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Abstract

Arguments are proposed that researchers using longitudinal data should consider more and less 

complex statistical model alternatives to their initially chosen techniques in an effort to “right-

size” the model to the data at hand. Such model comparisons may alert researchers who use poorly 

fitting overly parsimonious models to more complex better fitting alternatives, and, alternatively, 

may identify more parsimonious alternatives to overly complex (and perhaps empirically under-

identified and/or less powerful) statistical models. A general framework is proposed for 

considering (often nested) relationships between a variety of psychometric and growth curve 

models. A three-step approach is proposed in which models are evaluated based on the number 

and patterning of variance components prior to selection of better-fitting growth models that 

explain both mean and variation/covariation patterns. The orthogonal, free-curve slope-intercept 

(FCSI) growth model is considered as a general model which includes, as special cases, many 

models including the Factor Mean model (FM, McArdle & Epstein, 1987), McDonald's (1967) 

linearly constrained factor model, Hierarchical Linear Models (HLM), Repeated Measures 

MANOVA, and the Linear Slope Intercept (LinearSI) Growth Model. The FCSI model, in turn, is 

nested within the Tuckerized factor model. The approach is illustrated by comparing alternative 

models in a longitudinal study of children's vocabulary and by comparison of several candidate 

parametric growth and chronometric models in a Monte Carlo study.
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Longitudinal research is increasingly prevalent given the ease with which multiple 

assessments may be collected using palm pilots, physiological measurements in the time 

domain, internet-based assessments, diary studies, and large-scale, frequently 

epidemiological longitudinal studies (see, e.g., the updated list at Longitudinal Study, 2015). 

In response, many statistical models have been developed for characterizing the timing and 
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chronicity of change or growth. The sheer variety of available models, however, presents the 

researcher with challenges because there is often little guidance as to how to select the 

models most appropriate to the data at hand. Choosing models only because they 

demonstrate a favored effect, are the latest “cutting edge approaches” or have been 

traditionally employed in an area seem poor justifications. At the other extreme, some 

researchers appear to believe that model selection must occur prior to data collection and 

that any exploration of alternative models risks undue capitalization on chance. Such 

researchers often acknowledge but effectively ignore model misfit and focus discussion on 

the magnitude or statistical significance of particular parameters of the model. This approach 

is also less than optimal because it ignores the possibilities of either discovering more 

appropriate models or that the statistical significance of individual model parameters may be 

an artifact of fitting an inappropriate model.

By contrast, the structural equation models (SEMs) reported by researchers have often been 

not only selected, but changed during the course of analysis. This is especially true if the 

initially chosen model fits poorly, yields an improper solution, or is empirically under-

identified. These changes often take the form of a (hopefully) small number of ad hoc 

modifications (Kenny, Kashy & Bolger, 1998; Kenny & Milan, 2013). Such approaches 

have their critics (e.g., MacCallum, 1986; Wood & Jackson, 2013), given the capitalization 

on chance involved when several modifications are employed. Additionally, ad hoc 

modifications overlook the existence of different classes of preferable alternative models.

Finally, some researchers have responded to this embarrassment of modeling riches by 

reporting only those effects which appear demonstrable across several statistical models. 

Such “vote by statistical model majority rule” ignores the possibility that a more complex 

model may permit more accurate estimation, possess greater statistical power or make more 

reasonable assumptions of the data. The “candidate field” of published statistical models, by 

contrast, is a far from systematically representative pool and several, if not most, of the 

candidate models may fit poorly.

Identification of a member of an appropriate class of models may be more informative than 

evaluation of one initially-chosen model. For example, Hussong, Curran, Moffitt, and Caspi 

(2008) wished to compare a “general deviance” model with prospective “snare” and 

“launch” models of problem behaviors in a prospective study of young men. The linear 

slope “general deviance” model they fit to the data fit poorly even after ad hoc modification, 

which they interpreted as evidence against the existence of a general deviance factor in favor 

of the prospective “snare” and “launch” models. Wood and Jackson (2013) re-analyzed the 

data and found that when the data were analyzed as trait factors model with estimated mean 

effects not only were the solutions proper, they fit the data better than the proposed “snare” 

and “launch” models. Sometimes exploration of alternative models may seem obvious in 

benefit of hindsight. For example, in a reanalysis of Partridge and Lerner's (2007) 

longitudinal study of difficult infant temperament, Wood (2011) found that a nonlinear 

trajectory over time revealed a developmentally limited “terrible twos” period of difficult 

temperament for some children which fit the data better than the originally proposed model. 

By contrast, individual ad hoc modifications of model parameters may overlook the 
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possibility of a simpler class of statistical models that provides a better summary of patterns 

of covariation consistent with the data.

There is No “Right” Model, but We May Determine Which Models are 

“Better.”

Consideration of more or less complex classes of alternative models highlights the 

importance of balancing the interplay of parsimony and fit in the process of modeling data, a 

process Rodgers (2010) has termed the “quiet methodological revolution.” As some of the 

hesitancy to explore alternative, possibly unanticipated, models appears to stem from 

philosophical, rather than statistical considerations, some philosophical comment appears 

warranted. As Karl Popper (1959; 1963; 1994) noted, we cannot inductively validate our 

models by gathering repeated observational data consonant with our theory nor can we 

prove our theories true by deducing observational systems from first principles. Rather, our 

awareness and definition of any problem (itself a “theory soaked” enterprise to use Popper's 

term) results in a tentative theoretical proposal or model. Our statistical models, as with any 

other class of scientific theory, are merely conjectures which have survived our initial 

attempts at critical counterargument or experimental attempts at refutation which may be 

refined or refuted in the presence of superior alternatives in the future (Wood, 2014).

The Evolutionary Epistemology of Statistical Models

The scientific value of considering radically different models is not new. Donald Campbell 

(1974) used the term “evolutionary epistemology” to refer to the “natural selection” process 

of successive conjectures and refutations of a theory and for the proposal, refinement, and 

eventual replacement of models in favor of better alternatives. Campbell argued for a broad 

search of candidate models, rather than minor ad hoc modifications, as a broad search 

increases the odds that a well-fitting, but radically different statistical model “mutation” will 

be identified. Within adversarial science, such novel, well-fitting models may also be initial 

conjectures in service of new theories of change and growth or may also be useful as an 

operationalization of an alternative narrative proposed by a reasonable skeptic. Before going 

into specifics regarding a strategy for comparison of classes of models, it is necessary to 

survey the historical and more recent development of growth curve and other longitudinal 

models.

Review of Growth Curve Models and Their Relation to Other Longitudinal 

Models

It is difficult to adequately acknowledge both the history and breadth of growth curve 

models given that they are so frequently considered in statistical research; see, however, 

Bollen's (2007) historical overview. Historically, early work was proposed by Potthoff and 

Roy (1964), Rao (1958), Scher, Young and Meredith (1960), and Tucker (1958). Subsequent 

work noted the relationship of growth models to earlier factor models (Browne, 1993; Chan, 

1998; McArdle & Epstein, 1987; Meredith & Tisak, 1984; 1990). Several papers have noted 

that specific choices regarding the scaling of time permits the expression of growth curve 

models as longitudinal hierarchical linear models (HLM's) and that choice of numerical 
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values for this scaling affects the estimated covariance between slope and intercept factors 

(Biesanz, Deeb-Sossa, Aubrecht, Bollen, & Curran, 2004; Curran, 2003; Mehta & Neale, 

2005; Meredith & Tisak, 1990; Muthén & Curran, 1997; Rovine & Molenaar, 1998; Stoel & 

van den Wittenboer, 2003).

Expression of longitudinal statistical models as SEMs is also an informative way for 

understanding how measurement and error structure vary across models. Voelkle (2007) 

expresses several models (t-tests, repeated measures anova, and MANOVA) as structural 

models. This paper, and others (e.g., Liu, Rovine, & Molenaar, 2012; Meredith & Horn, 

2001; Meredith & Tisak, 1990; Rovine & Molenaar, 2000) have noted that repeated 

measures analysis of variance can be expressed as an SEM.

Finally, recent work using SEMs to model growth has led to development of models which 

either integrate growth models with other SEMs or which propose new parametric growth 

models. For example, Alessandri, Caprara and Tisak (2012) propose structural models that 

merge latent curve analysis with state-trait models. Grimm and Ram (2009) represent the 

Richards, logistic and Gompertz parametric curve models using nonlinear constraints on the 

growth factor while including a random intercept component. Viewed broadly, SEMs for 

longitudinal data have historically highlighted equivalencies and extensions of traditional 

approaches while recent work extends such models to more refined articulations of the 

growth process.

“Right-Sizing Models”

The wide variety of statistical models for longitudinal data to be considered below represent 

different operationalizations of change and growth. This paper seeks to survey many of 

these with a formal emphasis on model comparison and articulation of model assumptions. 

At its most general level, models may be collectively considered (and at times directly 

compared) based on examination of a.) the number of latent variables (i.e., variance 

components) thought to underlie the data, b.) the patterning of factor loadings associated 

with the identified latent variables, and c.) the assumed measurement model relating the 

factors to the manifest variables of the study. Given that models of growth involve 

statements of level as well as covariation, this last step involves explicit operationalization 

of mean effects in the model. Some of the growth models considered are expressed in an 

equivalent orthogonal form, making it easier to compare such models with nested 

alternatives. Organization of statistical models according to these three aspects could be 

used as the basis for a general model search.

Three additional advantages are also evident from such an exposition. First, some promising 

alternatives appear to have fallen into unmerited disuse over the years (such as McDonald's 

1967 linear factor model). Second, new models are identified which are intermediary 

between existing models and are as yet unexplored. Third, the strategy of imposing 

nonlinear constraints can be extended to accommodate a greater variety of parametric forms 

which, in addition to being yet more parsimonious, may lead to the conjecture of new 

theories of the growth process itself. Although all models considered here are based on 

longitudinal assessments with fixed measurement occasions, similar model comparison 

approaches could be adapted to research designs with unequally-spaced lagged assessments 
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(McArdle & Woodcock, 1997), time-varying covariates (e.g., McCoach & Kaniskan, 2010), 

or unequally spaced assessments across individuals (e.g., Dang, Anderson, Tan, & 

Mazumdar, 2005).

Matrix Notation for Structural Models

Parameter estimates of the latent and measured variables of the model formulations 

presented below may be obtained from the observed means and covariances matrices of the 

data or from the raw data. Using Sörbom's (1974) conventions regarding Greek notation, the 

factor model including mean effects at the level of the ith individual observation is 

represented in the following two equations:

(1)

and

(2)

xi is a column vector associated with a manifest variable across k measurement occasions for 

one individual. μ is a k by 1 column vector of intercepts (which take the same values across 

all individuals) that scale the manifest variables to their zero points, Λ is a k by f matrix of 

factor loadings (assumed to be the same across all individuals), ξi is an f by 1 vector of latent 

variable values, and εi is a column vector of k errors of measurement. θ is a column vector of 

f factor means (again assumed the same across individuals), and ηi is a column vector of f 

latent variable scores for the individual expressed as deviations from their respective factor 

means. Traditionally, the variance/covariance matrix Σ based on this model is given as 

(Sörbom, 1974, p. 230):

(3)

Φ represents the variance/covariance matrix of the latent variables and Ψ is a matrix of 

variances and covariances of the errors of measurement. Expected values of the observed 

manifest variables are given by:

(4)

The factor model in equations 1 and 2 is not identified unless constraints are imposed on the 

variance components and intercepts. Although discussed in more detail in Sörbom (1974) 

and Jöreskog (1971), at a minimum, f2 restrictions across Λ and Φ must be imposed to 

secure an identified solution. These may be accomplished by fixing a factor variance for 

each factor to 1, fixing the factor loading of a different manifest variable to 1 for each latent 

variable and, in the case of multiple factors, setting factor covariances to zero, setting 

selected loadings to equality, or setting an additional loading to zero for each successive 

factor beyond the first one. Additionally, the mean matrices μ and θ can accommodate at 

most k freely estimated parameters.
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By patterning the Λ, Φ, Ψ, μ and θ matrices appropriately, a variety of structural models can 

be generated. For example, Figure 1 shows how this notation may be patterned for a class of 

models termed Slope Intercept models for those more familiar with path diagrams. At the 

most general level, models vary only in terms of the number of variance components needed 

to account for variation and covariation. At a more refined level, the possibility of further 

model parsimony is investigated by exploring whether specific patterns in the covariance 

components can be achieved by imposing functional forms or other constraints on the Λ, ϕ, 

or conceivably, Ψ matrices. At a third level, the possibility of yet more parsimony is 

explored by considering whether mean level effects over time can be patterned as well 

(either by patterns identical to that imposed on the variance components or via functional 

forms or constraints on the model intercepts, μ). These three sequential levels of analysis are 

consonant with the argument that model misfit due to covariance structure alone may be 

profitably considered separate from model misfit due to both mean and covariance structure 

(Liu et al., 2012; Wu, West, and Taylor, 2009). This hierarchy of model complexity may be 

used to identify specific “nearest neighbor” models to an initially selected model or, under 

Campbell's “distant relative” approach, may be used to navigate an hierarchical “family 

tree” of models from the top down.

Specifically, Figure 2 shows how decisions about the appropriate SEM for longitudinal data 

can be divided into questions of the number of variance components, the patterning of 

loadings associated with these components, and the patterning of mean level effects in the 

data. For each model, the total number of parameters associated with the variance 

components (ϕ and λ) and the total number of parameters associated with mean level (θ and 

μ) are shown. Ψ is assumed to be a freely estimated diagonal matrix except for the repeated 

measures models, in which case the diagonal elements of Ψ are constrained to equality.

Figure 2 can be used, then, to guide a three-step approach to “right-sizing” growth models 

when the researcher either wishes to explore the existence of other plausible well-fitting 

models or is simply agnostic about the form of growth. In the first step, only the 

dimensionality of the longitudinal data is explored via orthogonal confirmatory factor 

models. In the second, the researcher considers whether the dimensionality identified in the 

first step can be parsimoniously patterned (by considering, for example, oblique simple 

structure models or, alternatively, random intercept factor models [described below]). In the 

third step, the researcher considers whether these factors with patterned loadings can be used 

to model mean level effects by estimating mean level effects at the latent variable level with 

and without an estimated additive shift. We highlight this process of navigation in the real-

world example discussed in the next section but mention again that if researchers wish 

instead to consider nearby neighbor to an initially chosen model, they can proceed by 

locating their chosen model in Figure 2 and fit alternatives which are slightly more or less 

complex.

Confirmatory Factor Models

If θ is defined as a zero vector and the vector μ freely estimated, suitable patterning of Λ, Φ, 

and Ψ results in an identified confirmatory factor model. As shown in the top row of Figure 

2, at a basic level such models may vary in terms of the number of variance components 
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which explain patterns of covariation in the data. For example, one way to express the single 

confirmatory factor model is to fix Φ to unity and freely estimate the k loadings, k (diagonal) 

error variances in θ, and k intercepts (μ), for a total of 3k estimated parameters. Other 

identification strategies involving Λ and Φ are possible that use the same number of 

estimated parameters (e.g., fixing a loading in Λ to 1 and allowing Φ to be freely estimated). 

The model labeled “One Factor” in the top row of Figure 2 summarizes the number of free 

variance component parameters in Φ and Λ, and number of mean level effects in μ and ν. 

The sum of these two numbers, plus the number of error variances in θ estimated yields the 

total number of parameters for the model. The Two Factor model (in the middle of the top 

row of Figure 2) can be estimated by fixing a loading in the second column of Λ to zero and 

Φ as a 2 × 2 identity matrix (yielding f2 constraints, i.e., the fixed zero loading, and the three 

fixed values of the symmetric Φ matrix). The one-factor model is nested within this two-

factor model with k-1 df, as shown in the arrow between these two models. Higher 

dimensional factor models such as the three-factor model shown at the right of the top row 

of the figure can, in turn, be estimated by extending this identification process of 

constraining successively more loadings in Λ to zero, and specifying Φ to be an identity 

matrix of suitable dimension.

Parsimonious Alternatives: Tau Equivalent, Random Intercept and Simple Structure 
Factors

Random Intercept factors are an alternative form of parsimonious patterning of Λ that is a 

component of many longitudinal models. Conceptually, models consisting of a single 

random intercept factor represent the measurement process as being in the same scale over 

occasions as operationalized by the equality of factor loadings. For the case of a single 

confirmatory factor, such a model corresponds to the familiar tau equivalent factor model 

(Lord & Novick, 1968) and is labeled as such in the left-most model of the second row of 

Figure 2. In this model, the k μ and k diagonal entries of Ψ are estimated as before. This 

results in k-1 fewer parameters than the One Factor model, as shown by the arrow. If Λ is 

fixed to unity with Φ freely estimated, an equivalent form results that more closely 

corresponds to one of the conditions for the compound symmetry assumption of repeated 

measures analysis of variance model.

It is also possible to consider whether a random intercept factor constitutes a parsimonious 

alternative model nested within the orthogonal Two-factor model described above. This 

model is termed the Random Intercept factor model (Maydeu-Olivares & Coffman, 2006), 

and consists of specification of both the single factor and tau-equivalent factor model that, 

for identification purposes, are assumed orthogonal. This model has k+1 freely estimated 

elements in Λ, k intercepts and k diagonal elements of Ψ making a total of 3k+1 freely 

estimated parameters. As shown in Figure 2, it has k-2 fewer free parameters than the Two 

Factor model. The One Factor and Tau Equivalent Factor model are nested within the 

Random Intercept model, with 1 and k degrees of freedom difference, respectively. When 

loadings associated with the random intercept factor are constrained to 1 and the variance of 

the intercept factor is freely estimated, the random intercept model is more readily related to 

growth curve models considered below.
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This logic can be extended to specification of a Two Factor Random Intercept model (shown 

on the right of the second row of Figure 2) by either adding a Tau Equivalent factor to the 

two factor model or by suitably restricting a Three Factor model. As shown by the arrows, 

the Two Factor model is nested within the Two Factor Random Intercept model by a single 

degree of freedom and is in turn nested within the Three Factor model by k-3 degrees of 

freedom.

Alternatively, the researcher may wish to consider simple structure rotations of the factors as 

parsimonious factor models. Though the criterion of simple structure is often criticized in 

longitudinal models (see the discussion of the 2 FM model below), in some situations this 

may be appropriately made part of model comparisons. Although confirmatory factor 

models may be useful for assessing whether patterns of variation and covariation have been 

parsimoniously well-characterized, they make no assumptions about the patterning of mean 

change over time. The best fitting confirmatory factor model leads to conjectures as to 

whether such variance components can also be used to characterize mean level across 

occasions. We therefore turn now to models that achieve their parsimony by the number and 

patterning of both mean level and variation.

Models That Parsimoniously Explain Mean Effects

The models below the second row of factor models in Figure 2 seek (with the exception of 

the Repeated Measures HAlt models) to achieve additional parsimony by estimating fewer 

than k mean parameters (θ and μ). As we will see, nested relationships between some models 

can be understood by equivalent re-parameterizations of a given model.

Repeated Measures Analysis of Variance—The presentation of repeated measures 

analysis of variance as an SEM has already been noted elsewhere (e.g., Meredith & Tisak, 

1990; Rovine and Molenaar, 2000; Voelkle, 2007) and so will not be extensively discussed 

here except to note that it involves specification of a random intercept factor and equality of 

error variances across measurement occasions (as noted in the footnotes to Table 1 and 

Figure 2). The shaded vertical block of Figure 2 identifies those models which make this 

assumption. The alternate hypothesis of unequal means in repeated measures anova 

(“Repeated Measures HAlt” in Figure 2) is nested within the Tau-Equivalent model with k-1 

degree of freedom difference (due to the error variance equality assumption). An example of 

matrix specification for the case of a four-measurement study is shown in the fourth row of 

Table 1.

As Voelkle (2007) notes, it is also possible within such models to specify that the pattern of 

means follows a linear form, as shown in the model “Repeated Measures HLinear” in Figure 

2). In addition to Voelkle's strategy of using fixed numerical values, one can also fit this 

model by freely estimating two intercepts (say the first and final measurement occasion) and 

constraining the intercepts associated with measurement occasions between these two 

occasions to be time-scaled proportions of the elapsed difference between these two 

loadings. The sixth row of Table 1 illustrates this for the case of four equally-spaced 

measurement occasions.
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The Repeated Measure HNull model is a yet more restrictive repeated measures model fit by 

specifying that the intercepts are equal. The model may also be equivalently expressed by, 

for example, by imposing the additional constraint that the freely estimated Λ of the 

Repeated Measures HLinear model are equal to each other or that the μ are zero but the θ is 

now freely estimated as shown in the seventh row of Table 1, making it nested within the 

Repeated Measures HLinear model with 1 df.

Factor Means Model (FM)—The FM factor model is a One Factor Model in which μ are 

fixed to 0 and a factor mean, θ, is estimated instead. Although factor models with means are 

implicit in McDonald's (1967) linear factor model (discussed below), they were formally 

introduced to the field of psychology by Jöreskog (1971) and Sörbom (1974) and applied to 

growth by McArdle and Epstein (1987), who termed this the CURVE model. This model is 

also the single factor exploratory structural equation growth model considered by Grimm et 

al. (2013) as a follow-up to exploratory Tuckerized growth curve analysis. As noted by 

McArdle and Epstein (1987), it is possible to further constrain the FM model by imposing 

linearity constraints in Λ (their “Linear” model, p. 121). This may be accomplished either by 

fixing the Λ to numeric values and freeing the factor variance or, equivalently, fixing the 

factor variance to 1, freeing initial and final loadings and imposing linearity constraints on 

the remaining loadings as explained for the Repeated Measures HLinear model above. This is 

shown in the ninth row of Table 1 and clarifies the nested relationship (with k-2 degrees of 

freedom) of the linear FM model within the FM model as shown in Figure 2.

In the FM model, the mean level at any given measurement occasion is explained only by 

the product of the factor mean and loading for that occasion. As such, it assumes that 

measurements have been conducted at a common ratio level of measurement, i.e., that a 

measurement occasion with a factor loading of zero must correspond to an observed mean of 

zero. Given that the scaling of continuous manifest variables in psychology is often 

somewhat arbitrary and that having “none” of the construct of interest may correspond to a 

non-zero number due to floor effects of assessment or coding, this model would seem 

unreasonable in many contexts.

Note also that the FM model cannot be used to document patterns of differential decline in 

scales consisting of positive numbers (i.e., decreases in mean level associated with 

increasing variability across individuals). By contrast, the FMShift (discussed below) and 

other random intercept models do not share this limitation as these models will be fit 

identically under addition of a constant across all individuals and occasions. Examples of 

such differential decline exist in the literature, however. For example, longitudinal studies of 

general psychological distress among undergraduates have found that entering freshmen 

report high average levels of psychological distress. Although average level of distress 

declines on subsequent occasions, much greater inter-individual variability in scores is 

observed as well (e.g., Sher, Wood, & Gotham, 1996). Such a pattern of differential decline 

can only be assessed with the FM model if scores are suitably transformed to negative 

values beforehand or estimated with the FMShift model described next.

Factor Mean with Shift (FM Shift ) —The FMShift model was originally termed the 

“Linear Factor Model” by McDonald (1967) who explained it as a traditional factor model 
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with estimated θ in which each element of Λ consisted of a common parameter across all 

measurement occasions (an intercept) in addition to the usual λ for each manifest variable, 

thus making each loading appear similar to a linear regression model (i.e., the loading for 

the ith variable is expressed as λ+κ). The model can be estimated in this original form with 

any structural equation program that can accommodate nonlinear constraints. We refer to 

this model as the FMShift model, however, because it can also be thought of as a 

measurement model in which the manifest variables consist of ratio level measurements 

(i.e., measurements with a zero point) shifted by an unknown constant (κ in McDonald's 

notation). This shift can be estimated by constraining the μ to equality across variables, as 

shown in the tenth row of Table 1, a form which demonstrates the nested relationship (with 

k-2 df) of the FMShift model within the One Factor model. Alternatively, this shift can be 

estimated using a phantom intercept variable (i.e., an intercept latent variable with zero 

variance, but freely estimated mean), as shown in the eleventh row of Table 1. As shown in 

the twelfth row of Table 1, one can also equivalently express the FMShift model by 

constraining the loadings to be linear over time, resulting in the FMShiftLinear Model, a 

model intermediary between the FMShift and FMLinear models.

Free Curve Slope Intercept (FCSI) Growth—The FCSI growth model is identical to 

the Random Intercept Factor Model described above, except that μ is assumed to be a zero 

vector and θ is freely estimated. It was, to our knowledge, first proposed by Meredith and 

Tisak (1984, 1990) where it was referred to as a “simple two curve model” (p. 115) and 

elsewhere as a “latent basis model” (e.g., Bollen & Curran, 2006; Grimm et al., 2013). To 

distinguish it from the other curve models considered here, we use the term “Free Curve 

Slope Intercept” as most descriptively accurate. It is worth noting that the FMShift model is 

nested within the FCSI by 1 degree of freedom (by excising the ϕi as shown in the eleventh 

row of Table 1). As noted by Meredith and Tisak, it is possible to specify this model via two 

equally well-fitting models. In its orthogonal form (shown in the 13th row of Table 1), no 

covariance between the random intercept and factor is assumed, meaning that the intercept 

factor mean is an estimate of overall level across all measurement occasions. Alternatively, 

one may specify an oblique form of the model by constraining one of the slope loadings in Λ 

to be zero with the covariance between the intercept and slope factors freely estimated. The 

resulting model then estimates the variability of a random intercept component at the ith 

measurement occasion and the estimated covariance between the intercept at that occasion 

and the growth factor. Other equivalent constraints for the model are also possible (e.g., 

McArdle & Woodcock, 1997).

Linear Slope Intercept Growth (Linear SI)—The Linear SI Growth model represents 

possibly the currently most widely used growth model. As with the FCSI model, μ is 

assumed to be a zero vector and the vector θ freely estimated. Often this model is estimated 

as an oblique model in which fixed numeric values are assigned to the column of Λ 

associated with the factor and the random intercept factor loadings are fixed to 1 as well. 

The factor variance, random intercept variance, and the covariance between them are 

specified as free elements in Φ (as shown in the fourteenth row of Table 1). This model can 

be seen as a special case of the FCSI model, however, if it is parameterized as the FCSI 

model described above, but with nonlinear constraints imposed on loadings to reflect the 
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linear interpolation of intermediary measurement occasions between the two endpoints of 

assessment, as shown in the 15th and final row of Table 1. The Linear SI model is nested 

within the FCSI (with k-2 df) and, in turn, the FMShiftLinear model is nested within the 

Linear SI model (with 1 df) as shown in Figure 2.

Two Factor Growth Models—The Two Factor Mean with Shift (Two FMShift) model 

can be estimated by patterning the Λ and Φ as for the two factor confirmatory model, 

constraining the μ to equality across all measurement occasions, and freely estimating the 

vector θ. As with the FMShift model, the Two FMShift model assumes variables are measured 

in a common interval scale. To our knowledge, this model has not been used in any 

prospective study, but its use would seem warranted, given the dependence of the FM and 

Two FM models on the assumption of ratio level measurement. This model can be seen as 

nested within the two factor confirmatory model if the mean effects of the original two 

factor model are specified as composed of a μ set to equality across measurement occasions, 

θ freely estimated, and a phantom variable composed of a fixed zero variance and freely 

estimated loadings to k-3 of the manifest variables.

The Two FM model can be estimated by patterning the Λ and Φ as for the two factor 

confirmatory model, specifying the μ as zero, and freely estimating θ. This model is the two 

factor exploratory growth model considered by Grimm et al. (2013). Although confirmatory 

models are often specified parsimoniously in a simple structure, in which the manifest 

variables have loadings on only one factor, some (e.g., Tucker, 1958) have argued against 

simple structure as a criterion for factor loadings in prospective data. Wood (1992) has 

written a suite of SAS macros that can be used to rotate such solutions and Grimm et al. 

(2013) have illustrated use of these macros in two example data sets. As with the factor 

mean model with a single factor, however, this model cannot be used to document 

differential decline unless appropriately scaled to negative numbers (by estimating it as an 

FMShift or FCSI model with two rather than one slope factors).

Three Factor Models—The Three Factor Model is specified by freely estimating μ, λ's 

associated with the first factor freely estimated, λ's associated with the second factor having 

one zero loading and λ's for the third having two zero loadings, Ψ diagonal and freely 

estimated, Φ a three by three identity matrix and θ set to zero. The Three FMShift model is 

specified in identical fashion except that μ is constrained to equality, and θ is freely 

estimated. The Two Factor Random Intercept model has the same form of specification in Λ, 

Φ and Ψ as the Random Intercept Model, except that Λ contains a third column which is 

freely estimated except for one entry that is fixed to zero. The corresponding Two Curve 

FCSI is estimated the same way as the Two Factor Random Intercept model, except that μ is 

constrained to zero, with θ freely estimated. Degree of freedom differences between these 

models are shown in Figure 2.

The quadratic growth curve model has often been used as a (three factor) more complex 

alternative to the (two factor) linear growth slope intercept model. Although this is usually 

estimated by specifying fixed numeric values for the intercept, linear and quadratic loadings, 

it is possible to specify it using the nonlinear constraint strategy for linear forms outlined 

above, preserving a zero covariance between the intercept and slope factors, and specifying 

Wood et al. Page 11

Psychol Methods. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a third factor with free variance in which free covariances are estimated between it and the 

intercept and linear slope factors. This model fits the data as well as the traditional method, 

but makes it clearer that it is an elaboration of the Linear SI model with nonlinear 

constraints specified earlier. It is not, however, covariance nested within the orthogonal 

three factor model, due to the specification of freely estimated covariances of the quadratic 

factor with the intercept and slope factors and the constrained pattern of loadings in Λ. 

Analogous cubic polynomial models can also be specified as discussed in the Monte Carlo 

simulation below.

Other Variations—Although several models have been described above, they are only 

heuristic of a larger variety of similar models. One could, for example, explore whether the 

assumption of equality of measurement errors over time is warranted by the data or, as 

already noted, whether other error structures such as an autoregressive error structure, 

provide plausible alternatives (Braun, Kuljanin, and DeShon, 2013). Other parametric forms 

for growth may suggest themselves once the factor loadings are estimated as noted in Figure 

2. We now turn to a brief examination of how this approach can be used to compare models 

in a real-world example.

Example: Longitudinal Change in Children's Vocabulary

Osborne and Suddick's (1967, 1972) longitudinal study of intellectual ability in 204 children 

is an apt exemplar for the model approach described here given its use in earlier analyses for 

the FM (McArdle & Epstein, 1987), SI growth, and more elaborate non-linear mixed models 

such as latent change models (Ferrer, Hamagami & McArdle, 2004; Ghisletta & McArdle, 

2012). Briefly, data are selected from an original base of 110 African-American and 163 

Caucasian children assessed on the Wechsler Intelligence Scale for Children ([WISC], 

Wechsler, 1949) during their first, second, fourth, and sixth grade years with the focal 

variable being the total WISC–R score at each of the four occasions. Average chronological 

ages of the children at each wave are shown below in the first column of Table 2. More 

information on these data is available from the original source and from McArdle and 

Epstein (1987).

Proposed Three-Step Approach

Given that only four measurement occasions were assessed, it is not possible to explore 

many confirmatory factor models for these data. The fit, though, of confirmatory one and 

two factor models to these data seem acceptable (CFI's and TLI's for both models >.99). 

Given the relatively small number of measurement occasions, in this context one of the 

analytic goals of model comparison is to assess whether psychometrically more complex or 

simpler models fit the data as well as the growth models traditionally proposed for the data. 

The random intercept factor model represents a statistically significant improvement over 

the single factor confirmatory model (χ2
diff(1)=8.29, p=.004) and its associated BIC 

(4900.74) is lower than that found for the single or two factor models (4903.71 and 4911.21, 

respectively), suggesting that a growth curve model which includes a random intercept 

component may be appropriate. If a parsimonious patterning of the random intercept factor 

model is further explored by constraining its factor loadings to follow a linear form, fit of 
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the resulting linear random intercept factor model is worse (χ2
diff(2)=10.03, p=.007), 

however the BIC for the model is slightly better than the unconstrained random intercept 

model (4900.13), suggesting that the researcher may wish to entertain both the linear and 

unconstrained loading patterns as structures for explaining mean levels. Estimated 

parameters and other fit statistics for the Random Intercept and Linear Random Intercept 

models are shown in the right-most columns of Table 2. Under the general three step process 

outlined above the researcher would therefore next consider the Linear SI and FCSI models 

as candidate growth models. However, in order to the fit of “nearest neighbors” to the 

models originally proposed for the data we turn now to the FM and FMShift models.

Factor Mean (FM) Growth Model

The FM model was originally proposed for these data by McArdle and Epstein (1987) with 

parameter specification shown in the eighth row of Table 1 with resulting estimates and 

associated fit statistics shown in the column of Table 2 labeled “FM.” These values are 

similar to those reported by McArdle and Epstein; however, the model fits slightly better 

than reported there as it was decided here to free the error variances associated with times 3 

and 4. As can be seen, the χ2 statistic (χ2(6)=64.50, p<.0001) and other fit statistics indicate 

that the FM model fits poorly.

FMShift Model

As noted earlier, the FMShift model investigates whether adjusting the scores by an 

estimated additive constant would significantly improve fit. The matrix model for fitting the 

FMShift model to these data is shown in the tenth row of Table 1 with estimated parameters 

in the corresponding column of Table 2. This model represents a substantial improvement in 

fit over the FM model (χdiff
2(1)=51.08; p<.00001), although the χ2 associated with the 

model is still statistically significant (χ2(5)=13.74; p<.02, as shown in Table 2). Given the 

sensitivity of the χ2 test to non-normality, some might argue that values obtained for the 

CFI, TLI (both 0.99) indicate acceptable fit, however. Inspection of the parameter estimates 

associated with the FMShift model in Table 2 indicates that the value of the shift parameter 

needed to bring the scale into a ratio level scale is equal to −24.69 which suggests a score of 

24.69 as a psychometric zero point of verbal ability for the scale. Factor loadings from the 

two models seem largely similar, although slightly larger in the FMShift model at the two 

earlier measurement occasions and slightly smaller at the last two times of measurement.

Free Curve Slope Intercept Model

Can it be thought that shifts in measurements at the individual level are a source of inter-

individual differences, i.e., does the shift parameter itself vary from individual to individual? 

If, for example, some vocabulary items are more familiar to children from some ethnic or 

economic backgrounds than others, children may be likely to correctly answer such 

questions based on their background and not because of their verbal ability per se. 

Alternatively, some children may be uniformly more disposed to guess at answers across all 

measurement occasions than others or may score systematically higher across all occasions 

because of the fixed effect of level of some other variable such as maternal education. These 

possibilities correspond to Maydeu-Olivares and Coffman's (2006) interpretation of the 

intercept factor as a “method factor” in random intercept factor models which, in this case, 
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appears responsible for differences in overall level across all measurement occasions. To 

some extent, the researcher may be able to further investigate the covariates responsible for 

these components or the identification of method effects provided suitable additional 

variables are available.

Recall that the FCSI model (row 13 of Table 1) is identical to the random intercept factor 

model (row 2 of Table 1) except that μ are constrained to zero and θ are freely estimated. 

For these data, the FCSI model appears to fit well, with a non-significant χ2 statistic and the 

other fit statistics shown in the bottom half of the table. A χ2 difference test comparing the 

FCSI with the FMShift model supports this conclusion as well (χ1
2=6.01; p=0.01). The AIC 

and BIC values are very similar to those obtained for the FMShift model, but slightly lower, 

indicating a marginally better fit. The p-value associated with the RMSEA was, as with the 

FMShift model not statistically significant (p=0.28) and the 90% confidence interval brackets 

0. Taken together, although the fit indices of the FMShift and FCSI models are very similar, a 

reasonable skeptic may hold that variability exists in the intercept factor, indicating a 

preference for the FCSI model over the FMShift. As with the FM and FMShift models, 

recovered factor loadings (λi) in the FCSI model increase as a function of measurement 

occasion.

When the slope loadings from the FCSI are squared and added to the intercept variance, it is 

possible to calculate the proportion of variability in the manifest variable at each 

measurement occasion explained by the latent variables in the model. For these data, it 

appears that the proportion of variability due to the intercept and slope factors increases over 

the waves of the study (79.18%, 83.49%, 89.43%, and 84.17% for Waves 1 through 4 

respectively). Similarly, the proportion of variability in the model which appears due to the 

slope relative to that explained by the intercept and slope factors also increases across 

measurement occasions (41.28%, 55.82%, 68.23%, and 78.05% across Waves 1 through 4, 

respectively).

Oblique FCSI Models

Researchers may wish, for conceptual reasons, to designate a specific measurement occasion 

as a reference point to mark a particular point of the developmental process under 

investigation. Under such models, it is assumed that all systematic variability between 

individuals at the referent measurement occasion represents differences conceptually distinct 

from the change processes represented by the growth trajectory. In this case, Φ11, the 

variance of the intercept factor, is an estimate of the variation between scores at the 

measurement occasion associated with the zero slope loading in Λ.

The fit of the oblique FCSI in Table 2 is identical to that of the original FCSI model, which 

is unsurprising, given that it represents an oblique rotation of the orthogonal FCSI model. 

Obtained values for the slope variable are now different than the orthogonal FCSI model, 

however, due to the assumption that this slope represents change subsequent to the first 

measurement occasion. When the total predicted amount of variability due to the latent 

variables at each measurement occasion is calculated, the resulting proportions are identical 

to those of the orthogonal FCSI. Proportions of variability accounted for by the Slope factor 

are, however, much smaller, given that change is now defined as change relative to the 
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observed variability between individuals at the first measurement occasion instead of the 

point of minimum intercept variability as in the FCSI (3.65%, 8.91%, and 18.01% for 

Waves 2 through 4, respectively).

Functional Form

More parsimonious models can be constructed from either the FMShift or FCSI models by 

assuming a parametric form for the loadings. Although the pattern of means does not 

suggest a pattern of growth similar to linear, quadratic or negative exponential curves, the 

small sample and small number of measurement occasions suggest that it may be profitable 

to consider whether it is reasonable to consider a model in which individuals’ growth 

follows a linear form. When the Linear Slope Intercept model is fit to these data (as shown 

in the column labeled “Orthogonal Linear” in Table 2), the fit of the model is poor, however. 

As pointed out in several of the articles mentioned above, this model is mathematically 

equivalent to the traditional Linear SI, and HLM, which are reported in their respective 

columns in Table 2. The RMAlt Model, shown in column so labeled in Table 2 appears to 

represent the poorest fitting candidate model. As such, it seems that the FCSI or FMShift 

models appear most appropriate for these data based on examination of fit.

Monte Carlo Examination of Model Comparison

Although many models can be compared in terms of their parsimony and structure, this is no 

guarantee that such comparisons will necessarily succeed given differences in statistical 

power due to number of measurement occasions and sample size. Additionally, as noted 

earlier, the pattern of estimated factor loadings may be suggestive of one (or more) 

parametric forms, corresponding to a conjecture regarding the functional form of growth 

over time. To this end, we present results from a brief Monte Carlo study to illustrate how 

the proposed approach can be used to identify the correct dimensionality and form of change 

over time. Although the suite of Monte Carlo simulations presented here is of limited 

generalizability, the psychometric properties and effect sizes are chosen to be roughly 

illustrative of that found in studies of growth in order to make the following points: a.) The 

search procedure advocated here can be used to identify the psychometric form and 

dimensionality in the data; b.) Once the dimensionality is identified, a variety of more 

parsimonious parametric models can be compared; c.) as with structural modeling in 

general, use of larger samples and greater measurement precision enables better 

discrimination between candidate models and fewer estimation problems such as non-

convergence.

The top half of Figure 3 shows the random intercept Gompertz reference curve (Grimm and 

Ram, 2009) used to generate the data for our simulation as well as several other curves fit to 

the generated data. The Gompertz curve as the following form as a function of time t:

(5)

with λ indicating the time at which maximum growth occurs, and α indicating a rate of 

change. We refer the reader to Grimm and Ram for a comparison of substantive merits of 

the Gompertz relative to other parametric curves other than to note that it contains an 
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inflection point, indicating the maximum rate of growth over time and that the curve is 

asymmetric about this inflection point with 1/e of the total growth (about 37%) occurring 

before the inflection point with the remainder occurring afterward. The curve has found 

application, for example, in growth populations with confined space or limited nutrients. 

Masuyama, for example, (1979; 1985; 1988; 1991; 1992) notes that several growth 

processes including human stature appear to be “biphasic” with some individuals 

demonstrating an initially slower rate of growth accompanied by more rapid growth at later 

ages and vice versa. As such, the pattern of growth is different than for the more widely used 

logistic curve, which has a symmetric inflection point.

The several curves shown in top half of Figure 3 are fit to a single data set of 700 

observations. Clearly, some of the curves do not show correspondence with the underlying 

curve, such as the SILinear, quadratic, and Bertalanffy growth curves, an observation 

supported by the fact that RMSEA fit for the models is greater than 0.10. Additionally, the 

cubic polynomial model also has an RMSEA greater than .05.

Such a visual examination, though, is insufficient to judge model fit, as it fails to consider 

patterns of predicted covariation over time. For example, despite the close pattern of 

predicted means, the FMShift, RMAlt, and FM models all have RMSEA values in excess of 

0.10, possibly because the assumptions regarding the structure of covariation are not met. 

Differences between the predicted growth rates of the various models are more evident when 

model predicted growth rates are considered (i.e., the derivative of each growth model with 

respect to a given time). These are shown in the bottom half of Figure 3 and show, for this 

single data set, that growth rates for the (true) Gompertz curve seem quite similar to that of 

the MMF, Schnute and FCSI, with the Janoschek, logistic and Richards curves being 

somewhat similar in form, and the von Bertalanffy, cubic, quadratic, and Weibull growth 

rates appearing quite different, visually. The remaining (linear) growth curves also appear 

dramatically different in form. This example suggests comparison of growth curves as SEMs 

is preferable to examination based on patterns of mean level alone.

To show how the factors of sample size and reliability of assessment are related to estimate 

candidate models and identify the correct model, we considered a study composed of six 

measurement occasions in which the intra-class correlation (ICC) of each time of 

measurement ranged from low to high (0.30, 0.55, 0.80, and 0.95). (The 0.80 scenario is 

somewhat similar to the WISC data, where the proportion of variability explained by the 

latent variables in the estimated FCSI model ranged from 0.80 to 0.89 across measurement 

occasions). The ICC = .95 scenario is similar to the reliability of the measurement of stature. 

The amount of change over time was chosen to reflect a one standard deviation change over 

the course of the study, an effect somewhat similar in magnitude to the amount of cognitive 

change over the undergraduate years (Pascarella & Terenzini, 2005) and indicative of what 

many would call a “large” effect size. Note that this is only approximately one quarter of 

that observed for the vocabulary data considered above, if the standard deviation of the 

initial measurement is used as a reference.

Individual random intercept Gompertz curves were generated in which the asymptote slope 

(a) was 1, the horizontal displacement (b) was −60, and the growth rate (c) set to −.6. θI was 
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set to 10, θS to 1, and ϕI and ϕS were set to 1, and ϕIS to zero, resulting in manifest variables 

that demonstrated an average mean of 10 at the first time of measurement and average mean 

of 11 at the last time of measurement. Sample sizes were generated, some of which were 

small (N=25; 50) and others more moderate (from 100 to 700 in increments of 50.) To 

assure an adequate number of replications, 1000 data sets were generated in each condition. 

A variety of psychometric models were considered including traditionally used models (e.g., 

the SI Linear and Quadratic models), the psychometric and chronometric models proposed 

above (the FCSI, FM, FMShift, FMShiftLinear, FMLinear, and Repeated Measures Null and 

Alternate models), and various nonlinear parametric models (described below). The 

parametric models were chosen from among several described by Panik (2014) commonly 

used in biology, demography, and ecology.

Rates of Non-Convergence

For ICC values of .5 or higher, convergence rates for these models across sample size and 

internal consistency were generally high, with solutions converging more than 80% of the 

time. For the lowest internal consistency condition (ICC=.3), the Richards curve converged 

only about 60% of the time, and, although the cubic curve specified with fixed loadings 

converged across all conditions, the orthogonal specification of the model converged only 

slightly over 80% of the time across conditions, suggesting the approach may be prone to 

local minima if internal consistency is low. For sample sizes of 25 and 50, convergence rates 

were slightly higher than 70% for the Linear SI, FMShift, FMShiftLinear, and Bertalanffy 

models. In terms of estimation, there is some reason for optimism that the FCSI model and 

associated nested models can be fit to longitudinal data using sample sizes typically 

employed in longitudinal research at least for large effect sizes. If extremely internally 

consistent constructs are assessed (e.g., ICC = 0.95), even very small sample sizes may be 

considered.

Model Comparison via BIC

Although comparisons of the FCSI model with other traditionally used longitudinal models 

appeared adequate for this scenario, the FCSI model may be criticized as being 

unparsimonious. The data were, after all, generated from a nonlinear parametric model (the 

Gompertz curve) with a random intercept component and, as such, were generated from a 

function with fewer parameters than the freely estimated loadings and associated parameters 

of the FCSI. This brings up the question of whether comparison of the FCSI model would be 

correctly rejected as unparsimonious relative to a more parsimonious parametric curve and 

whether the correct parametric form could be correctly identified from a plausible candidate 

field. Use of FCSI loadings to suggest a parametric form of growth was proposed in an 

example analysis by Meredith and Tisak (1990) in which loadings from a simulated 

unknown process were inspected to (correctly) conjecture the functional form (specifically a 

negative exponential curve, a form of the von Bertalanffy curve to be introduced shortly). In 

Table 3, we present a variety of such parametric growth models used in biology, ecology, 

agriculture, and medicine. In addition to the Gompertz curve, these include the Janoschek, 

Logistic, Morgan-Mercer-Flodin, Richards, Schnute, von Bertalanffy, and Weibull curves. 

In the interests of brevity, we will not discuss their merits and uses except to note that one 

important difference between models concerns whether they characterize growth as having 
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an inflection point (a measurement occasion associated with change in the direction of 

curvature) and whether the rate of growth before and after the inflection point is symmetric. 

Some of these models are general cases of other models; For example, the Richards curve 

has, as special cases, the logistic and Gompertz curves; the Schnute model contains the von 

Bertalanffy, Richards, Logistic, Gompertz, and exponential growth curves as special cases. 

Other models have been advanced as particularly appropriate to growth when nutritional 

resources are in short supply (e.g., Morgan-Mercer-Flodin and Gompertz). Still other 

models, such as the Janoschek, are simply mathematically tractable ways of expressing a 

sigmoid shape. Note also in Figure 3 that the polynomial growth curves (SILinear, quadratic, 

and cubic) represent successively increasing approximations of the sigmoid form.

Comparison with Linear SI, quadratic and cubic growth—Figure 4 shows that 

comparison of BIC values also identifies the FCSI curve as a better fitting alternative to 

several of the models presented in Figure 2 but that the ability to discriminate between 

models depends on how reliably growth is measured. For the ICC = 0.8 and ICC = 0.95 

conditions, sample sizes of 50 are sufficient to (correctly) favor the functional form 

suggested by the FCSI more than 80% of the time. For the ICC = 0.5 condition, 

approximately 250 observations are required to reject the SILinear model, with only 100 

required for the remainder. For the low reliability condition (ICC = 0.3), 700 observations 

are required and, even then, the SILinear model is rejected only 73% of the time. Relative to 

the parametric curves, the FCSI is identified as a superior alternative to the Bertalanffy 

curve (which has no inflection point), although requiring a sample size of at least 300 in the 

ICC = 0.3 condition. It should be noted that if χ2 difference tests are used instead of the BIC 

to compare the subset of models nested with the FCSI (specifically the FM, FMShift, 

FMLinear, FMShiftLinear, and SILinear models), the ability to correctly reject these models is 

slightly better than the BIC for the smaller sample conditions (between 100 and 200) for the 

lower reliability conditions (ICC=0.5 and 0.3). The FCSI is not identified as a superior 

alternative to the remaining curves (Gompertz, Janoschek, logistic, MMF, Richards, 

Schnute, or Weibull), however.

Comparison of Gompertz with Other Parametric Sigmoid Curves—If the 

researcher had originally (correctly) conjectured that growth followed a Gompertz curve, 

would a comparison of parametric growth curves reveal this? To examine this, we then 

compared the BIC difference scores of the remaining parametric models relative to the 

Gompertz curve. These are shown in Supplemental Figure 1 for the four internal consistency 

conditions. As shown in the figure, the Richards and cubic curves appear appreciably worse 

than the Gompertz curve. Across all conditions, the Schnute model fits the data as well as 

the Gompertz model. This is unsurprising, given that, as noted above and in the footnote for 

the model in Table 3, the Schnute model is a Gompertz curve if a>0 and b=0. For example, 

for the sample size 700 condition with an ICC of .95, the average a value across replications 

was 1.79 and the average b value was 0.0028. That the MMF model fits about as well as the 

FCSI model, though, is somewhat surprising and suggests that it might have some use as a 

less-elaborate alternative for modeling growth or, alternatively, that it may overfit data to 

any given functional form. For the high internal consistency condition (ICC = 0.9), the 

Gompertz curve is identified as superior more than 80% of the time for samples greater than 
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200 (Janoschek and Weibull) or 350 (logistic). For ICC = 0.8 the pattern appears to vary 

more directly with sample size, with even a sample size of 700 resulting in rejection of the 

Janoschek, logistic and Weibull curves occurring between only 69% to 77% of the 

replications. For the ICC = 0.3 condition, only the Richards and cubic models are rejected 

consistently.

Taken together, the results of this simulation study, though limited in its generalizability 

illustrate that it is feasible in practice to right-size a longitudinal model relative to many 

alternative statistical models. Designs with more or fewer occasions, differently spaced 

assessments, with different or varying internal consistency over time and/or different 

magnitudes of change over time will of course are differently powered for model estimation 

and comparison and are the object of further needed research.

Discussion

This paper argues for more general comparison of classes of statistical models for 

longitudinal data in addition to models originally considered. Consideration of such 

alternatives informs both the research area and reasonable skeptics of the plausibility of 

alternative explanations for the data and may result in identification of better fitting models 

for use in future research. Model comparison of structural models involving only general 

trait factors nicely complements other work by Molenaar (2003) which shows that such 

models can also be equivalently modeled as time-bound autoregressive processes absent any 

latent variables at all.

The three step approach for model exploration proposed here is not prescriptive, however; 

We acknowledge that a researcher who has selected a particular model may choose to 

consider models which are minor but systematic modifications of the original. Such a 

decision may be based on the “collective research expertise” regarding the appropriateness 

of the technique for an area of inquiry or the increased ease with which a slightly modified 

model can be communicated to the research community. Conversely, researchers may also 

elect to retain and report a more complex model for theoretical reasons or comparability 

with other studies. Regardless of the outcome of the model comparisons, we believe that 

researchers should report the alternative models entertained both as a way of investigating 

whether alternatives make more reasonable assumptions of the data, to inform the area as to 

whether particular effects continue to be found and to alert the research community of the 

possible ad hoc nature of a newly discovered well-fitting model.

Although several models are considered here, these are only heuristic of several which could 

be specified. For example, parametric growth curves presented here contained a random 

intercept factor but it is also be possible to consider shifted parametric models as well. Such 

a shifted Gompertz model, for example, was proposed by Winsor (1932). Growth models 

considered can be employed as the basis of mixture models either by specifying free curve 

loadings across the latent groups, as described by Wood (2011), for example. Alessandri et 

al. (2012) and Tisak and Tisak (2000), by contrast, integrate growth models with notions of 

trait stability over time.
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FCSI as a Starting Point

Because many psychological processes appear to contain a random intercept component, the 

FCSI model may well be an initial model which is preferable to the models of linear or 

quadratic growth frequently used. As noted, several of the psychometric and factor models 

presented here are special cases of the model, and extension of the model to more complex 

parametric forms is straight-forward. This observation for growth data is consonant with the 

approach of Ram and Grimm's (2009) approach to mixture modeling in which the FCSI 

model was first fit to the data to determine the common functional form underlying the finite 

mixtures.

Have HLM, Repeated Measures Anova and Linear SI Models Been Poor Factor Models All 
Along?

While the renewed emphasis on model comparison may result in more use of the FCSI 

model, it may also stimulate researchers to explore other parameterizations for the data such 

as the alternative factor models or parametric growth curves presented in the Monte Carlo 

study. As a result, this may lead over time to decreased use of some models such as HLM, 

Repeated Measures, and Linear SI models as researchers conclude that such models make 

overly restrictive assumptions regarding the functional form of growth. It is not necessarily 

the case, though, that researchers are obligated to blindly accept a model with superior fit.

Specifically, any new model must itself undergo skeptical evaluation. Skeptical 

counterarguments could be based on the presence of influential or outlying observations, for 

example. Alternatively, the researcher may choose to operationalize measurement 

differently in order to improve fit of the initial model. This may be done by scoring the 

manifest variables differently, or by appeal to a different psychometric model (such as using 

a latent response variable model for ordered categorical variables; e.g., Cho, Wood, & 

Heath, 2009; Millsap & Yun Tein, 2004).

Alternatively, better fitting models may be indicative of phenomena initially unanticipated 

by the researcher. Under this possibility, the researcher may adopt the new model, but, in 

describing it, interpret these loadings as representing an admixture of more than one 

longitudinal process. (See Alessandri et al.'s [2012] point that free curve loadings may also 

be indicative of several, rather than one source of stability and change over time which may 

also include environmental effects, age-related effects, or turning points.) Growth curve 

models, like factor models, may thus be subject to the same “naming problem” found in 

latent variables in general in that they do not represent the constructs initially intended. 

Remedies for such possibilities may include collection of additional variables or other types 

of data.

Some may believe that the model comparison approach advocated here risks over-

capitalization on chance and that, by not building a firm connection between a priori theory 

and the data, the researcher risks not using the “true” correct model. Such a perspective 

seems curious, given that it is exactly the observation of unexpected systematic regularities 

that spurs proposal of a new model or theory and the fact that the alternatives identified may 

be skeptical counterarguments to the initial model. Although a general model comparison 
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approach is described here, researchers are free to consider and justify more limited subsets, 

as was done for the real-world example presented here. In other situations, changing to a 

better fitting class of models given obvious shortcomings in the initial model (such as poor 

fit, improper, or unidentified solutions) seems preferable to incremental modification of 

individual parameters of the initial model. Our models (initial or otherwise) need not be true, 

only (as yet) unrefuted. As Popper (1959; 1963) noted even if a “single correct” theory was 

proposed, we have no way to identify it as such and scientists often use models they know to 

be wrong. Technically speaking, any model is a false picture of the facts because our models 

are oversimplifications of the facts. The failure to find the “true model” is not a fatal flaw. It 

is the cost of doing business in science.

MANOVA as Unrestrictive Structural Equation Model—Given the possible model 

comparisons and their controversial nature, a researcher may wonder whether it is best to 

simply not assume structured variance components. If the sole question of interest is 

whether mean level changes over time, the MANOVA model may be preferable to any 

structural equation model, as it only tests a null model of equal means over time against a 

model in which means are free to vary and assumes no structured variance components. If 

statistical power is adequate, this may be the least controversial statistical model even 

though the Halt MANOVA model, expressed as an SEM, is a just identified model with 0 

degrees of freedom. If, however, MANOVA is not well-powered or if researchers in the area 

agree as to the existence of specific variance components, the models described here may be 

thought of as intermediately parsimonious alternatives between the (perhaps overly) 

restrictive repeated measures analysis of variance model and the MANOVA model.

Limitations

Research Design—Model comparisons are limited by study design. For example, a FCSI 

model with unequal error variances cannot be estimated from data consisting of three times 

of measurement and the Two Factor Mean model cannot be estimated from four 

measurement occasions. The problem of “too much” unanticipated model complexity is not 

“solved,” though, by entertaining only data which do not allow for the testing of more 

complicated models, however. Researchers must simply admit that a given data set is 

agnostic as to whether a particular more complex model actually underlies the data. This 

problem, though, is a general one affecting the estimation of all structural models. The 

random intercept model cannot be estimated from three items per construct, for example.

Even when the number of measurement occasions proves deficient or ill-timed, well-fitting 

growth models may be useful, provided the researcher is cognizant of the limitations of the 

data. This situation is somewhat analogous to the low reliability condition of the Monte 

Carlo simulation: If measurement error is substantial, the “straight line” of the SILinear 

model may be all we can “say” about growth with the six measurement occasions at hand. 

However, just as the “dots” used in photographs within newspapers are useful 

representations when looked at superficially but cannot stand closer inspection with a 

magnifying glass, the somewhat coarser assessments of growth studies may provide a 

general patterning suggestive of design of a future more refined assessment.

Wood et al. Page 21

Psychol Methods. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The timing and frequency of assessments also affects the informativeness of model 

comparisons. For example, assessments designed to assess behavior close to a possible 

inflection point in growth should provide more ability to adjudicate between the types of 

candidate parametric growth models considered in the Monte Carlo study. Although the 

importance of appropriately timed assessments is well-understood by developmental 

researchers (e.g., Boker & Nesselroade, 2002) longitudinal research which includes 

intensive “measurement bursts” may be especially informative of the nature of change over 

time during critical developmental periods (Ram & Gerstorf, 2009).

None of the Above: Criticisms Based on Ergodic Theory—All models considered 

here may be inappropriate because individuals may possess unique, qualitatively different 

trajectories over time. Although the question of whether growth curves can be aggregated 

across individuals is an old one (Estes, 1956; Merrill, 1931; Tucker, 1966), more recently 

Molenaar and colleagues have formally summarized the conditions under which aggregate 

or even cross-sectional data is generalizable to individual change patterns using the language 

of ergodic theory (Molenaar & Campbell, 2009; Molenaar, 2003, 2004; Molenaar, Huizenga 

& Nesselroade, 2003). Ergodic theory criticisms are a critical imitation of all of the models 

presented here, although it may be noted that the individual level state space models 

proposed by Molenaar and colleagues may require their own “right-sizing” as well.

Conclusion

The approach described here may be seen as part of a larger evolution of the identification, 

discovery, and proposal of statistical models that can withstand challenges of reasonable 

skeptics. If patterned inter-individual variability exists, this implies that corresponding 

constructs also “exist” in some real fashion and are not arbitrary mathematical conveniences, 

a position is grounded in philosophical realism as summarized by Borsboom, Mellenbergh 

and van Heerden (2004) who note “...a test is valid for measuring an attribute if and only if 

(a) the attribute exists and (b) variations in the attribute causally produce variations in the 

outcomes of the measurement procedure” (p. 1061).

The model exploration and comparisons described here do not guarantee success, and there 

may indeed be no “Goldilocks” model which is neither oversimple nor overly complex for a 

given data set. The model comparisons described here are, however, a useful exercise in 

examining how model assumptions affect research conclusions. The current strategy of 

reporting only initially chosen statistical models do not appear to “survive” very well either, 

given the larger concerns that the “statistical truth” of research effects which appear to 

“wear off” upon replication (Ioannidis, 2005; Lehrer, 2010). Neither need we forego 

statistical inference because the “state of the art is uncertain” as some have suggested 

(Trafimow and Marks, 2015). It is hoped that by evaluating and reporting plausible models 

that a more optimistic picture of research replication can emerge, resulting in a systematic 

critical evaluation consonant with Popperian notions of adversarial science.
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Refer to Web version on PubMed Central for supplementary material.

Wood et al. Page 22

Psychol Methods. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

This research was supported by grants to Kristina Jackson (K02 AA13938) and Douglas Steinley (R01AA023248) 
from the National Institute on Alcohol Abuse and Alcoholism. The authors wish to thank Andrew Littlefield, 
Michael Rovine, Peter Molenaar, Stas Kolenikov, and three anonymous reviewers for their helpful comments and 
suggestions on an earlier version of the manuscript.

References

Alessandri G, Caprara GV, Tisak J. A unified latent curve, latent state-trait analysis of the 
developmental trajectories and correlates of positive orientation. Multivariate Behavioral Research. 
2012; 47:341–368. http://dx.doi.org/doi:10.1080/00273171.2012.673954. 

Biesanz JC, Deeb-Sossa N, Aubrecht AM, Bollen KA, Curran PJ. The role of coding time in 
estimating and interpreting growth curve models. Psychological Methods. 2004; 9:30–52. http://
dx.doi.org/doi:10.1037/1082-989X.9.1.30. [PubMed: 15053718] 

Boker SM, Nesselroade JR. A method for modeling the intrinsic dynamics of intraindividual 
variability: Recovering the parameters of simulated oscillators in multi-wave panel data. 
Multivariate Behavioral Research. 2002; 37:127–160. http://dx.doi.org/doi:10.1207/
S15327906MBR3701_06. 

Bollen, KA. On the origins of latent curve models.. In: Cudeck, R.; MacCallum, RC., editors. Factor 
analysis at 100: Historical developments and future directions. Erlbaum; Mahwah, NJ: 2007. p. 
79-98.

Bollen, KA.; Curran, PJ. Latent curve models: A structural equation perspective. Wiley; Hoboken, NJ: 
2006. 

Borsboom D, Mellenbergh GJ, Van Heerden. The concept of validity. Psychological Review. 2004; 
111:1061–1071. http://dx.doi.org/doi:10.1037/0033-295X.111.4.1061. [PubMed: 15482073] 

Braun MT, Kuljanin G, DeShon RP. Spurious results in the analysis of longitudinal data in 
organizational research. Organizational Research Methods. 2013; 16(2):302–330. http://dx.doi.org/
doi:10.1177/1094428112469668. 

Browne, MW. Structured latent curve analysis.. In: Cuadras, CM.; Rao, CR., editors. Multivariate 
analysis: Future directions 2. Elsevier Science; Amsterdam: 1993. p. 171-198.

Campbell, DR. Evolutionary epistemology.. In: Schilpp, PA., editor. The philosophy of Karl Popper. 
Vol. 1. Open Court; La Salle, IL: 1974. p. 413-463.

Chan D. The conceptualization and analysis of change over time: An integrative approach 
incorporating longitudinal mean and covariance structures analysis (LMACS) and multiple 
indicator latent growth modeling (MLGM). Organizational Research Methods. 1998; 1(4):421–
483. http://dx.doi.org/doi:10.1177/109442819814004. 

Cho SB, Wood PK, Heath A. Decomposing group differences of latent means of ordered categorical 
variables with the genetic factor model. Behavior Genetics. 2009; 39:101–122. http://dx.doi/org/
doi:10.1007/s10519-008-9237-9. [PubMed: 19009342] 

Curran PJ. Have multilevel models been structural equation models all along? Multivariate Behavioral 
Research. 2003; 38:529–569. http://dx.doi.org/doi:10.1207/s15327906mbr3804_5. 

Dang Q, Anderson S, Tan L, Mazumdar S. Modeling unequally spaced bivariate growth curve data 
using a Kalman filter approach. Communications in Statistics - Theory and Methods. 2005; 34(8):
1821–1831. http://dx.doi.org/doi:10.1081/STA-200066298. 

Estes WK. The problem of inference from curves based on group data. Psychological Bulletin. 1956; 
53(2):134–140. http://dx.doi.org/10.1037/h0045156. [PubMed: 13297917] 

Ferrer E, Hamagami F, McArdle JJ. Modeling latent growth curves with incomplete data using 
different types of structural equation modeling and multilevel software. Structural Equation 
Modeling. 2004; 11:452–483. http://dx.doi.org/doi:10.1207/s15328007sem1103_8. 

Ghisletta P, McArdle JJ. Latent curve models and latent change score models estimated in R. 
Structural Equation Modeling. 2012; 19:651–682. http://dx.doi.org/doi:
10.1080/10705511.2012.713275. [PubMed: 25505366] 

Wood et al. Page 23

Psychol Methods. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/doi:10.1080/00273171.2012.673954
http://dx.doi.org/doi:10.1037/1082-989X.9.1.30
http://dx.doi.org/doi:10.1037/1082-989X.9.1.30
http://dx.doi.org/doi:10.1207/S15327906MBR3701_06
http://dx.doi.org/doi:10.1207/S15327906MBR3701_06
http://dx.doi.org/doi:10.1037/0033-295X.111.4.1061
http://dx.doi.org/doi:10.1177/1094428112469668
http://dx.doi.org/doi:10.1177/1094428112469668
http://dx.doi.org/doi:10.1177/109442819814004
http://dx.doi/org/doi:10.1007/s10519-008-9237-9
http://dx.doi/org/doi:10.1007/s10519-008-9237-9
http://dx.doi.org/doi:10.1207/s15327906mbr3804_5
http://dx.doi.org/doi:10.1081/STA-200066298
http://dx.doi.org/10.1037/h0045156
http://dx.doi.org/doi:10.1207/s15328007sem1103_8
http://dx.doi.org/doi:10.1080/10705511.2012.713275
http://dx.doi.org/doi:10.1080/10705511.2012.713275


Grimm KJ, Ram N. Nonlinear growth models in Mplus and SAS. Structural Equation Modeling. 2009; 
16(4):676–701. http://dx.doi.org/doi:10.1080/10705510903206055. [PubMed: 23882134] 

Grimm KJ, Steele JS, Ram N, Nesselroade JR. Exploratory latent growth models in the structural 
equation modeling framework. Structural Equation Modeling. 2013; 20:568–591. http://dx.doi.org/
10.1080/10705511.2013.824775. 

Hussong, AM.; Curran, PJ.; Moffitt, TE.; Caspi, A. Testing turning points using latest growth curve 
models.. In: Cohen, P., editor. Applied data analytic techniques for turning points research. Taylor 
& Francis; New York: 2008. p. 81-104.

Ioannidis JP. Why most published research findings are false. PLoS medicine. 2005; 2(8):e124. 
Retrieved from http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.
0020124. [PubMed: 16060722] 

Jöreskog KG. Simultaneous factor analysis in several populations. Psychometrika. 1971; 36:409–426. 
http://dx.doi.org/doi:10.1007/BF02291366. 

Kenny, DA.; Kashy, DA.; Bolger, N. Data analysis in social psychology.. In: Gilbert, D.; Fiske, S.; 
Lindsey, G., editors. Handbook of social psychology. 4th ed.. Vol. 1. McGraw-Hill; Boston: 1998. 
p. 233-265.

Kenny, DA.; Milan, S. Identification: A non-technical discussion of a technical issue.. In: Hoyle, R.; 
Kaplan, D.; Marcoulides, G.; West, S., editors. Handbook of Structural Equation Modeling. 
Guilford; New York: 2013. p. 145-163.

Lehrer, J. The truth wears off.. The New Yorker. 2010. Dec 13, 2010. http://www.newyorker.com/
reporting/2010/12/13/101213fa_fact_lehrer.

Liu S, Rovine MJ, Molenaar PM. Selecting a linear mixed model for longitudinal data: Repeated 
measures analysis of variance, covariance pattern model, and growth curve approaches. 
Psychological Methods. 2012; 17(1):15–30. http://dx.doi.org/doi:10.1037/a0026971. [PubMed: 
22251268] 

Longitudinal Study. [April 1, 2015] Wikipedia. 2015. from http://en.wikipedia.org/wiki/
Longitudinal_study.

Lord, FM.; Novick, MR. Statistical theories of mental test scores. Addison-Wesley Publishing 
Company; Reading MA: 1968. 

McArdle JJ, Epstein D. Latent growth curves within developmental structural equation models. 
Developmental Psychology. 1987; 58:110–133. http://dx.doi.org/doi:10.2307/1130295. 

McArdle JJ, Woodcock RW. Expanding test-retest designs to include developmental time-lag 
components. Psychological Methods. 1997; 2:403–435. http://dx.doi.org/doi:10.1037/1082-989X.
2.4.403. 

MacCallum R. Specification searches in covariance structure modeling. Psychological Bulletin. 1986; 
100:107–120. http://dx.doi.org/doi:10.1037/0033-2909.100.1.107. 

McCoach, DB.; Kaniskan, B. Using time-varying covariates in multilevel growth models.; Frontiers in 
Psychology. 2010. p. 1-17.http://dx.doi.org/doi:10.3389/fpsyg.2010.00017

McDonald, RP. Psychometric Monograph. Vol. 15. Byrd Press; Richmond, Virginia: 1967. Nonlinear 
factor analysis.. 

Masuyama, M. Human biochemical individual variabilities and their quasi-constancy. Sogo Printing 
Company; Tokyo, Japan: 1979. 

Masuyama, M. The Almost-one Parameter Hypothesis Applied to Auxology and Pharmacokinetics. 
Selected Papers of M. Masuyama. The Research Institute of Life Insurance Welfare; Tokyo: 1985. 

Masuyama M. Quasi-fixed points wrt the height growth curve. Biometrical Journal. 1988; 30(2):157–
164.

Masuyama M. Linearized growth curve, proper age and age at menarche. Biometrical Journal. 1991; 
33(6):725–733.

Masuyama M. Monoparametric fundamental biological processes. Japanese Journal of Biometrics. 
1992; 13(1):25–30.

Maydeu-Olivares A, Coffman DL. Random intercept item factor analysis. Psychological Methods. 
2006; 11:344–362. http://dx.doi.org/doi:10.1037/1082-989X.11.4.344. [PubMed: 17154751] 

Wood et al. Page 24

Psychol Methods. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/doi:10.1080/10705510903206055
http://dx.doi.org/10.1080/10705511.2013.824775
http://dx.doi.org/10.1080/10705511.2013.824775
http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.0020124
http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.0020124
http://dx.doi.org/doi:10.1007/BF02291366
http://www.newyorker.com/reporting/2010/12/13/101213fa_fact_lehrer
http://www.newyorker.com/reporting/2010/12/13/101213fa_fact_lehrer
http://dx.doi.org/doi:10.1037/a0026971
http://en.wikipedia.org/wiki/Longitudinal_study
http://en.wikipedia.org/wiki/Longitudinal_study
http://dx.doi.org/doi:10.2307/1130295
http://dx.doi.org/doi:10.1037/1082-989X.2.4.403
http://dx.doi.org/doi:10.1037/1082-989X.2.4.403
http://dx.doi.org/doi:10.1037/0033-2909.100.1.107
http://dx.doi.org/doi:10.3389/fpsyg.2010.00017
http://dx.doi.org/doi:10.1037/1082-989X.11.4.344


Mehta PD, Neale MC. People are variables too: Multilevel structural equations modeling. 
Psychological Methods. 2005; 10:259–284. http://dx.doi.org/doi:10.1037/1082-989X.10.3.259. 
[PubMed: 16221028] 

Meredith, W.; Horn, J. The role of factorial invariance in modeling growth and change.. In: Collins, 
LM.; Sayer, AG., editors. New methods for the analysis of change. American Psychological 
Association; Washington, DC: 2001. p. 203-240.

Meredith, W.; Tisak, J. On “Tuckerizing” curves.. Paper presented at the annual meeting of the 
Psychometric Society; Santa Barbara, CA.. 1984. 

Meredith W, Tisak J. Latent curve analysis. Psychometrika. 1990; 55:107–122. http://dx.doi.org/doi:
10.1007/BF02294746. 

Merrill M. The relationship of individual growth to average growth. Human Biology. 1931; 3:37–70.

Millsap RE, Yun-Tein S. Assessing factorial invariance in ordered-categorical measures. Multivariate 
Behavioral Research. 2004; 39:479–515. http://dx.doi.org/doi:10.1207/S15327906MBR3903_4. 

Molenaar, PCM. State space techniques in structural equation modeling. 2003. Retrieved from 
Pennsylvania State, Department of Human Development and Family Studies Web site: http://
www.hhdev.psu.edu/media/dsg/files/StateSpaceTechniques.pdf.

Molenaar PCM. A manifesto on psychology as idiographic science: Bringing the person back into 
scientific psychology, this time forever. Measurement. 2004; 2:201–218. http://dx.doi.org/doi:
10.1207/s15366359mea0204_1. 

Molenaar PCM, Campbell CG. The new person-specific paradigm in psychology. Current Directions 
in Psychological Science. 2009; 18(2):112–117. http://dx.doi.org/10.1111/j.
1467-8721.2009.01619.x. 

Molenaar, PCM.; Huizenga, HM.; Nesselroade, JR. The relationship between the structure of 
interindividual and intraindividual variability: A theoretical and empirical vindication of 
Developmental Systems Theory.. In: Staudinger, UM.; Lindenberger, U., editors. Understanding 
human development: Dialogues with lifespan psychology. Kluwer; Dordrecht: 2003. p. 339-360.

Muthén BO, Curran PJ. General longitudinal modeling of individual differences in experimental 
designs: A latent variable framework for analysis and power estimation. Psychological Methods. 
1997; 2:371–402. http://dx.doi.org/doi:10.1037/1082-989X.2.4.371. 

Osborne RT, Suddick DE. A longitudinal investigation of the intellectual differentiation hypothesis. 
Journal of Genetic Psychology. 1972; 121:82–89. http://dx.doi.org/
10.1080/00221325.1972.10533131. 

Osborne RT, Suddick DE. A longitudinal investigation of the intellectual differentiation hypothesis. 
Journal of Genetic Psychology. 1972; 121:82–89. http://dx.doi.org/
10.1080/00221325.1972.10533131. 

Panik, MJ. Growth curve modeling. Wiley; New York: 2014. 

Partridge T, Lerner JV. A latent growth-curve approach to difficult temperament. Infant and Child 
Development. 2007; 16:255–265. http://dx.doi.org/doi:10.1002/icd.465. 

Pascarella, ET.; Terenzini, PT. How college affects student (Vol. 2): A third decade of research. 
Jossey-Bass; San Francisco: 2005. 

Popper, KR. The logic of scientific discovery. Basic Books; New York: 1959. 

Popper, KR. Conjectures and refutations. Basic Books; New York: 1963. 

Popper, KR. The open society and its enemies. Princeton University Press; Princeton, NJ: 1994. 

Potthoff RF, Roy SN. A generalized multivariate analysis of variance model useful especially for 
growth curve problems. Biometrika. 1964; 51:313–326. http://dx.doi.org/doi:10.1093/biomet/
51.3-4.313. 

Ram N, Grimm KJ. Growth mixture modeling: A method for identifying differences in longitudinal 
change among unobserved groups. International Journal of Behavioral Development. 2009; 33(6):
565–576. http://dx.doi.org/doi:10.1177/0165025409343765. [PubMed: 23885133] 

Ram N, Gerstorf D. Time-structured and net intraindividual variability: Tools for examining the 
development of dynamic characteristics and processes. Psychology and Aging. 2009; 24(4):778–
791. http://dx.doi.org/doi:10.1037/a0017915. [PubMed: 20025395] 

Wood et al. Page 25

Psychol Methods. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/doi:10.1037/1082-989X.10.3.259
http://dx.doi.org/doi:10.1007/BF02294746
http://dx.doi.org/doi:10.1007/BF02294746
http://dx.doi.org/doi:10.1207/S15327906MBR3903_4
http://www.hhdev.psu.edu/media/dsg/files/StateSpaceTechniques.pdf
http://www.hhdev.psu.edu/media/dsg/files/StateSpaceTechniques.pdf
http://dx.doi.org/doi:10.1207/s15366359mea0204_1
http://dx.doi.org/doi:10.1207/s15366359mea0204_1
http://dx.doi.org/10.1111/j.1467-8721.2009.01619.x
http://dx.doi.org/10.1111/j.1467-8721.2009.01619.x
http://dx.doi.org/doi:10.1037/1082-989X.2.4.371
http://dx.doi.org/10.1080/00221325.1972.10533131
http://dx.doi.org/10.1080/00221325.1972.10533131
http://dx.doi.org/10.1080/00221325.1972.10533131
http://dx.doi.org/10.1080/00221325.1972.10533131
http://dx.doi.org/doi:10.1002/icd.465
http://dx.doi.org/doi:10.1093/biomet/51.3-4.313
http://dx.doi.org/doi:10.1093/biomet/51.3-4.313
http://dx.doi.org/doi:10.1177/0165025409343765
http://dx.doi.org/doi:10.1037/a0017915


Rao CR. Some statistical models for comparison of growth curves. Biometrics. 1958; 14:1–17. http://
dx.doi.org/10.2307/2527726. 

Rodgers JL. The epistemology of mathematical and statistical modeling: A quiet methodological 
revolution. American Psychologist. 2010; 65(1):1–12. http://dx.doi.org/doi:10.1037/a0018326. 
[PubMed: 20063905] 

Rovine MJ, Molenaar PCM. The covariance between level and shape in the latent growth curve model 
with estimated basis vector coefficients. Methods of Psychological Research. 1998; 3:95–107. 
online: http://www.dgps.de/fachgruppen/methoden/mpr-online/issue5/art7/article.html. 

Rovine MJ, Molenaar PCM. A structural modeling approach to a multilevel random coefficients 
model. Multivariate Behavioral Research. 2000; 35:51–88. http://dx.doi.org/doi:10.1207/
S15327906MBR3501_3. 

Scher M, Young AC, Meredith WM. Factor analysis of the electrocardiogram test of 
electrocardiographic theory: Normal hearts. Circulation Research. 1960; 8:519–526. http://
dx.doi.org/10.1161/01.res.8.3.519. [PubMed: 14442633] 

Sher KJ, Wood PK, Gotham H. The course of psychological distress in college: A prospective high-
risk study. Journal of College Student Development. 1996; 37:42–51. http://dx.doi.org/10.1111/j.
1530-0277.1996.tb01079.x. 

Sörbom D. A general method for studying differences in factor means and factor structure between 
groups. British Journal of Mathematical and Statistical Psychology. 1974; 27:229–239. http://
dx.doi.org/10.1111/j.2044-8317.1974.tb00543.x. 

Stoel RD, van den Wittenboer G. Time dependence of growth parameters in latent growth curve 
models with time invariant covariates. Methods of Psychological Research Online. 2003; 8:21–41. 
http://www.dgps.de/fachgruppen/methoden/mpr-online/issue19/art2/mpr108_09.pdf. 

Tisak J, Tisak MS. Permanency and ephemerality of psychological measures with application to 
organizational commitment. Psychological Methods. 2000; 5(2):175. http://dx.doi.org/doi:
10.1037/1082-989X.5.2.175. [PubMed: 10937328] 

Trafimow D, Marks M. Editorial. Basic and Applied Social Psychology. 2015; 37:1–2. http://
dx.doi.org/doi:10.1080/01973533.2015.1012991. 

Tucker LR. Determination of parameters of a functional relation by factor analysis. Psychometrika. 
1958; 23:19–23. http://dx.doi.org/doi:10.1007/BF02288975. 

Tucker, LR. Learning theory and multivariate experiment: Illustration of determination of generalized 
learning curves.. In: Cattell, RB., editor. Handbook of multivariate experimental psychology. Rand 
McNally; New York: 1966. p. 476-501.

Voelkle MC. Latent growth curve modeling as an integrative approach to the analysis of change. 
Psychology Science. 2007; 49:375–414. online: http://www.psychologie-aktuell.com/fileadmin/
download/PschologyScience/4-2007/06_Voelkle.pdf. 

Wechsler, D. Manual of the Wechsler Intelligence scale for children. The Psychological Corporation; 
New York: 1949. 

Winsor CP. The Gompertz curve as a growth model. Proceedings of the National Academy of 
Sciences. 1932; 18(1):1–8. http://dx.doi.org/10.1073/pnas.18.1.1 PMCID: PMC1076153. 

Wood PK. Generation and objective rotation of generalized learning curves using matrix language 
products. Multivariate Behavioral Research. 1992; 27:21–29. http://dx.doi.org/doi:10.1207/
s15327906mbr2701_2. 

Wood PK. Developmental models for children's temperament: Alternatives to chronometric 
polynomial curves. Infant and Child Development. 2011; 20:194–212. http://dx.doi.org/doi:
10.1002/icd.692. 

Wood, PK. The landscape of inductive developmental systems.. In: Molenaar, PCM.; Lerner, RM.; 
Newell, KM., editors. Handbook of Developmental Systems Theory and Methodology. Guilford; 
New York: 2014. p. 465-484.

Wood PK, Jackson KM. Escaping the snare of chronological growth and launching a free curve 
alternative: General deviance as latent growth model. Development and Psychopathology. 2013; 
25:739–754. http://dx.doi.org/10.1017/s095457941300014x PMID: 23880389. [PubMed: 
23880389] 

Wood et al. Page 26

Psychol Methods. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.2307/2527726
http://dx.doi.org/10.2307/2527726
http://dx.doi.org/doi:10.1037/a0018326
http://www.dgps.de/fachgruppen/methoden/mpr-online/issue5/art7/article.html
http://dx.doi.org/doi:10.1207/S15327906MBR3501_3
http://dx.doi.org/doi:10.1207/S15327906MBR3501_3
http://dx.doi.org/10.1161/01.res.8.3.519
http://dx.doi.org/10.1161/01.res.8.3.519
http://dx.doi.org/10.1111/j.1530-0277.1996.tb01079.x
http://dx.doi.org/10.1111/j.1530-0277.1996.tb01079.x
http://dx.doi.org/10.1111/j.2044-8317.1974.tb00543.x
http://dx.doi.org/10.1111/j.2044-8317.1974.tb00543.x
http://www.dgps.de/fachgruppen/methoden/mpr-online/issue19/art2/mpr108_09.pdf
http://dx.doi.org/doi:10.1037/1082-989X.5.2.175
http://dx.doi.org/doi:10.1037/1082-989X.5.2.175
http://dx.doi.org/doi:10.1080/01973533.2015.1012991
http://dx.doi.org/doi:10.1080/01973533.2015.1012991
http://dx.doi.org/doi:10.1007/BF02288975
http://www.psychologie-aktuell.com/fileadmin/download/PschologyScience/4-2007/06_Voelkle.pdf
http://www.psychologie-aktuell.com/fileadmin/download/PschologyScience/4-2007/06_Voelkle.pdf
http://dx.doi.org/10.1073/pnas.18.1.1PMCID:PMC1076153
http://dx.doi.org/doi:10.1207/s15327906mbr2701_2
http://dx.doi.org/doi:10.1207/s15327906mbr2701_2
http://dx.doi.org/doi:10.1002/icd.692
http://dx.doi.org/doi:10.1002/icd.692
http://dx.doi.org/10.1017/s095457941300014xPMID:23880389


Wu W, West SG, Taylor AB. Evaluating model fit for growth curve models: integration of fit indices 
from SEM and MLM frameworks. Psychological Methods. 2009; 14:183–201. http://dx.doi.org/
doi:10.1037/a0015858. [PubMed: 19719357] 

Wood et al. Page 27

Psychol Methods. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/doi:10.1037/a0015858
http://dx.doi.org/doi:10.1037/a0015858


Figure 1. 
Path Diagram for Slope Intercept Growth Models.
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Figure 2. 
Relationships Between Longitudinal Models.
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Figure 3. 
Illustrative Candidate Growth Curves and Corresponding Growth Rates. FM = factor mean; 

FCSI = free curve slope intercept; MMF Morgan-Mercer-Flodin.
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Figure 4. 
Proportion of BIC Favoring FCSI Model. ICC = intraclass correlation; FCSI = free curve 

slope intercept; MMF Morgan-Mercer-Flodin.
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Table 1

Matrix Notation and Parameters for Various Growth Models
a

Row Model Matrices

Λ (factor loadings) θ (factor means) Φ (factor 
Var/Co 

var)

μ (Manifest variable Intercepts)

1 One Factor Model λ1

λ2

λ3

λ4

[0] [1] μ1

μ2

μ3

μ4

2 Random Intercept 1 λ1

1 λ2

1 λ3

1 λ4

0

0

ϕI 0

0 1

μ1

μ2

μ3

μ4

3 Tau Equivalent/Repeated 

Measures HAlt
b

1

1

1

1

[0] [θI] μ1

μ2

μ3

μ4

4 Respecified Repeated 

Measures HAlt
b

λ1

λ1

λ1

λ1

[0] [1] μ1

μ2

μ3

μ4

5 Repeated Measures HAlt 

Estimated Means Relative 

to Time 1
b

1

1

1

1

[θI] [ϕI] 0

μ2

μ3

μ4

6
Repeated Measures HLinear

b 1

1

1

1

[0] [1] μ1

μ1 +
Timet − Timei
Timet − Time1

(μt − μi)

⋯
μt

For Osborne & Suddick data:
μ1

(0.81μ1 + 0.19μ4)
(0.42μ1 + 0.58μ4)

μ4
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Row Model Matrices

Λ (factor loadings) θ (factor means) Φ (factor 
Var/Co 

var)

μ (Manifest variable Intercepts)

7
Repeated Measures HNull

b 1

1

1

1

[θI] [ϕI] 0

0

0

0

8 Factor Mean (FM) λ1

λ2

λ3

λ4

[θS] [1] 0

0

0

0

9 Factor Mean Linear 
(FMLinear)

λ1

λ1 +
Timet − Timei
Timet − Time1

(λt − λi)

⋯
λt

For Osborne & Suddick data:
λ1

(0.81λ1 + 0.19λ4)
(0.42λ1 + 0.58λ4)

λ4

[θS] [1] 0

0

0

0

10 Factor Mean Shift (FM-
Shift)

λ1

λ2

λ3

λ4

[θS] [1] μ1

μ1

μ1

μ1

11 Equivalent FM-Shift 1 λ1

1 λ2

1 λ3

1 λ4

θI

θS

0 0

0 1

0

0

0

0

12 Factor Mean Shift Linear 
(FM-ShiftLin)

λ1

λ1 +
Timet − Timei
Timet − Time1

(λt − λi)

⋯
λt

For Osborne & Suddick data:
λ1

(0.81λ1 + 0.19λ4)
(0.42λ1 + 0.58λ4)

λ4

[θS] [1] μ1

μ1

μ1

μ1

Psychol Methods. Author manuscript; available in PMC 2016 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wood et al. Page 34

Row Model Matrices

Λ (factor loadings) θ (factor means) Φ (factor 
Var/Co 

var)

μ (Manifest variable Intercepts)

13 Free Curve Slope Intercept 
(FCSI)

1 λ1

1 λ2

1 λ3

1 λ4

θI

θS

ϕI 0

0 1

0

0

0

0

14 Orthogonal Linear SI λ1

λ1 +
Timet − Timei
Timet − Time1

(λt − λi)

⋯
λt

For Osborne & Suddick data:
λ1

(0.81λ1 + 0.19λ4)
(0.42λ1 + 0.58λ4)

λ4

θI

θS

ϕI 0

0 1

0

0

0

0

15 Equivalent Linear SI 1 0

1 0.88

1 2.734

1 4.724

(Linear Growth)

1 6.066

1 6.946

1 8.80

1 10.79

(HLM)c

θI

θS

ϕI ϕIS

ϕIS ϕS

0

0

0

0

c(Assuming Age at first measurement occasion is 1)

a
For N observations, k measurement occasions (matrix examples show specification for k=4) and f factors.

b
For Repeated Measures models, diagonal elements ψ assumed equal. For remaining models (including Tau Equivalent) diagonal elements of y 

assumed freely estimated
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Table 3

Sigmoid Growth Curves
h

Model Matrices

Model Point of Inflection Constraint
i

Gompertz Curve
j

xt = L ∞e e −k (t−L 0) Age at L
λt = e e −k (t−L )

Janoschek

xt = L ∞ + (L ∞ − L 0)e e −k t δ

(δ > 1)

( δ − 1
δk )

1
δ λt = 1 − (1 − L 0)e e −k t δ

Logistic Curve
xt =

L ∞

1 + e −k (t−I )

L ∞
2

λt =
1

1 + e −k (t−I )

Morgan-Mercer-Flodin
xt = L ∞ −

L ∞ − L 0

1 + (kt)δ
δ δ − 1

δ + 1
λt = 1 −

1

1 + (kt)δ

Richards
k

xt = L ∞ 1 + (δ − 1)e −k (t−γ)1−δ γ
λt = 1 + (δ − 1)e −k (t−γ)1−δ

Schnute

xt − L ∞
(1 − δe −at)

1
b

1
a (ln δ

b )
λt = (1 − e −at)

1
b

von Bertalanffy
l

xt = L ∞
(1 − e

k (t−t0)) None. λt = 1 - ek(t)

Weibull
xt = L ∞ −

L ∞ − L 0

e
(kt)δ

( 1
k )δ δ − 1

δ
λt = 1 −

1

e
(kt)δ

h
upper asymptote, k=growth rate, I=age at inflection point, t0 is age at which growth is zero, L0 is lower asymptote.

i
Assuming L0=0 and L∞ = 1.

j
Same as von Bertalanffy curve, except that ln(x) replaces x in the derivative of the function.

k
Note if δ is zero, this becomes von Bertalanffy curve.

l
Note that for the case of a final growth value of 1 and an age of zero indicating a zero size, the von Bertalanffy curve is equal to the negative 

exponential. This curve is also equal to the Brody curve if initial size is zero and terminal size is 1.
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