: 
16866586] 

McLachlan, G.; Peel, D. Finite mixture models. New York: Wiley; 2000. 

Meredith W, Tisak J. Latent curve analysis. Psychometrika. 1990; 55:107–122.

Molenaar PCM, Campbell CG. The new person-specific paradigm in psychology. Current Directions 
in Psychological Science. 2009; 18:112–117.

Mund M, Mitte K. The costs of repression: A meta-analysis on the relation between repressive coping 
and somatic diseases. Health Psychology. 2012; 31:640–649. [PubMed: 22081940] 

Munsch S, Meyer AH, Milenkovic N, Schlup B, Margraf J, Wilhelm FH. Ecological momentary 
assessment to evaluate cognitive-behavioral treatment for binge eating disorder. International 
Journal of Eating Disorders. 2009; 42:648–57. [PubMed: 19197978] 

Muthén, B. Latent variable analysis: Growth mixture modeling and related techniques for longitudinal 
data. In: Kaplan, D., editor. Handbook of quantitative methodology for the social sciences. 
Newbury Park, CA: Sage Publications; 2004. p. 345-368.

Dziak et al. Page 41

Psychol Methods. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.niss.org/sites/default/files/pdfs/technicalreports/tr30.pdf
http://www.niss.org/sites/default/files/pdfs/technicalreports/tr30.pdf


Muthén B, Asparouhov T, Hunter A, Leuchter A. Growth modeling with non-ignorable dropout: 
Alternative analyses of the STAR*D antidepressant trial. Psychological Methods. 2011; 16:17–33. 
[PubMed: 21381817] 

Muthén, B.; Asparouhov, T. Growth mixture modeling: Analysis with non-Gaussian random effects. 
In: Fitzmaurice, G.; Davidian, M.; Verbeke, G.; Molenberghs, G., editors. Longitudinal data 
analysis. Boca Raton, FL: Chapman & Hall/RC Press; 2009. p. 143-165.

Muthén BO, Khoo ST. Longitudinal studies of achievement growth using latent variable modeling. 
Learning & Individual Differences. 1998; 10(2):73–101.

Muthén BO, Muthén LK. Integrating person-centered and variable-centered analysis: growth mixture 
modeling with latent trajectory classes. Alcoholism: Clinical and Experimental Research. 2000; 
24:882–891.

Muthén B, Shedden K. Finite mixture modeling with mixture outcomes using the EM algorithm. 
Biometrics. 1999; 55:463–469. [PubMed: 11318201] 

Nagin DS. Analyzing developmental trajectories: A Semi-parametric, group-based approach. 
Psychological Methods. 1999; 4:139–177.

Nagin, DS. Group-based modeling of development. Cambridge: Harvard; 2005. 

Nagin DS, Tremblay RE. Developmental trajectory groups: Fact or a useful statistical fiction? 
Criminology. 2005; 43:873–904.

Petras, H.; Masyn, K. General growth mixture analysis with antecedents and consequences of change. 
In: Piquero, A.; Weisburd, D., editors. Handbook of quantitative criminology. New York: 
Springer; 2010. p. 69-100.

Pleydell DRJ, Chrétien S. Mixtures of GAMs for habitat suitability analysis with overdispersed 
presence/absence data. Computational Statistics and Data Analysis. 2010; 54:1405–1418. 
[PubMed: 20401331] 

Piasecki TM, Fiore MC, Baker TB. Profiles in discouragement: two studies of variability in the time 
course of smoking withdrawal symptoms. Journal of Abnormal Psychology. 1998; 107:238–251. 
[PubMed: 9604553] 

Piasecki TM, Jorenby DE, Smith SS, Fiore MC, Baker TB. Smoking withdrawal dynamics: I. 
Abstinence distress in lapsers and abstainers. Journal of Abnormal Psychology. 2003; 112(1):3–
13. [PubMed: 12653409] 

Piasecki TM, Niaura R, Shadel WG, Abrams D, Goldstein M, Fiore MC, Baker TB. Smoking 
withdrawal dynamics in unaided quitters. Journal of Abnormal Psychology. 2000; 109:74–86. 
[PubMed: 10740938] 

Piper ME, Federmen EB, McCarthy DE, Bolt DM, Smith SS, Fiore MC, Baker TB. Using mediational 
models to explore the nature of tobacco motivation and tobacco treatment effects. Journal of 
Abnormal Psychology. 2008; 117:94–105. [PubMed: 18266488] 

R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R 
Foundation for Statistical Computing; 2013. Available online at http://www.R-project.org

Ramsay, JO.; Silverman, BW. Functional data analysis. 2nd. New York, NY: Springer; 2005. 

Reinecke J. Longitudinal analysis of adolescents' deviant and delinquent behavior: applications of 
latent class growth curves and growth mixture models. Methodology. 2006; 2:100–112.

Ruppert, D.; Wand, MP.; Carroll, RJ. Semiparametric regression. Cambridge: Cambridge; 2003. 

SAS Institute, Inc. SAS/STAT ® 9.2 User's Guide. Cary, NC: SAS Institute Inc; 2008. 

Schoenberg IJ. Contributions to the problem of approximation of equidistant data by analytic 
functions. Quarterly of Applied Mathematics. 1946; 4:45–99. 112–141.

Schwarz G. Estimating the dimension of a model. Annals of Statistics. 1978; 6:461–464.

Schwartz JE, Stone AA. Strategies for analyzing ecological momentary assessment data. Health 
Psychology. 1998; 17:6–16. [PubMed: 9459065] 

Shao J. An asymptotic theory for linear model selection. Statistica Sinica. 1997; 7:221–264.

Shi JQ, Wang B. Curve prediction and clustering with mixtures of Gaussian process functional 
regression models. Statistical Computing. 2008; 18:267–283.

Selig JP, Preacher KJ, Little TD. Modeling time-dependent association in longitudinal data: a lag as 
moderator approach. Multivariate Behavioral Research. 2012; 47:697–716. [PubMed: 24771950] 

Dziak et al. Page 42

Psychol Methods. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.R-project.org


Shiffman S, Hickcox M, Paty JA, Gnys M, Kassel JD, Richards T. Progression from a smoking lapse 
to relapse: prediction from abstinence violation effects and nicotine dependence. Journal of 
Consulting and Clinical Psychology. 1996; 64:993–1002. [PubMed: 8916628] 

Shiffman S, Paty JA, Gnys M, Kassel JD, Hickcox M. First lapses to smoking: Within-subjects 
analyses of real-time reports. Journal of Consulting and Clinical Psychology. 1996; 64:366–379. 
[PubMed: 8871421] 

Shiffman S, Stone AA, Hufford MR. Ecological momentary assessment. Annual Review of Clinical 
Psychology. 2008; 4:1–32.

Shiffman S, Engberg J, Paty JA, Perz W, Gnys M, Kassel JD, Hickcox M. A day at a time: Predicting 
smoking lapse from daily urge. Journal of Abnormal Psychology. 1997; 106:104–116. [PubMed: 
9103722] 

Shiffman S, Waters AJ. Negative affect and smoking lapses: A prospective analysis. Journal of 
Consulting and Clinical Psychology. 2004; 72:192–201. [PubMed: 15065954] 

Shiffman S. Ecological momentary assessment (EMA) in studies of substance use. Psychological 
Assessment. 2009; 21:486–97. [PubMed: 19947783] 

Shiyko MP, Lanza ST, Tan X, Li R, Shiffman S. Using the time-varying effect model (TVEM) to 
examine dynamic associations between negative affect and self-confidence on smoking urges: 
Differences between successful quitters and relapsers. Prevention Science. 2012; 13:288–299. 
[PubMed: 22246429] 

Singer, JD.; Willett, JB. Applied longitudinal data analysis: Modeling change and event occurrence. 
New York: Oxford University Press; 2003. 

Steele, RJ.; Raftery, AE. Performance of Bayesian model selection criteria for Gaussian mixture 
models. In: Chen, MH., et al., editors. Frontiers of statistical decision making and bayesian 
analysis. New York, NY: Springer; 2010. p. 113-130.

Sternfeld B, Jiang SF, Picchi T, Chasan-Taber L, Ainsworth B, Quesenberry CP Jr. Evaluation of a 
cell phone-based physical activity diary. Medicine and Science in Sports and Exercise. 2012; 
44:487–95. [PubMed: 21857369] 

Stone AA, Shiffman S. Ecological momentary assessment in behavioral medicine. Annals of 
Behavioral Medicine. 1994; 16:199–202.

Swartout KM, Swartout AG, White JW. A person-centered, longitudinal approach to sexual 
victimization. Psychology of Violence. 2011; 1:29–40.

Tan X, Shiyko MP, Li R, Li Y, Dierker L. A time-varying effect model for intensive longitudinal data. 
Psychological Methods. 2012; 17:61–77. [PubMed: 22103434] 

Trail JB, Collins LM, Rivera DE, Li R, Piper ME, Baker TB. Functional data analysis for dynamical 
system identification of behavioral processes. Psychological Methods. 2014; 19:175–187. 
[PubMed: 24079929] 

Turner TR. Estimating the propagation rate of a viral infection of potato plants via mixtures of 
regressions. Applied Statistics. 2000; 49:371–384.

UW Center for Tobacco Research and Intervention. (2002). Why people smoke. Oct. 2002 Available 
from: http://www.ctri.wisc.edu/Publications/publications/WhyPeopleSmokefl.pdf

Walls, TA.; Schafer, JL. Models for intensive longitudinal data. New York: Oxford University Press; 
2006. 

Wang H, Li R, Tsai CL. Tuning parameter selectors for the smoothly clipped absolute deviation 
method. Biometrika. 2007; 94:553–568. [PubMed: 19343105] 

Walters GD. The latent structure of life-course-persistent antisocial behavior: Is Moffitt's 
developmental taxonomy a true taxonomy? Journal of Consulting and Clinical Psychology. 2011; 
79:96–105. [PubMed: 21171739] 

Weisberg, S. Applied linear regression. 3rd. Hoboken, NJ: Wiley; 2005. 

Yang, J.; Tan, X.; Li, R.; Wagner, A. TVEM (time-varying effect model) SAS macro suite user' guide 
(Version 2.1.0). University Park: The Methodology Center, Penn State; 2012. Retrieved from 
http://methodology.psu.edu

Zinser MC, Baker TB, Sherman JE, Cannon DS. Relation between self-reported affect and drug urges 
and cravings in continuing and withdrawing smokers. Journal of Abnormal Psychology. 1992; 
101:617–29. [PubMed: 1430600] 

Dziak et al. Page 43

Psychol Methods. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ctri.wisc.edu/Publications/publications/WhyPeopleSmokefl.pdf
http://methodology.psu.edu


Figure 1. 
Distinguishing between two possible fits for a hypothetical sample of longitudinal data. 

Panel A shows a hypothetical dataset of repeated measurements, ignoring subject identity. 

Panels B and C show two possible models to fit the data. Panel D shows that connecting the 

dots for each subject (i.e., taking into account the fact that all measurements on a subject 

have the same class membership) helps identify the model.
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Figure 2. Elbow plot of weighted residual sum of squared errors (weighted RSS), divided by 
1000 for convenience of scale, for Model (9) with 1 through 7 classes
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Figure 3. 
Fitted coefficients for MixTVEM of urge in Model (9) using a cubic spline with six interior 

knots and a second-order penalty. The upper panel represents the 3-class model, and the 

lower panel represents the 5-class model. The heavy curves represent estimated mean 

trajectories (β0 in Model (9)). The light dotted curves above and below each curve represent 

estimated 95% pointwise confidence intervals.
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Figure 4. 
Observed data for twelve participants. All data on the outcome variable is plotted for four 

randomly selected participants from each of the three latent classes in Model (9). For 

comparison, the fitted mean trajectory in each class is shown as a dotted line. In each plot, 

the y-axis represents self-rated urge and the x-axis represents time in days.
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Figure 5. Elbow plot of weighted residual sum of squared errors (weighted RSS), divided by 
1000 for convenience of scale, for Model (10) with 1 through 7 classes
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Figure 6. 
Fitted coefficients for MixTVEM of urge adjusted for negative affect. The heavy curves 

represent estimated coefficient functions for β0 (intercept) and β1 (coefficient for negative 

affect) in Model (10) for each class. The light dotted curves above and below each curve 

represent estimated 95% pointwise confidence intervals. The β0 function could be 

considered, roughly, to show the expected course of urge over time if negative affect were 

held constant. The β1 function measures the strength of relationship between negative affect 

and urge. The upper panel shows the β0 functions and the lower panel shows the β1 

functions.

Dziak et al. Page 49

Psychol Methods. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Observed values, with smoothed means (using the loess function in R; Cleveland, 
Grosse, & Shyu, 1992) for negative affect and urge among all members of the three class defined 
in Model (10)
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Figure 8. The B-spline basis functions used as building blocks for the coefficient function 
estimates in Figures 3 and 6
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Table 3
Basis Function Coefficient Estimates for Model (9)

Rapidly Declining Class Gradually Declining Class Consistently High Class

B1(t) 4.787 4.836 5.716

B2(t) 3.727 4.493 5.895

B3(t) 2.699 4.151 6.073

B4(t) 1.986 3.818 6.188

B5(t) 1.649 3.462 6.151

B6(t) 1.476 3.077 5.971

B7(t) 1.358 2.695 5.664

B8(t) 1.234 2.281 5.266

B9(t) 1.123 1.838 4.846

B10(t) 1.017 1.390 4.426

Notes. The basis functions are illustrated in Figure 8. The resulting combined curves are the ones plotted in Figure 3.
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