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Abstract

We propose Multi-atlas learner fusion (MLF), a framework for rapidly and accurately replicating 

the highly accurate, yet computationally expensive, multi-atlas segmentation framework based on 

fusing local learners. In the largest whole-brain multi-atlas study yet reported, multi-atlas 

segmentations are estimated for a training set of 3,464 MR brain images. Using these multi-atlas 

estimates we (1) estimate a low-dimensional representation for selecting locally appropriate 

example images, and (2) build AdaBoost learners that map a weak initial segmentation to the 

multi-atlas segmentation result. Thus, to segment a new target image we project the image into the 

low-dimensional space, construct a weak initial segmentation, and fuse the trained, locally 

selected, learners. The MLF framework cuts the runtime on a modern computer from 36 hours 

down to 3-8 minutes – a 270× speedup – by completely bypassing the need for deformable atlas-

target registrations. Additionally, we: (1) describe a technique for optimizing the weak initial 

segmentation and the AdaBoost learning parameters, (2) quantify the ability to replicate the multi-

atlas result with mean accuracies approaching the multi-atlas intra-subject reproducibility on a 

testing set of 380 images, (3) demonstrate significant increases in the reproducibility of intra-

subject segmentations when compared to a state-of-the-art multi-atlas framework on a separate 

reproducibility dataset, (4) show that under the MLF framework the large-scale data model 

significantly improve the segmentation over the small-scale model under the MLF framework, and 

(5) indicate that the MLF framework has comparable performance as state-of-the-art multi-atlas 

segmentation algorithms without using non-local information.
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Introduction

Magnetic resonance (MR) imaging of the brain is an essential diagnostic method in clinical 

investigation and an effective quantitate method in neurology and neurological research. To 

explore the complicated relationships between biological structure and clinical diagnosis as 

well as brain function, segmentation of anatomical structure on MR images has been widely 

used. Expert manual delineation (Crespo-Facorro et al., 1999; Tsang et al., 2008) has been 

regarded as “gold standard”. However, since manual segmentation is extremely resource 

consuming, automatic methods have been proposed to get robust and accurate segmentation 

(Cocosco et al., 2003; Van Leemput et al., 1999; Wells et al., 1996). Atlas-based 

segmentation, which uses a pairing of structural MR scans and corresponding manual 

segmentation, is one of the most prominent approaches.

In atlas-based segmentation models, an existing dataset (atlas) is spatially transferred to a 

previously unseen target image through deformable registration. Single-atlas segmentation 

has been successfully applied on some applications (Gass et al., 2013; Guimond et al., 2000; 

Wu et al., 2007). Yet, more recent approaches employ a multi-atlas paradigm as the de facto 

standard atlas-based segmentation framework (Heckemann et al., 2006; Rohlfing et al., 

2004b). In multi-atlas segmentation, the typical framework is: (1) a set of labeled atlases are 

non-rigidly registered to a target image (Avants et al., 2008; Klein et al., 2009; Ourselin et 

al., 2001; Zitova and Flusser, 2003), and (2) the resulting label conflicts are resolved using 

label fusion (Aljabar et al., 2009; Artaechevarria et al., 2009; Asman et al., 2014; Asman 

and Landman, 2013; Coupé et al., 2011; Heckemann et al., 2006; Isgum et al., 2009; 

Sabuncu et al., 2010; Wang et al., 2013; Warfield et al., 2004).

Recently, learning based multi-atlas segmentation has emerged from the multi-atlas 

segmentation as a new family of methods. One field of study deals with the generation of a 

template library based on the limit set of manual segmentation such as the LEAP algorithm 

(Wolz et al., 2010) and the MAGeT Brain (Chakravarty et al., 2013). Other approaches used 

groupwise registration and iterative groupwise segmentation such as the MABMIS 

algorithm (Jia et al., 2012). A new algorithm exploited the strengths of both label fusion and 

Asman et al. Page 2

Med Image Anal. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



statistical classification to get more robust segmentations (Weisenfeld and Warfield, 2011). 

Meanwhile, the widely used supervised machine learning algorithms have also been 

successfully employed - including, but not limited to, SVMs (Hao et al., 2014; Morra et al., 

2010; Powell et al., 2008), random forest(Han, 2013; Zikic et al., 2014), artificial neural 

networks (Magnotta et al., 1999; Powell et al., 2008), logistic LASSO (Liao et al., 2012) and 

boosting (Morra et al., 2010).

Unfortunately, this robustness of multi-atlas segmentation comes at the cost of 

computational complexity (CC) since both typical multi-atlas approaches and the learning 

based methods rely on expensive non-rigid registrations or non-local correspondences 

calculation. Concisely, we define these two types of computational complexity as (1) the 

computational complexity of conducting non-rigid registrations (CCNR), and (2) the 

computational complexity of capturing non-local correspondences (CCNC).

To decrease overall computational complexity without compromising segmentation quality, 

new approaches have emerged to minimize CCNR. One of the most common methods is the 

atlas selection (Aljabar et al., 2009; Langerak et al., 2013; Langerak et al., 2010; Rohlfing et 

al., 2004a), which reduces the CCNR by keeping the most representative atlases. In recent 

years, researchers have even tried to eliminate the CCNR by employing non-local label 

fusion methods (Asman and Landman, 2013; Coupé et al., 2011; Rousseau et al., 2011; 

Wang and Yushkevich, 2013; Wang et al., 2013). However, the reduction of CCNR is 

typically accompanied with the large increase of CCNC. To minimize the CCNC further, 

other researchers have attempted to use the learning based scheme, which grasps the non-

local correspondences offline (Han, 2013; Hao et al., 2014; Magnotta et al., 1999; Morra et 

al., 2010; Powell et al., 2008; Zikic et al., 2014). Once the model is well trained, it is able to 

be applied on the target image efficiently. However, these learning-based algorithms are still 

limited since the learning based model are applied and tested on homogenous small-scale 

dataset (typically less than 200 subjects from the same resource) without using a great deal 

of available heterogeneous data (from different resources e.g. different studies and 

scanners). As the results, the previous learning based schemes are mostly applied on 

segmenting single anatomical region or subcortical regions rather than whole brain. When 

applied on whole brain, non-rigid registration (high CCNR) is still essential to compensate 

the large inter-subject variation for the small size of the dataset.

In this paper, to eliminate both CCNR and CCNC, we propose the multi-atlas learner fusion 

(MLF) framework. Due to the large amount of training atlases used in our framework, we 

are able to provide more candidates for atlases selection and a larger training pool during the 

learning step, which leads to dramatically reduction of the total computational complexity 

when segmenting a target image. Particularly, the MLF framework has the following 

important characteristics.

1. 1. Efficient framework by using large-scale dataset. When the training dataset is 

large and representative enough (3464 images from 6 projects), the MLF 

framework is able to find the close trained AdaBoost learners (“close” means with 

the similar anatomy) for the target image. As a result, the MLF provides a high-
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speed learning based segmentation framework that only requires 3-8 minutes to 

segment a target image by totally eliminating the CCNR and CCNC.

2. 2. The elements of the framework are designed for the large-scale scenario. The 

PCA is used for low-dimensional projection, which eliminates the computational 

expensive pairwise similarity measurements (typically required by manifold 

learning approaches) for thousands of training data (even on larger data sets). The 

AdaBoost, combined with decision tree, has proved to be an extremely successful 

in two-class classification (the case this paper is investigating) and even described 

as the “best off-the-shelf classifier in the world”(Breiman, 1998). After the training 

procedure, 3464 AdaBoost learners were trained and a group of the closest learners 

(with smallest Euclidean distance on PCA low-dimensional space) were applied on 

each target image.

3. 3. Application of whole brain segmentation. The framework is trained and applied 

on the whole brain segmentation (133 labels) which is much more complicated than 

segmenting single anatomical region or subcortical regions.

In the rest of the paper, we propose a whole-brain (133 labels) multi-atlas segmentation 

framework using a large-scale data paradigm. Building on seminal works in machine 

learning (e.g., AdaBoost (Freund and Schapire, 1995) and Principal Component Analysis – 

PCA), we use a learning-based approach to emulate the accuracy of a premier multi-atlas 

segmentation framework while dramatically lessening the computational burden. Given a 

large collection of training data which was pre-processed using a state-of-the-art multi-atlas 

segmentation procedure, we: (1) construct a low-dimensional representation of our training 

data for computing neighborhood relationships and (2) optimize an AdaBoost classifier for 

each training image that maps a weak segmentation estimate (e.g., a majority vote of the 

local neighbors) to the expensive, yet highly accurate, multi-atlas segmentation estimate. 

Thus, when a new target image needs to be segmented we simply need to (1) project the 

image into the low-dimensional space, (2) construct a weak initial segmentation, and (3) 

fuse the locally selected learners from the training phase. We refer to the algorithm as multi-

atlas learner fusion (MLF) – Figure 1

Data and Pre-Processing

Herein, the complete data aggregates 7 unique datasets covering a wide range of 

demographics, ages, and neurological states (Table 1). Data from 1000 Functional 

Connectome (fcon_1000)(Biswal et al., 2010), Information eXtraction from Images (IXI), 

Open Access Series on Imaging Studies (OASIS)(Marcus et al., 2007) and Multi-Modal 

MRI Reproducibility Resource (MMMRR)(Landman et al., 2011) are publicly available. 

The Baltimore Longitudinal Study on Aging (BLSA) is the study of aging whose data are 

collected by the National Institute of Aging (Kawas et al., 1997). The Deep Brain 

Stimulation (DBS) data is obtained from the DBS project at Vanderbilt University (D'Haese 

et al., 2012). The Tennessee Twin Study (TTS) is an ongoing study that examines the health 

and wellbeing of twins born in Tennessee between 1984 and 1995 (Tackett et al., 2013). In 

total, a set of 3,505 subjects were scanned resulting in a total of 3,886 T1-weighted MR 

whole-brain volumes. For validation, the data was separated into three groups: training, 
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testing, and reproducibility. First, the MMMRR dataset was used in its entirety as the 

reproducibility set as it consists of 21 subjects identically scanned twice. The remaining 

datasets were split 90%/10% into the training/testing cohorts. Note, all intra-subject scans 

were placed accordingly in the same training/testing group.

In addition, 50 MPRAGE images (from unique subjects) from OASIS dataset were manually 

labeled with 133 labels by NeuroMorphometrics with BrainCOLOR protocol (Klein et al., 

2010). 45 images (from 50 MPRAGE images) were used as the original atlases in multi-atlas 

segmentation (Marcus et al., 2007). Meanwhile, 6 randomly selected images (from 45 

MPRAGE images) were used for a simulation test. Lastly, the 5 unused images (from the 50 

MPRAGE images) were used for an empirical evaluation.

For all 3,886 images, a state-of-the-art multi-atlas segmentation was performed. For 

consistency, all images were affinely registered (Ourselin et al., 2001) to the MNI305 atlas 

(Evans et al., 1993). Practically, 10-20 atlases are sufficient for a good multi-atlas 

segmentation (Aljabar et al., 2009). Thus, also based on our experience, for each image, the 

15 closest atlases were selected (using a naïve PCA projection), pairwise registered (Avants 

et al., 2008; Ourselin et al., 2001), fused (Asman and Landman, 2012, 2013), and corrected 

through implicit error modeling (Wang et al., 2011). On average, this process took 36 hours 

on a modern computer.

Finally, for all 3464 training images, a low-dimensional representation was computed using 

PCA. Briefly, whole brain anatomical images were down-sampled to 2mm isotropic 

resolution and only the non-background voxels were used for the PCA analysis. Such voxels 

were extracted from a non-background mask whose probability of non-background is greater 

than 0.8. The non-background probability is represented by a probabilistic map which is 

obtained by averaging the segmentations (set all non-background regions to 1 and 

background to 0) defined by the multi-atlas segmentation estimates. Local distances, the 

pairwise Euclidian distances between any two subjects on low-dimensional PCA domain, 

are computed using the projection weights onto the first 15 modes of variation (representing 

15.33% of the total variation). Notice that the remaining variation (84.67%) might be 

introduced by the registration error and the large inter-subject variance of brain anatomy. 

The results of the pre-processing framework are summarized in Figure 2.

Multi-Atlas Learner Fusion Theory

The theory presented below builds on the foundation for learning-based error correction 

presented in (Wang et al., 2011). For training image j , we assume that we are given (1) the 

target image, , (2) the initial weak segmentation, Ψj ∊ LN , and (3) the multi-atlas 

segmentation, ωj ∊ LN , where N is the total number of voxels, and L is the set of possible 

labels (herein, |L| = 133). As in (Wang et al., 2011), the AdaBoost training procedure is 

computed for all of the labels independently. For each label, let Bl , such that l ∊ L, be the 

collection of voxels for which any of the training images observe label l .

For the classifier, let the feature matrix be defined as , such that each element,

, is the feature value for feature f at sample m and label l , where F is the number of 
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features, and M ≤ |Bl| is the number of samples (or voxels). For simplicity, we define the 

features at each sample the same way as (Wang et al., 2011). Briefly, these consist of the 

voxel coordinates, the observed labels (i.e., all Ψji s.t.i ∊ Rm), the target intensities (i.e., all Iji 

s.t.i ∊ Rm), and the corresponding spatial correlations – where Rm is the collection of voxels 

within the feature window defined for sample (herein, a 5mm isotropic window centered at 

the current sample). This feature collection strategy results in a total number of features of F 

= 1009. Finally, we define the class vector as, Yl ∊ {−1, 1}M , where each element  if 

Ωjm = l, and  otherwise.

For the AdaBoost training, let , be the distribution of relative weights for all 

samples at iteration t ≤ (where  initially). The goal of the training process at 

iteration t is to optimize the weak learner, hjlt , where 

(1)

where,  is the Kronecker delta function. Note, herein, the weak learner in (1) is a 

decision tree and optimization of this learner is addressed later in the manuscript. Next, the 

weight associated with the current iteration, , is defined as

(2)

and the sample weight can be updated with

(3)

where Z is a partition function ensuring that  This process is then iterated until 

we have reached the desired number of iterations, T (herein, T = 50).

Once the training process has been performed on all training images, we can then 

approximate the desired multi-atlas segmentation through fusing the trained AdaBoost 

learners associated with the corresponding locally selected training images. If we let J be the 

set of selected training images, and Ω* ∊ LN be the approximated multi-atlas segmentation, 

then  (i.e., the estimated label at voxel i) is computed as

(4)

where the feature matrix, X, is defined in exactly the same way for the testing image as it 

was previously defined for the training images.
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Methods and Results

Throughout, all segmentation comparisons are assessed with the mean Dice Similarity 

Coefficient (DSC) (Dice, 1945) across the 132 non-background labels, and all claims of 

statistical significance are made using a Wilcoxon signed rank test (p < 0.01) (Wilcoxon, 

1945). In Figures 1 to 6, the DSC values were calculated in MNI305 space. To compare the 

label fusion results (in MNI305 space) with the manually labels images (in original space), 

in Figures 7 and 8, the DSC values were calculated in original space by affinely transferred 

the label fusion results to each subject's original space. Here, the 4×4 affine matrices were 

the inverse matrices which were generated during the affine registration in preprocessing.

low-dimensional representation

For the large-scale framework, it is time-consuming to find the closest leaners by calculating 

the similarity measurements between every testing subject and 3464 training images in the 

original image space. Thus, the low-dimensional representation is used for computational 

efficiency. In the MLF framework, we need to find the close (anatomically similar) trained 

learners for a target image by a low-dimensional representation of high-dimensional MRI 

image data. Linear models such as principle component analysis (PCA) (Pearson, 1901) and 

Multidimensional Scaling (MDS) (Torgerson, 1958) have been widely used to address this 

problem. In recent years, non-linear manifold learning algorithms like Isomap (Tenenbaum 

et al., 2000), Laplacian Eigenmaps (Belkin and Niyogi, 2003) and Local Linear Embedding 

(LLE) (Roweis and Saul, 2000) have also been successfully used in addressing the low-

dimensional projection (Aljabar et al., 2008; Gerber et al., 2010; Wolz et al., 2010; Wolz et 

al., 2011). However, the typical non-linear methods require the computational expensive 

pairwise similarity measurements which is a heavy burden for datasets with thousands, or 

more, 3D images. Thus, to accommodate the large-scale scheme, the PCA is employed in 

the MLF framework. The first 15 modes of variation in the PCA are used as the low-

dimensional representation as it offers a practical / pragmatic choice that has shown stable 

performance for the MLF framework. The chosen number of components represents a 

balance between capturing more variations and avoiding over-fitting (Figure 3A). However, 

we do not claim the optimality of the number of PCA low-dimensional representation from 

Figure 3A. To validate the usage of PCA, the widely used Laplacian Eigenmaps method is 

also evaluated in this paper. The comparisons are shown in the section “Empirical 

Validation”.

The first two modes of variation for PCA applied to the 3464 training images are shown in 

Figure 3B. As shown in the figure, the training images are densely distributed in the 

Eigenspace .As the results, locally closer trained learners are able to be found for a target 

image by the large-scale framework than the small-scale framework. Moreover, the images 

from different studies distributed differently in the Eigenspace, which means these studies 

are not redundant. Thus, a more representative training dataset is provided by the 

heterogeneous datasets.
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Parameter Optimization and Sensitivity

First, we optimize the number of locally selected atlases for the initial weak segmentation 

(via a majority vote). For optimization, the desired parameters were swept across an 

appropriate range for a random subset of 50 training images. The results can be seen in 

Figure 4. The Dice similarity values in the Figure 4 are computed by comparing the 50 

segmentations from the AdaBoost classifier with the corresponding multi-atlas 

segmentations. For the initial majority vote accuracy (Figure 4A), using too few (e.g., 5) or 

too many (e.g., all available training data) results in sub-optimal accuracy. Additionally, 

there is marginal return when increasing the number of selected atlases beyond 25. Thus, as 

computation time is of primary concern, the closest 25 training images were used for all 

subsequent analysis.

Second, we optimize the weak learner (decision tree) used in AdaBoost classifier. The 

decision tree works as the weak learner hjlt for the image j, label i and iteration t. At iteration 

t, The decision tree is built based on the Classification And Regression Tree (CART) 

method (Breiman et al., 1984). Each node can be split into two child and the splits are 

determined by the maximizing the classification rate(Hastie et al., 2009; Quinlan, 1993). For 

the AdaBoost weak learner optimization (Figure 4B), we consider decision trees with depths 

ranging from 1 (i.e., a “decision stump”) to 4. Additionally, we consider two sampling 

methods, unequal and equal. For each label, the samples are the feature voxels from the 

training data (matrix X) and the corresponding true values (matrix Y) within pre-calculated 

regional masks. Each regional mask extracts the voxels with probability larger than 0 from 

its regional probabilistic atlas, which is obtained by averaging the regional segmentations 

from all the 3464 training segmentation images. For unequal sampling, all available voxels 

within the mask were used for each label, regardless of the resulting class imbalance 

between the positive class (Y = 1) and negative class (Y =-1). For equal sampling, a random 

subset from the larger class was selected to enforce class balance (the same number of 

samples in positive and negative class). Here, it is evident that (1) increasing the decision 

tree depth improves training accuracy, and (2) equal class sampling provides a marginal, yet 

significant, improvement in segmentation accuracy. Given the marginal return and dramatic 

runtime increase of a depth 4 decision tree, a depth 3 decision tree with equal class sampling 

was used for all subsequent experiments.

Testing Data Accuracy and Assessment

Next, we quantify our ability to replicate the expensive multi-atlas segmentation result using 

the MLF framework. Using the multi-atlas segmentation estimate on our testing data (380 

images) as a “silver standard” we applied the MLF framework with varying numbers of 

local learners (from 1 to 25). The “silver standard” is the multi-atlas segmentations using 

both rigid and non-rigid registration (Avants et al., 2008; Ourselin et al., 2001) and Non-

local Spatial Staple label fusion (Asman and Landman, 2013). As a benchmark, we consider 

fusing the 25 nearest training images using the premier joint label fusion (JLF) algorithm 

(Wang et al., 2013). More specifically, the multi-atlas segmentation uses typical “non-rigid 

registration + fusion” framework to (1) generate the training images, and (2) demonstrate the 

state-of-the-art multi-atlas segmentation performance with non-local information. Once we 

get the trained framework, the MLF only requires an affine registration when applying new 
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subjects to the trained AdaBoost learners. To compare with the MLF, the benchmark JLF 

also uses “affine registration + fusion” framework, which guarantees the MLF and the JLF 

are in the exactly same condition except the label fusion. The results of this experiment 

across the 380 testing images (Figure 5) demonstrate: (1) increasing the number of local 

learners results in an improved ability to replicate the multi-atlas segmentation result, (2) 

using at least 5 learners results in significant and substantial improvement over the JLF 

benchmark, and (3) increasing the number of learners from 1 to 25 increases the total 

segmentation time from approximately 3 minutes to approximately 8 minutes – which 

remains a speedup of ≈30× over the JLF benchmark and ≈270× over the multi-atlas 

framework (shown in Table 2). In Table 2, we show the time consumed by registration and 

label fusion as well as the total time required for each framework. For multi-atlas 

segmentation, 15 non-rigid registrations were conducted for each testing subject. However, 

for the JLF and MLF, only 1 affine registration was required since all the training data and 

the trained AdaBoost learners had already been aligned to MNI space. The qualitative 

results support the quantitative accuracy analysis for both the worst and median cases from 

the testing set.

Reproducibility Data Accuracy and Assessment

Then, we assess the reproducibility of the MLF framework using the MMMRR dataset (see 

Table 1). Within this dataset, all 21 subjects were scanned twice with exactly the same 

scanning parameters. All subjects are healthy without history of neurological disease. This 

dataset is intended to be a resource for statisticians and imaging scientists to quantify the 

reproducibility of their imaging methods using data available from a generic session at 3T. 

The intra-subject reproducibility was assessed by comparing the mean DSC for: (1) the MLF 

result vs. the corresponding multi-atlas result, (2) the intra-subject multi-atlas estimates, and 

(3) the intra-subject MLF framework estimates. The results (Figure 6) demonstrate: (1) the 

MLF similarity to the multi-atlas segmentation result approaches the intra-subject 

reproducibility for multi-atlas segmentation, and (2) MLF is significantly more reproducible 

than multi-atlas segmentation with a mean intra-subject DSC improvement of 0.0288.

Efficacy of Large-scale Data Model

Next, we compare the efficacy of the large-scale data model with a small-scale model via a 

simulation. The purpose of doing simulation is to compare the performance using large-scale 

heterogeneous dataset with using small-scare homogenous dataset. Moreover, more 

independent training and testing datasets can be generated from the limited number of 

available truth atlases (with manual segmentations). To generate simulated data, we 

randomly selected 6 subjects from 45 atlases and divided them to 3 training subjects and 3 

testing subjects. Then, a deformation was applied on the 3 training subjects to generate 90 

deformed images and labels (30 for each subject) by sampling a sixth-order Chebyshev 

polynomial with random coefficients (Asman and Landman, 2013). In these 90 image-label 

pairs, 10 were used as atlases in multi-atlas segmentation for three label fusion algorithms: 

(1) majority vote (MV), (2) Spatial Staple (SS) (Asman and Landman, 2012) and Non-local 

Spatial Staple (NLSS) (Asman and Landman, 2013) while the rest 80 were used as training 

data for the MLF framework. Note that the multi-atlas segmentation (majority vote, SS and 

NLSS) uses the non-local registration while the MLF framework does not. Lastly, the 3 
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testing subjects were deformed to 27 testing images using the same method as 3 training 

subjects.

After getting the simulated data, we (1) applied multi-atlas segmentation algorithms on 27 

simulated testing images using 10 simulated atlases, (2) trained the MLF framework by 80 

simulated training image-label pairs and tested the MLF framework by 27 simulated testing 

images, and (3) evaluated the large-scale data model by running the 27 simulated testing 

images under the MLF framework which was trained by 3464 images (see Table 1). When 

testing the large-scale data model, for each testing subject, the same subject in large-scale 

training dataset was excluded to keep the testing procedure unbiased.

The results (Figure 7) show: (1) increasing the number of training data from 80 to 3464 

results in significant improvement on the DSC, (2) with small-scale training data, the MLF 

framework performs worse than any of multi-atlas segmentation algorithms (majority vote, 

SS and NLSS), (3) with large-scale training data, the MLF framework (with 25 learners) 

provides significant improvement not only over the small-scale model but also over majority 

vote and SS, (4) the MLF framework with 25 learners performs less accurately than NLSS 

since the MLF framework does not use the non-local information which NLSS used. 

Therefore, the large-scale data model improves the performance of the MLF framework and 

achieves acceptable accuracy.

Empirical Validation

Lastly, we compare the performance of MLF framework with state-of-the-art multi-atlas 

segmentation algorithms by an empirical validation. To conduct the empirical validation, we 

employed 5 manually labeled subjects (with the same protocol as atlases but have not been 

used as atlases) from the 50 MPRAGE images as unbiased testing data. Note that these were 

obtained from the human raters after the conclusion of the algorithm training and 

development process. Since the testing dataset has the size n=5, all claims of statistical 

significance in this section are made using a Wilcoxon signed rank test (p < 0.05) which is 

the smallest significant level for n=5 (Wilcoxon, 1945).

Briefly, we conducted four types of analyses called Test-1, Test-2, Test-3 and Test-4. In 

Test-1, the multi-atlas segmentation pipeline is applied to 5 MPRAGE images with different 

label fusion algorithms: majority vote (MV), SS and NLSS (use 15 atlases from 45 

MPRAGE images). In Test-2, the 25 nearest training images were selected by Laplacian 

Eigenmaps and then fused by the majority vote and JLF algorithm. Test-3 is the same as 

Test-2 except using the PCA for low-dimensional projection. Lastly, Test-4 applied the 

MLF framework with varying numbers of local learners (from 1 to 25). Note that Test-2, 

Test-3 and Test-4 use the same 3464 training images.

Overall, Test-1 has the highest CCNR among 4 groups. Test-2 is employed to compare the 

non-linear low-dimensional projection with the PCA used in Test-3. Test-3 serves as the 

benchmark to evaluate the performance of the MLF framework in Test-4.

While providing a speedup of ≈30× over the JLF benchmark (Test-3) and ≈270× over the 

multi-atlas framework (Test-1), the segmentation quality of MLF framework (Test-4) is 
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comparable with other methods. Dice similarity is used as the main metric of segmentation 

quality (Figure 8A). Meanwhile, the average surface distance (ASD) is used as a 

supplementary metrics (Figure 8B). Figure 9 compares different methods (same as Figure 8) 

by showing the same axial slice from one subject in the testing dataset. Here, we discuss the 

Dice similarity first.

1. Test-1 vs Test-4. We compare the MLF framework (Test-4) with three non-rigid 

registration based multi-atlas segmentation algorithms, majority vote, SS and NLSS 

(Test-1). The mean Dice similarity coefficients of the MLF framework (with 25 

learners) are significantly higher than majority vote and SS. Meanwhile. 

Meanwhile, as shown in the simulation, the MLF framework with 25 learners 

performs less accurately than NLSS, which uses both non-rigid registration (high 

CCNR) and non-local correspondence (high CCNC). The results demonstrate the 

MLF framework (without CCNR and CCNC) provides significant improvement on 

Dice similarity over majority vote and SS (high CCNR) without using time-

consuming non-rigid registration algorithms.

2. Test-3 vs Test-4. The comparison is conducted between the MLF framework 

(Test-4) and two benchmarks, majority vote and JLF (Test-3) which both use the 

same affine registration. Notice that the majority vote here is applied on the 25 

atlases selected from 3464 training data (without CCNR). It is different from the 

majority vote in the multi-segmentations, which fuse the 15 non-rigid registered 

manual segmentations (in Test-1 with high CCNR). The MLF framework has 

significantly higher Dice similarity than the majority vote benchmark and has 

statistically indistinguishable Dice values comparing with the JLF benchmark. It 

proves that the MLF framework (without CCNR and CCNC), significantly 

outperforms the majority vote benchmark (without CCNR and CCNC) with the 

similar computational complexity. In addition, it has the comparable performance 

of JLF benchmark, which requires high CCNC to find non-local correspondences.

3. Test-2 vs Test-3, we compare the non-linear manifold learning method (Test-2) 

with the PCA method (Test-3) used in the MLF framework. The dataset used in 

Laplacian Eigenmaps is exactly the same as the one used for the PCA described in 

former sections. The closest subjects are selected based on the Euclidian distance of 

first 15 features in the Laplacian Eigenmaps. The Laplacian Eigenmaps is 

generated from the pairwise similarity measurements (normalized mutual 

information) between whole brain anatomical images. The results show that PCA 

performs significantly better than Laplacian Eigenmaps, which validates the usage 

of the PCA scheme. Even as validated, we do not claim any optimality of the PCA 

projection. Investigation into alternative low-dimensional projection methods could 

provide improvements.

The average surface distance (ASD) measurement repeats the finding in the Dice similarity 

except: (1) the smaller value is better for ASD, which is different from the Dice similarity, 

and (2) the mean ASD is not significantly smaller than majority vote in multi-atlas 

segmentation. However, it is still better than the SS. The similar results from the surface 

distance provide a more robust comparison than using Dice similarity only.
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To summarize, (1) the empirical validation repeats the results in the simulation, (2) the MLF 

framework (without CCNR and CCNC) outperforms majority vote and SS in Dice similarity 

coefficients without using non-rigid registration (high CCNR), (3) the MLF framework has 

comparable performance as JLF benchmark without using resource consuming non-local 

correspondences (high CCNC), and (4) PCA and the Laplacian Eigenmaps have similar 

performance and PCA is a valid method under large-scale scenario.

Discussion and Conclusion

We present multi-atlas learner fusion (MLF), a framework for replicating the robust and 

accurate multi-atlas segmentation model, while dramatically lessening the computational 

burden. Using a training set of 3464 images, we estimate a low-dimensional representation 

of brain anatomy for selecting nearest appropriate example images, and build AdaBoost 

learners that map weak initial segmentations to the more accurate multi-atlas segmentation 

result. By completely bypassing the deformable atlas-target registrations, the MLF 

framework, cuts the runtime on a modern computer from 36 hours down to 3-8 minutes – a 

speedup that could be further enhanced through GPU-based optimization. Specifically, we: 

(1) describe a technique for optimizing the initial segmentation and the AdaBoost learning 

parameters (Figure 4), (2) quantify the ability to replicate the multi-atlas result with mean 

DSC of approximately 0.85 on a testing set of 380 images (Figure 5), (3) demonstrate 

accuracies that are approaching the intra-subject multi-atlas reproducibility on a separate 

reproducibility dataset, and show significant increases in MLF reproducibility (Figure 6), (4) 

show the advantage of large-scale data model by comparing small-scale training data with 

large-scale training data (Figure 7), and (5) indicate the performance of MLF is better than 

majority vote and SS and is comparable to state-of-the-art multi-atlas segmentation 

algorithm (the JLF framework) without using non-local information (Figure 8).

The results show the advantages of using large-scale data. Compared with the MLF 

framework under small-scale, the large-scale scheme improves the segmentation accuracy 

significantly. Compared with other state-of-the-arts multi-atlas segmentation methods, the 

MLF framework (without CCNR and CCNC) outperforms the typical multi-atlas 

frameworks (majority vote and SS) without using the resource consuming non-rigid 

registrations (high CCNR). Meanwhile, the MLF framework has comparable performance 

with the JLF benchmark (high CCNC). As a result, the MLF framework surpasses the 

expensive CCNR and CCNC, which speeds up the segmentation to 3-8 minutes without 

compromising on segmentation accuracy. With the availability of more training data (even 

the big data) the performance of the learning based large-scale framework could be further 

enhanced.

In the interest of brevity, all of our comparisons have been against the standard pairwise 

registration framework for multi-atlas segmentation, and have not included the more recent 

advancements in groupwise registration (e.g., (Jia et al., 2012)). The primary reason for not 

directly including this comparison is: (1) groupwise registration is still a very active area of 

continuing research, and (2) the MLF framework is, in its essence, a machine learning 

perspective on the groupwise registration model. Meanwhile, since the simulated data and 
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empirical data were manually labeled by the same protocol (BrainColor), the effect of inter-

protocol comparison has not been discussed in this paper.

The MLF framework is designed for the large-scale scenario so it does not perform well on 

small-scale dataset such as the 80 training dataset in the simulation. Meanwhile, although 

outside the scope of this paper, applying the MLF framework on other applications (e.g., 

spinal cord segmentation and abdominal organ segmentation) would be interesting research 

topics in the future. As the soft tissues structures are not well constrained by bone and tend 

to exhibit higher inter-individual variation, we cannot make the conclusion that the proposed 

method is able to be applied on abdomen organ segmentation directly. However, this 

learning based large-scale processing framework might trigger new methods in organ 

segmentation with more representative training images and more powerful registration and 

label fusion tools for whole abdomen.

In the end, while the MLF framework shows great promise for rapid and accurate multi-atlas 

segmentation, there are certainly areas for which further investigation is warranted. Namely, 

first, we used a naïve PCA projection to model the neighborhood relationships between the 

training images. The proposed method is an open framework, which is able to incorporate 

with other algorithms. For example, the PCA and the AdaBoost algorithms could be 

replaced by any other low-dimensional projection methods and other two-class classifiers. 

More recent advancements in the manifold learning literature (e.g., (Gerber et al., 2010)) 

present fascinating opportunities for more accurately modeling these relationships. Second, 

while highly successful, we do not claim any optimality of our AdaBoost-based learners. 

Investigation into alternative classification techniques (e.g., (Criminisi et al., 2013)) could 

provide valuable improvements in segmentation modeling without dramatically altering the 

MLF framework.
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Highlights

• We build the multi-atlas learner fusion (MLF) framework for mapping weak 

initial segmentations to the more accurate multi-atlas segmentation.

• The MLF framework cuts the runtime from 36 hours down to 3-8 minutes.

• We demonstrate significant increases in the reproducibility of intra-subject 

segmentations

• We show the large-scale data model significantly improve the segmentation 

over the small-scale model under the MLF framework

• The MLF framework has comparable performance as state-of-the-art multi-atlas 

segmentation algorithms without using non-local information
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Figure 1. 
Flowchart demonstrating the multi-atlas learner fusion (MLF) framework. A large collection 

of training images are processed offline using a typical multi-atlas segmentation pipeline. 

The dimensionality of the training images is then reduced, and learners are constructed to 

map a weak initial estimate to the multi-atlas segmentation. Finally, for a new testing image, 

the image needs to be projected into the low-dimensional space and the locally appropriate 

learners can be fused to efficiently and accurately estimate the final segmentation.
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Figure 2. 
Summary of the training data processed through multi-atlas segmentation and their 

corresponding representation in the estimated low-dimensional space. The inlays in (A) and 

(B) illustrate that the PCA distance metric leads to reasonable clustering of anatomical 

features.
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Figure 3. 
(a) Total variation captured by first N modes from the PCA projection. The upper left figure 

shows the total variation captured by first N modes from the PCA. It's got from the 

percentage of the cumulated sum of the first N eigenvalues among all eigenvalues. The 

lower left figure shows the derivative of the upper left figure. (b) Coordinate embedding of 

3464 training dataset from 6 projects. The first two modes in the PCA low-dimensional 

space are shown.
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Figure 4. 
Parameter optimization and sensitivity for the number of atlases fused for the initial majority 

vote (A), and the type of weak learner used for the AdaBoost classifiers (B). A 

representative segmentation using the optimized parameters can be seen in (C). Note, on 

(B), “*” indicates statistically significant difference, and “NS” indicates no significant 

difference.
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Figure 5. 
Mean accuracy assessment for the defined testing data using the multi-atlas segmentation 

estimate as a “silver standard”. The results demonstrate (1) the MLF framework provides a 

dramatic decrease in total segmentation time, (2) increasing the number of fused learners has 

valuable benefits in terms of segmentation accuracy, and (3) when fusing more than 5 local 

learners the MLF framework provides substantial and significant accuracy benefits over the 

joint label fusion baseline.
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Figure 6. 
Reproducibility analysis on the MMMRR dataset. Note, (1) the MLF similarity to the multi-

atlas segmentation result approaches the intra-subject reproducibility for multi-atlas 

segmentation, and (2)MLF is significantly more reproducible than multi-atlas segmentation 

on this dataset.
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Figure 7. 
Summary of the simulation and results. The flowchart shows the framework of the 

simulation: (1) 3 images were deformed to 90 simulated images and converted to MNI space 

by affine registration. (2) 10 of them were used as atlases for multi-atlas segmentation while 

80 of them were used as training data for the MLF framework. (3) 3 images were deformed 

to 27 testing images for comparing the Multi-Atlas segmentation, small-scale model and big 

data model. The results demonstrate (1) the performance of the MLF framework is 

significantly improved when using big data model (3464 training images) and (2) the MLF 

framework under big data model provides the better performance than majority vote and SS 

even without using non-local information.
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Figure 8. 
Results of empirical evaluation. The results indicate: without using non-local information, 

the MLF framework (large-scale) provides better performance than two multi-atlas 

segmentation algorithms (majority vote and SS) and has comparable performance as the JLF 

benchmark. Note that, the multi-atlas segmentation used “non-rigid registration + fusion” 

framework while the JLF and the MLF used “affine registration + fusion” framework.
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Figure 9. 
Example for one subject, which corresponds to the different methods in Figure 8. The 

anatomical and the manual segmentation of the target image are also provided.
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Table 1

Data summary. Each value is represented by: number of subjects (number of images)

Training Testing Repro.

1000 Functional Connectome (fcon_1000)
a 1055 (1055) 117 (117)

Baltimore Longitudinal Study on Aging (BLSA) 578 (883) 64 (94)

Information eXtraction from Images (IXI)
b 523 (523) 58 (58)

Deep Brain Stimulation (DBS) 493 (493) 54 (54)

*
Open Access Series on Imaging Studies (OASIS)

c 375 (392) 41 (44)

Tennessee Twins Study (TTS) 113 (118) 13 (13)

Multi-Modal MRI Reproducibility Resource (MMMRR)d 21 (42)

Total: 3137 (3464) 347 (380) 21 (42)

a
https://www.nitrc.org/projects/fcon_1000/

b
http://www.oasis-brains.org/

c
http://biomedic.doc.ic.ac.uk/brain-development/

*
With OASIS, 6 subjects are used for simulation and 5 subjects are used for empirical validation.
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Table 2

Runtime of each method on an Intel Xeon W3550 4 Core CPU (64 bit Ubuntu Linux 12.04)

Methods
Time Consumed

Registration Fusion Total

Multi-Atlas segmentation (with majority vote) ≈ 22 hours ≈ 5 min ≈ 22 hours

Multi-Atlas segmentation (with SS) ≈ 22 hours ≈ 2 hours ≈ 24 hours

Multi-Atlas segmentation (with NLSS) ≈ 22 hours ≈ 14 hours ≈ 36 hours

Joint Label Fusion framework ≈ 2 min ≈ 4 hours ≈ 4 hours

Multi-Atlas Learner Fusion framework (with 5 learners) ≈ 2 min ≈ 2 min ≈ 4 min

Multi-Atlas Learner Fusion framework (with 25 learners) ≈ 2 min ≈ 6 min ≈ 8 min
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