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Abstract

The purpose of this study was to reduce the dimensionality of a set of neighborhood-level 

variables collected on participants in the Multi-Ethnic Study of Atherosclerosis (MESA) while 

appropriately accounting for the spatial structure of the data. A common spatial factor analysis 

model in the Bayesian setting was utilized in order to properly characterize dependencies in the 

data. Results suggest that use of the spatial factor model can result in more precise estimation of 

factor scores, improved insight into the spatial patterns in the data, and the ability to more 

accurately assess associations between the neighborhood environment and health outcomes.
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1 Introduction

Observational studies typically collect large quantities of detailed information on 

participants in order to identify risk factors for adverse health related outcomes. Researchers 

working with these data often encounter the need to reduce the dimensionality, a measure of 

data size, of a dataset in order to facilitate inference in modeling or to generally better 

understand the underlying structure of a large set of highly correlated measured variables. 

Factor analysis, a procedure that identifies and estimates a relatively small number of latent 
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variables that capture variability in a larger set of observed variables, can be used to both 

reduce dimensionality and explore the data structure (Rowe, 1998).

The growing interest in the effects of spatial context on health and the growing availability 

of large amounts of spatially-referenced data have led to an explosion of spatial variables in 

observational studies. Because these spatial variables are often interrelated, the development 

of techniques that allow for the exploration of relationships and reduction of dimensionality 

in the presence of spatial correlation is critical. In this study, we analyze data from the 

Multi-Ethnic Study of Atherosclerosis (MESA). MESA collects information on over 45 

spatial (neighborhood) variables characterizing built and social environments, and 

researchers stand to gain great insights from the reduction and summarization of these data. 

However, in the case of neighborhood environment measures, spatial correlation in the 

variables may be present, and assumptions of independence may be invalid as a result. 

When working with such spatially-referenced data, a common factor analysis may be 

inadequate because it neglects the potential spatial dependencies in the responses, resulting 

in violated model assumptions, incorrect and misleading standard error estimates for key 

model parameters such as the factor scores, and, as a result, the potential for incorrect 

inference (Rowe, 1998). Spatial factor models are needed to circumvent these issues.

Previous applications of spatial factor models have varied considerably in their methods and 

purposes, including both multiple and single latent factors, utilizing both continuous and 

discrete outcome data, adding temporal components, and using the models for prediction 

(Hogan and Tchernis, 2004; Liu et al., 2005; Lopes et al., 2008; Mezzetti, 2012; Stakhovych 

et al., 2012; Wang and Wall, 2003). See Table 1 of Stakhovych et al. (2012) for a summary 

of the spatial factor analysis literature. Building on these prior studies, our analysis 

combines and applies elements of Bayesian spatial factor analysis methodology in order to 

properly analyze the neighborhood measurements from the MESA study. While Lopes et al. 

(2008) used their model to predict the outcome variables at new time points and unobserved 

spatial locations and Wang and Wall (2003) predicted the values of the latent factors at 

previously observed locations, to our knowledge, ours is the first study to predict the values 

of the latent factors at unobserved spatial locations. Furthermore, our model is the first to 

assume a common spatial structure for each of the latent factors without the inclusion of an 

independent source of variability unique to each location, referred to as the nugget effect in 

spatial modeling. Finally, our model is introduced and implemented in the point-referenced 

spatial data setting. Previous studies have introduced these point-referenced models but 

often work with areal data in the application (Hogan and Tchernis, 2004; Wang and Wall, 

2003).

Our analysis begins with the standard non-spatial Bayesian factor analysis model to reduce 

the dimensionality of a set of MESA neighborhood environment variables. In order to take 

into account the presumed correlation between the factor scores based on spatial proximity, 

a second factor analysis model is implemented that allows for the possibility of spatial 

correlation between the factor scores. The two models are compared to determine if 

considerable correlation across space exists in the factor scores and to decide whether the 

added complexity of the spatial model improves the model fit and interpretation of the 

factors. Because the goal of factor analysis is often the reduction of data to be used as 
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covariates in a health outcome model, an analysis is presented to compare the precision and 

accuracy of the results of two regression models using body mass index (BMI) as the 

outcome and the spatially and non-spatially correlated factors, respectively, as covariates.

Working in the Bayesian setting offers a flexible framework for introducing correlation 

between the latent factor scores. Bayesian estimation is implemented using Markov chain 

Monte Carlo (MCMC) sampling algorithms which provide samples from the posterior 

distribution of the parameters. An analysis of these posterior distributions, when correlations 

in the data are appropriately accounted for, results in correct characterizations of 

uncertainties in parameter estimates. Bayesian factor models have been previously discussed 

in the literature (Ghosh and Dunson, 2009; Lopes and West, 2004; West, 2003), and Rowe 

(1998) provides a comparison between frequentist and Bayesian versions of the factor 

model.

Given the importance of spatially-referenced data in the health research community, our 

analysis has the potential to lend insight to a multitude of other analyses and research 

projects. In general, an expanded understanding of the spatial nature of a set of 

measurements, which can be achieved by applying this methodology, will lead to more 

accurate analyses, due to improved parameter estimation and correct standard errors for the 

factor score estimates. This model also allows for the prediction of factor scores at new 

locations, without the need to collect the full set of original covariates at these new 

locations. For researchers using cohort data, this ability to predict will be useful when 

participants move during follow-up. In addition, researchers with an interest in associations 

between neighborhood environment and health outcomes will benefit from the ability to 

properly reduce neighborhood data dimensionality, potentially enabling more efficient 

computation and more concise inference in assessing such associations without substantial 

loss of information.

2 Materials and Methods

2.1 Data Description

MESA is an ongoing population-based, longitudinal study designed to explore subclinical 

cardiovascular disease prevalence and progression in the United States (US), as well as to 

investigate its association with other health and lifestyle factors (Bild et al., 2002). Approval 

for MESA participant enrollment and data collection was obtained from the Institutional 

Review Board at each study site and the coordinating center. From 2000–2002, study sites in 

six US cities recruited 6,814 men and women, aged 45–84 years. The sample is 38% white, 

28% African American, 23% Hispanic, and 11% Asian. Participants completed 

questionnaires and participated in a physical examination. For participants in the MESA 

Neighborhood Study, researchers geocoded the latitude and longitude of each participant’s 

home residence and collected information about the surrounding neighborhood, such as the 

density of many varieties of restaurants and stores and the crime rates within buffers of 

various sizes, centered at the residence and workplace. In total, participant information has 

been collected at five clinic exams as well as through a number of follow-up phone calls 

(Bild et al., 2002; MESA Coordinating Center, 2014).
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The presented analyses utilize data from the Chicago study site (n=1,161) at Exam 2 

(n=1,053), which occurred between July 2002 and February 2004, and the analyses are 

restricted to participants who completed Exam 2 in 2003 (n=815). Chicago was selected due 

to the availability of crime data while Exam 2 is chosen to maximize the sample size for a 

single year. In order to attain the necessary spatial accuracy, only data from locations that 

are geocoded at the street or zip+4 levels are included (n=804). Furthermore, locations are 

included in the analysis only if their one-mile buffers are contained entirely within the 

Chicago city limits (n=603). Participants with the same spatial coordinates (which indicate 

participants living in the same house or building) have the same neighborhood 

measurements. Given that our interest lies exclusively in these neighborhood measurements, 

only the unique locations are included in the spatial analysis (n=376). An additional 

participant was removed due to inconsistent spatial information, resulting in a final sample 

of 375 unique locations across Chicago and all with complete data for each of the 

measurements included in the analysis. The study includes participants that moved within 

Chicago between baseline and Exam 2, providing greater spatial coverage across Chicago 

than was originally present in the baseline sample.

In a factor analysis, a fixed set of variables is compiled at the outset to be the subject of 

reduction and summarization. The following 21 mutually exclusive buffer level variables are 

included in the presented factor analysis: the kernel density of grocers, supermarket chains, 

supermarket non-chains, deli/meat/fish/dairy stand-alone stores, liquor stores, drinking 

places (alcohol), fast food chains, fast food non-chains, other eating places, and total 

recreational facilities, as well as the percent of land devoted to residential use, the percent of 

land devoted to commercial use, population density per square kilometer (km), yearly 

average outdoor murders (per 1000 persons), yearly average indoor murders (per 1000 

persons), yearly average outdoor criminal offenses (per 1000 persons), yearly average 

indoor criminal offenses (per 1000 persons), yearly average outdoor incivilities (per 1000 

persons), yearly average indoor incivilities (per 1000 persons), yearly average outdoor 

assault and battery (per 1000 persons), and yearly average indoor assault and battery (per 

1000 persons). A buffer level of one mile is chosen for data completeness purposes and 

because it represents a common choice in past MESA analyses (Moore et al., 2008, 2009). 

Numeric summaries of these included variables are displayed in Table 1. In Figure 1 of the 

Online Supplementary Materials Section, we present a correlation heat map for the 21 

variables.

Kernel density estimation (Silverman, 1986) is utilized to measure the food stores and 

recreational facilities in a participant’s buffer. It is a weighted density estimation method 

based on distance from the centroid of interest. In the generation of the MESA data, kernel 

density estimation is applied by giving higher weights to establishments nearer to the 

participant’s home residence and lower weights to those further away (Kesavan, 2013). The 

densities in the MESA dataset are measured in units per square mile using ArcGIS software 

(ESRI, Redlands, CA, USA).

Data on food stores were purchased from the National Establishment Time Series (NETS) 

dataset from Walls and Associates, which included 156 Standard Industrial Classification 

(SIC) codes (Walls and Associates, 2010). The following nine categories of food stores are 
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included in our analysis: grocers, supermarket chains, supermarket non-chains, deli/meat/

fish/dairy stand-alone stores, liquor stores, drinking places (alcohol), fast food chains, fast 

food non-chains, and other eating places mainly based on SIC code. Grocers are defined as 

any food stores that are smaller than supermarkets but are not classified as convenience 

stores. A supermarket chain is a food store that has eight or more locations within the study 

area (Auchincloss et al., 2012). A supermarket non-chain is a food store that is not 

categorized as a supermarket chain with more than 25 employees and/or more than $2 

million of sales per year. A deli, meat, fish, dairy stand-alone store sells primarily meat, 

eggs, fish, and/or non-ice cream dairy products. Liquor stores sell alcohol to be consumed 

elsewhere. Alcohol drinking places are bars and other establishments that mainly sell 

alcohol to be consumed on the property. An eatery is considered to be a fast food chain if it 

was listed in the 75 top revenue fast food restaurants in the top 400 Chain Restaurants 

ranking in Restaurants and Institutions magazine in 2005 (Hume, 2005). Fast food chains 

specialize in quick food preparation, have no table service, and exclude coffee, donut, and 

ice cream shops. Fast food non-chains are defined equivalently but are those fast food 

restaurants not on the aforementioned list. The classification ‘other eating places’ includes 

any restaurant not included in either of the fast food categories, and this variable will be 

referred to as simply “Restaurants”.

As with food stores, recreational facilities were purchased from NETS. A total of 133 SIC 

codes were selected based on existing lists (Gordon-Larsen et al., 2006; Powell et al., 2007), 

which were then grouped into 12 categories based on SIC code. Our analysis only includes 

one broad category of recreational facilities which sums together the subsets into total 

recreational facilities. This includes indoor conditioning (e.g., gyms, dance), recreational 

(e.g., bowling, horseback riding), team sports (e.g., soccer clubs), water activities (e.g., 

swimming pool, boating), racquet sports (e.g., tennis, racquetball), and instructional in each 

(Kesavan, 2013).

Three built environment variables (commercial land use percentage, residential land use 

percentage, and population density per square km) are included in the analysis. Land use 

data for the Chicago study site originate primarily from the Chicago, IL city government. 

Two investigators independently classified parcels of land as residential or commercial 

based on provided land use codes and any discrepancies were adjudicated by a third 

investigator. A parcel of land is classified as residential if it is primarily devoted to places 

where people live, whereas it is classified as commercial if its primary purpose is to house 

businesses where people can purchase goods and/or services or commercial office space. 

Finally, investigators compute the percentage of each subject’s buffer that lies in residential 

and commercial areas by dividing the number of meters squared of land falling into each 

category by the total number of meters squared of land in the buffer. Data on population 

density per square km for the year 2003 in each subject’s buffer are taken from the 2000 

census. First, a population density is computed for each census block. A weighted average of 

the percentage of each block that falls within a participant’s buffer is then calculated 

(Rodriguez et al., 2009).

Crime data are collected by the Chicago Police Department and published on the City of 

Chicago Data Portal (Chicago Police Department, 2011). Crimes in the Data Portal are 
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excluded if they are missing any of the following: location geocoded to 100th block 

centerlines, date, time, and type of crime. Crimes perpetrated in airports or airplanes are also 

excluded. Incidents were coded into categories based on the Illinois Uniform Crime 

Reporting code system. The categories murder, criminal offenses, incivilities, and assault 

and battery are included in the analysis and all broken down into their indoor and outdoor 

components. Indoor and outdoor components are included separately because indoor and 

outdoor crime rates may relate in differing ways to how an individual interacts with the 

environment. The category murder includes first and second degree manslaughter and 

excludes involuntary or reckless incidents resulting in death. Criminal offenses encompass 

the following crimes: robbery, pocket-picking, purse-snatching, criminal sexual assault, 

burglary, stalking, arson, and kidnapping. Incivilities include possession and sale of 

narcotics, prostitution, criminal damage, weapons violations, public indecency, probation/

parole violation, gambling with cards/dice, and peeping tom. Finally, assault and battery is a 

harmful and/or offensive physical attack (Kerr et al., 2015).

A normalized one-year crime rate is then calculated (McGinn et al., 2008). The numerator of 

the normalized rate is the count of incidents for a given category within the participant’s 

buffer during the one year time period prior to the participant’s exam. The denominator is 

the total population within the buffer, which is calculated based on the block-level 2000 

census population. Each block is weighted by the percent of the block area that falls within 

the participant buffer. The total population within that block is then multiplied by this 

weight and the weighted populations are summed together for the total population within the 

buffer. The rates are multiplied by 1,000 for a rate of crime per 1,000 persons (Kerr et al., 

2015).

To compare the results of the spatial and non-spatial factor analysis models, an additional 

analysis is performed which utilizes BMI as the outcome of interest. Height and weight were 

measured at Exam 2, and BMI was calculated as weight in kilograms divided by height in 

meters squared. The following individual-level covariates are also adjusted for in the sub-

analysis: age, gender, race/ethnicity (White/Caucasian, Chinese-American, Black/African-

American, or Hispanic), highest level of education completed (high school/G.E.D or less, 

some college, or B.A. or above), and total gross family income in the previous 12 months (<

$40,000, $40,000–$74,999, or $75,000+).

2.2 Statistical Model

Factor analysis is a multivariate statistical tool that can be used to describe relationships 

between variables. Often times, there may be a relatively small number of latent variables 

controlling a larger set of continuous, observed variables, and identifying these underlying 

“factors” may improve understanding of the data and simplify subsequent analyses. Using 

factor analysis, we can analyze the relationship between each of the latent factors and each 

of the observed variables in order to understand the nature of the factors. Moreover, through 

estimation of the latent factor scores, we can reduce the dimensionality of the dataset while 

retaining a majority of the information contained in the original variables.

The common factor analysis model assumes that the latent factor scores are independent 

across all spatial locations; however, when the data being collected at each location is 
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related to the neighborhood environment, the assumption of independence is likely incorrect. 

Instead, the latent factor scores may be spatially correlated, with nearby locations having 

similar neighborhood environments. Updates to the common factor model are needed in 

order to properly account for this spatial correlation. By introducing a spatially-referenced 

prior distribution for the latent factor scores, we can account for the spatial correlation and 

ensure accurate inference for the model parameters.

We first introduce the standard non-spatial factor analysis model in the Bayesian setting and 

then extend it to include the possibility of spatial correlation between the factor scores. The 

common factor analysis model for the 21 observed variables from each unique spatial 

location (see Table 1) is given as Y(si) = Λη(si) + ε (si); i = 1, …, n, where Y (si) is the 

vector of p continuous, centered and scaled (by standard deviation) neighborhood-level 

measurements at location si (p = 21), Λ represents the p by m matrix of factor loadings (m 

≪ p), η (si) is the m by 1 vector of latent factor scores at location si, ε (si) represents the 

vector of errors unique to location si, and n represents the total number of unique locations 

included in the analysis (n = 375) (Banerjee et al., 2003; Ghosh and Dunson, 2009). It is 

assumed that the ε (si) vectors have independent and identically distributed multivariate 

normal distributions such that , where Σ is a diagonal matrix with (i, 

i)th entry equal to . Λ is constrained to be lower triangular with diagonal entries λii > 0 for 

identifiability purposes (Bollen, 1989). In the standard non-spatial factor analysis model, the 

factor scores, η(si), are assumed to be independent among locations. The spatial model 

relaxes this assumption of independent factor scores, and instead allows for the possibility 

that the factors are spatially correlated. Additional details on the likelihood of the data can 

be found in Section A.1 of the Appendix.

To complete the Bayesian model specification, prior distributions are chosen for the 

parameters, Λ, η, and Σ. Prior distributions are chosen to be vague yet proper in order to 

allow the data to drive the inference rather than our prior beliefs and to ensure that the 

posterior distribution is proper. Section A.2 of the Appendix provides a detailed description 

of the specific prior distributions selected for each parameter.

In the spatial model, we introduce a prior distribution that allows for the possibility of 

spatial correlation between the factor score parameters, η(si). This prior distribution 

accounts for distances between the locations, resulting in increased correlation between 

factor scores separated by short distances and decreased correlation between factor scores 

separated by long distances. The rate at which this correlation decays as a function of 

distance is controlled by an additional parameter in the model, ϕ. We assign ϕ a prior 

distribution that allows the data to determine the rate of decay, ranging from high spatial 

correlation to essentially no spatial correlation. Therefore, estimation of ϕ can provide 

insight into the level of spatial correlation present in the data and the need for the spatial 

factor analysis model. Full details of the spatially-referenced prior distribution can be found 

in Section A.2 of the Appendix. MCMC sampling techniques are used to obtain samples 

from the posterior distribution of all model parameters. Full details on the sampling 

alorithms for the non-spatial and fully spatial models can be found in Section A.3 of the 

Appendix.
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Another advantage of spatial modeling is the ability to predict the latent factor scores at 

locations across Chicago where the original set of 21 variables wasn’t directly observed. We 

do this by using the method of Bayesian kriging (Handcock and Stein, 1993) which allows 

us to obtain samples from the posterior predictive distribution of the latent factor scores. 

These samples are summarized in the usual manner leading to posterior predictive means 

and standard deviations at each prediction location. The summarized predicted latent factors 

can be mapped across the spatial range of the observed data in order to illustrate the spatial 

patterns in the factors. Full derivations for the prediction process are described in Section A.

4 of the Appendix.

An additional analysis is presented to illustrate how results from the spatial and non-spatial 

models would compare when being used to analyze the association between neighborhood 

environments and a health outcome. In this analysis, BMI is used as the health outcome, and 

the estimated latent factor scores are included as covariates in a regression model (n=586). 

The analysis accounts for the uncertainties in the estimated factor scores, mimicking a joint 

model of the factor analysis and the health outcome regression and allowing for a 

comparison of the precision with which regression parameters could be estimated in the joint 

spatial and non-spatial models.

3 Results

3.1 Exploratory Analyses

A scree plot of the eigenvalues (Cattell, 1966), shown in Figure 1, suggests that a model 

with three latent factors (m = 3) is appropriate to describe the underlying structure of the 

data. The non-spatial and spatial versions of the factor model have equivalent first stage 

forms. They differ only in the prior distribution for the factor scores. Therefore, we expect 

the structure of the underlying factors to be similar for both models, with estimation of the 

factor scores possibly differing if spatial correlation is present. As a result, we rely on the 

scree plot findings to determine the number of factors for the spatial model as well. This 

small number of factors is ideal given that interpretability of the factors is a primary goal of 

the analysis.

All analyses are carried out using R statistical software (R Core Team, 2013). We attempt to 

determine if the spatial modeling assumptions are justified through the analysis of the 

estimated factor scores (η (si), i = 1, …, n) from the fitting of the non-spatial Bayesian factor 

analysis model. Empirical semivariogram analyses (Ecker and Gelfand, 1997) for the 

estimated factor scores suggest that all three factors have a similar spatial structure. Figure 2 

in the Online Supplementary Materials Section displays the empirical semivariogram plots 

from the analyses. These plots suggest that including a nugget effect is not necessary in this 

setting since at very small distances the semivariance is near zero. In order to investigate this 

further, we fit univariate Bayesian spatial models with a constant mean and specified 

covariance structure separately to each set of estimated factor scores. We aim to determine 

which covariance structure is appropriate for each factor and to estimate the value of the 

spatial correlation parameter, ϕ, for each selected model. We fit the models using the 

exponential structure, Gaussian structure, and with no spatial structure. The non-spatial 

model is used to determine if accounting for space is necessary for each of the factors.
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The model comparison results from each of the model and factor combinations are displayed 

in Table 1 of the Online Supplementary Materials Section. The Deviance Information 

Criterion (DIC) (Spiegelhalter et al., 2002) is the most common way of comparing models in 

the Bayesian setting and is particularly preferred over other methods in the case of 

hierarchical models where the number of parameters is difficult to specify (Wang and Wall, 

2003). DIC is penalized for model complexity using the effective number of parameters 

(Spiegelhalter et al., 2002), a measure of dimensionality that does not require specification 

of the number of parameters as most other model complexity penalties do (Wang and Wall, 

2003). DIC cannot be used as a stand-alone goodness of fit measure for a model, only as a 

basis for comparison of two models, with preference being given to the model with the 

smaller value.

It is clear from the results that the exponential structure is preferred for each of the factors. 

In Table 2 of the Online Supplementary Materials Section, we also display the posterior 

distribution summaries for ϕ from each of the factors fit using the exponential covariance 

structure. These results suggest that a common spatial correlation parameter ϕ is an 

appropriate assumption as the posterior means are very similar and 95% credible intervals 

overlap significantly. The presented results suggest that our assumptions of a common 

spatial covariance structure and a common ϕ parameter are valid.

3.2 Spatial Factor Model

Before applying the model to the MESA data, we choose the variables for which some 

factor loadings will be constrained to zero for identifiability purposes. This choice should 

not ultimately impact the ability of the model to uncover the latent factor structure, but a 

wise choice may improve the convergence of our MCMC sampling algorithm. In our 

application of the model with three latent factors, we must select which three variables will 

be the leading variable in each of three columns of the Λ matrix. We choose the three least 

correlated variables (closest to zero), Grocery Stores, Outdoor Criminal Offenses, and 

Supermarket Non-Chains, since they are less likely to group together in the underlying latent 

factors.

The sampler for the spatial model was run for 250,000 iterations with the first 50,000 

iterations discarded as burn-in. Tables 2 and 3 contain the posterior means for the factor 

loadings and variance parameters, respectively, for the three-factor spatial model. As in a 

typical factor model, factor loadings from the spatial factor model can be interpreted as 

weights or measures of association between the corresponding variable and latent factor. As 

illustrated by Table 2, the weights of the highest magnitudes for the first factor in the spatial 

model appear on the following variables: outdoor criminal offenses, fast food non-chains, 

recreational facilities, population density, and bars/alcohol establishments. Therefore, a 

possible interpretation of this latent factor is as an indicator of highly populated city blocks 

with high rates of outdoor criminal offenses. In a recent study of Chicago crime, Bernasco 

and Block (2011) give the name “crime attractors” to areas with many bars, liquor stores, 

fast food restaurants, and similar businesses, because the large number of cash transactions 

taking place in these establishments creates a favorable environment for outdoor criminal 

activities such as robberies. The results of their study revealed that blocks in Chicago that 
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contain these types of businesses have higher outdoor robbery events than those that do not 

(Bernasco and Block, 2011). Factor 1 may represent these areas.

The second latent factor reflects lower crime rates, as evidenced by the large negative 

loadings on nearly all of the crime variables. This indicates that factor two may be a measure 

of neighborhood safety, which takes higher values for neighborhoods with lower crime 

rates. Finally, factor three is most heavily weighted on the commercial land use variable, 

with other high magnitude weights on the food and alcohol-related variables, outdoor 

incivilities, and outdoor assault and battery. Thus, the third factor could be interpreted to be 

a measure of commercialization of an area, as heavily commercialized areas, such as 

downtown, typically have high densities of restaurants and bars and generally also have high 

rates of outdoor crimes like assault (Wikstrom, 1995).

Although the factor interpretations provide insight into the underlying structure of these 

data, the primary interest of this analysis is in the presence or absence of spatial correlation 

in the factors. The spatial correlation can be assessed through a variety of measures, the 

most obvious of which is the parameter ϕ. The posterior mean of the spatial correlation 

parameter ϕ is 0.13 with 95% credible interval (0.11, 0.15). The convergence of ϕ to a 

relatively small value indicates that there is considerable spatial dependence in the factor 

scores, as smaller values imply a stronger correlation between scores at any given pair of 

distances. A common means of evaluating spatial correlation is through the use of effective 

range, the distance at which the correlation between two locations becomes negligible (less 

than or equal to 0.05). The effective range is estimated to be 23 km with 95% credible 

interval (20 km, 26 km), meaning that the factor scores for locations up to 23 km apart 

demonstrate non-negligible spatial correlation.

The ability of the model to predict factor scores at new locations where the values of the 21 

original variables are unknown is demonstrated in Figures 2 and 3, and these maps also 

serve as another measure of assessing spatial correlation. These figures display the posterior 

predictive means and standard deviations, respectively, of the three latent factors across the 

spatial domain of our data.

Figure 2 further demonstrates the presence of spatial patterns in the data. The clustering of 

the extreme values of the factors in different areas of the city is illustrated by the dark red 

and blue centers, and the spatial correlation can be seen in the way that the colors gradually 

lighten as one moves away from these dark centers. This implies that certain areas of the city 

are associated with higher or lower values of the factors and that more proximate locations 

are more likely to have similar values than more distant locations. The posterior predictive 

standard deviations, shown in Figure 3, are smallest in the areas where we observe data and 

increase as we extrapolate outside of these regions.

When the spatial predictions in Figure 2 are paired with an understanding of the nature of 

different areas of the city of Chicago, further insight is provided into the interpretations of 

the latent factors, in addition to illustrating the spatial patterns in the factor scores. 

According to the Chicago Police Department (2014), the north side of the city has relatively 

low crime rates, while the south side demonstrates higher crime rates. This, along with the 
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knowledge of the location of downtown and commercial versus residential areas can be 

applied to the prediction maps to guide factor interpretations.

Factor one was earlier interpreted as a variable related to highly populated city 

neighborhoods with high outdoor criminal activity and this is supported by the heat map of 

factor one, which demonstrates high predicted values over much of the south side of 

Chicago. In the heat map of factor two, there is an even more distinct division between the 

north and south of the city, with moderate to high predicted values in the north and low 

predicted values in the south. This suggests that the interpretation of factor two as a measure 

of neighborhood safety could be appropriate, given the discrepancy in crime rates between 

the north and south sides. Factor three was earlier interpreted as an indicator of commercial 

areas, such as downtown. Again, this appears to be a reasonable interpretation, given that the 

heat map demonstrates high values around the commercial downtown area of Chicago and 

lower values elsewhere.

3.3 Model Comparison

The posterior means of the factor loadings and posterior means of the variance parameters 

for the spatial and non-spatial factor models are shown in Tables 2 and 3. Note that the 

columns of factor loadings for the non-spatial model follow a pattern similar to that of the 

factor loadings in the spatial model, with factors one and three reversed, indicating that both 

models are detecting and fitting the same three underlying factors. The similarity between 

the factors uncovered by the two models suggests that a three-factor model is appropriate in 

both the spatial and non-spatial settings.

Given that neglecting existing spatial correlation impacts the posterior standard deviations, 

and therefore statistical inference, an important measure of comparison of the two models is 

the magnitude of the posterior standard deviations for the factor scores. The average and 

range values of the estimated posterior standard deviations for the factor scores in the spatial 

model are 0.08 and (0.03, 0.21), respectively. In the non-spatial model, the average and 

range values are 0.23 and (0.13, 1.10). The overall considerably smaller posterior standard 

deviations for the spatial model reveal that the factor score estimates in the spatial model are 

much more precise than in the non-spatial model. Thus, the spatial model leads to more 

reliable estimates due to increased precision. This discrepancy in posterior standard 

deviations between the two models in itself indicates that there is substantial spatial 

correlation in the factors, because, if the factor scores were independent, the posterior 

standard deviations in the models should be very similar.

Although the graphical results and increased precision of the spatial model clearly 

demonstrate the spatial dependence in the factors and need to account for it in the model, a 

more formal comparison of the non-spatial and spatial models is needed to establish the 

improved fit of the spatial model. The DIC for the spatial model is 8,375.74, with the 

effective number of parameters at 903.76. For the non-spatial model, these measures are 

9,901.77 and 1,080.98, respectively. The spatial model yields a considerably lower DIC 

value than the non-spatial model, indicating improved fit.
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3.4 Association with Body Mass Index

Finally, an analysis is performed to demonstrate the benefits of accounting for spatial 

correlation in the factor scores when modeling the factor analysis jointly with a regression 

model that includes a health-related outcome and the estimated latent factors as covariates. 

In our analysis, we work with BMI as the health outcome of interest.

In order to assess the potential benefits of using spatially-derived factors in a regression 

analysis, we assess the uncertainty associated with the factor scores through a two-step 

procedure. In the first step, we obtain samples from the posterior distribution of the factor 

scores from both the spatial and non-spatial factor analysis models as described in Section 

2.2. In the second step, each of the samples from the posterior distribution of the spatially 

correlated factor scores is used as a set of predictors in a linear regression model with BMI 

as the outcome. The same procedure is applied to each posterior sample of non-spatially 

correlated factor scores. Age, gender, race, highest level of education completed, and total 

gross family income in the previous year are also adjusted for in each model, as was done in 

the minimal model for BMI by Moore et al. (2013). This procedure results in a set of 

estimated regression parameters corresponding to each posterior sample from each of the 

factor analysis models.

Histograms of the estimated regression coefficients for each of the three latent factors are 

constructed for both models. The spread of the estimated coefficients for each factor across 

all the samples should reflect the size of the uncertainties for each parameter resulting from 

a joint model. Comparing measures of spread for the coefficients of corresponding factors in 

the spatial and non-spatial models indicates which model would produce more precise 

estimates. The histograms of the regression coefficients for both models are provided in 

Figure 4, and Table 4 contains the standard deviations for these coefficient estimates. These 

measures clearly demonstrate the superior precision of the spatial model, with posterior 

standard deviations substantially smaller for the coefficients on two of the factors and 

equivalent for the remaining one. This suggests that the smaller posterior uncertainties for 

the factor scores in the spatial model would result in improved estimation when modeling a 

health outcome using the estimated factors as covariates and properly accounting for their 

uncertainty.

Based on the estimates from the spatial BMI analysis, factors one and two are negatively 

associated with BMI while factor three shows a small positive association with BMI after 

adjusting for age, gender, race, education, and income. Applying the interpretations of the 

factors proposed in Section 3.2, this analysis suggests that living in safer neighborhoods 

and/or heavily populated city neighborhoods is associated with lower BMI, and living in 

highly commercialized areas is associated with higher BMI after adjusting for all other 

covariates. The strong association between neighborhood safety and BMI agrees with the 

findings of previous research using the MESA Chicago data in which Evenson et al. (2012) 

report that time spent performing various types of physical activity is positively associated 

with perceived neighborhood safety and negatively associated with measures of criminal 

activity in the neighborhood.
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4 Conclusions

Our results indicate that for the present data, spatial correlation exists and ignoring it could 

lead to inaccurate estimates of measures of uncertainty, such as posterior standard deviations 

for the factor scores, as well as incorrect inference when these factor scores are used as 

predictors in a model of a health outcome. The presented spatial factor model not only 

provides improved fit according to DIC but also leads to factor score estimates with smaller 

posterior standard deviations. The factor scores were used as covariates in a model of BMI 

which demonstrated that the increased precision in the factor score estimates would result in 

improved estimation when including them as covariates in a health outcome model and 

appropriately accounting for their uncertainties.

Although the spatial and non-spatial models demonstrate similar factor loading patterns 

(Table 2), the factor score estimates from the non-spatial model often do not agree with 

those from the spatial model due to increased levels of uncertainty. Future analyses utilizing 

these factor scores should therefore include the spatial estimates due to the increased 

precision. Subsequent statistical analyses should also account for the uncertainty in these 

factor score estimates by incorporating their posterior uncertainties into the modeling 

framework in order to correctly characterize the association between the factors and a 

considered health outcome. Increased uncertainty in the factor scores should lead to 

increased uncertainty in the associations of interest, as evidenced by the analysis in Section 

3.4.

Our analyses shed light on the ability of the spatial factor analysis methodology to reduce 

the dimensionality of any spatially correlated dataset (using point-referenced spatial data) by 

estimating latent factor scores at observed locations and, moreover, to predict latent factor 

scores at unobserved locations. This capacity for prediction at unobserved locations could 

simplify tremendously the process of collecting and analyzing data at new locations for a 

new set of individuals (possibly in a different study) or participants that change location 

during follow-up, since only their spatial coordinates and not the values of the original 

variables is necessary.

A final benefit of our model is the potential interpretability of the underlying factors. The 

variables we selected for analyses were not based on any theoretical considerations (we 

simply included all mutually exclusive variables available for identical buffers for 

illustrative purposes). As in classic factor analysis, the factors identified and their 

interpretation can be highly influenced by the set of variables included. The factors 

identified could therefore be quite different if a different set of neighborhood variables were 

included. Nevertheless, the patterns in the factor loadings can be very informative and help 

investigators understand key patterns in the data. A thorough understanding of the nature of 

these factors aids in the interpretation of results in analyses which employ them. Future 

work could consider jointly modeling a selected health outcome and the spatial factors in 

order to determine if these latent factors are associated with the outcome and if 

incorporating spatial information improves the modeling of the outcome. Future research 

could also extend the spatial model to the spatiotemporal setting and expand the 
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methodology to make possible the incorporation of multiple exams and multiple years of 

data.

In conclusion, our analysis confirms the presence of spatial correlation in the factors 

underlying the neighborhood-level measurements in our data, suggesting that a non-spatial 

factor model may not be appropriate. Using a spatial factor analysis model, we estimated the 

factor scores for each participant, predicted the values of the factor scores at new locations, 

and provided insight into the nature of the latent factors through the interpretation of the 

factor loadings, all of which will assist researchers in more precisely determining the 

relationship between neighborhood environments and cardiovascular health. Moreover, the 

methodology will benefit researchers in all fields who wish to summarize or reduce the 

dimensionality of a spatially-referenced dataset.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The analyses were funded by the National Institutes of Health (NIH)/National Heart, Lung, and Blood Institute 
(NHLBI) 2R01 HL071759. The MESA study was supported by contracts N01-HC-95159 through N01-HC-95169 
from the NIH/NHLBI and by grants UL1-RR-024156 and UL1-RR-025005 from the National Center for Research 
Resources, and the National Institute of Environmental Health Sciences (Herring T32ES007018, Herring 
R01ES020619, Swenberg P30ES010126) also provided partial support of this work. The authors thank Fang Wen 
for help with data management, Shannon Brines and Melissa Zagorski for the creation of GIS-based measures used 
in the analyses, and the other investigators, staff, and participants of the MESA study for their valuable 
contributions. A full list of participating MESA investigators and institutions can be found at http://www.mesa-
nhlbi.org.

References

Auchincloss A, Moore K, Moore L, Diez Roux A. Improving retrospective characterization of the food 
environment for a large region in the United States during a historic time period. Health and Place. 
2012; 18(6):1341–1347. [PubMed: 22883050] 

Banerjee, S.; Gelfand, AE.; Carlin, BP. Hierarchical Modeling and Analysis for Spatial Data. CRC 
Press; 2003. 

Bernasco W, Block R. Robberies in Chicago: A block-level analysis of the influence of crime 
generators, crime attractors, and offender anchor points. Journal of Research in Crime and 
Delinquency. 2011; 48(1):33–57.

Bild D, Bluemke D, Burke G, Detrano R, Diez Roux A, Folsom A, Greenland P, Jacob DJ, Kronmal 
R, Liu NJ, O’Leary KD, Saad M, Shea S, Szklo M, Tracy R. Multi-Ethnic Study of Atherosclerosis: 
objectives and design. American Journal of Epidemiology. 2002; 156(9):871–881. [PubMed: 
12397006] 

Bollen, KA. Structural Equations with Latent Variables. John Wiley and Sons, Inc; 1989. 

Cattell RB. The scree test for the number of factors. Multivariate Behavioral Research. 1966; 1(2):
245–276.

Chicago Police Department. [accessed 21-April-2015] City of Chicago data portal. 2011. https://
data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2. Online

Chicago Police Department. [accessed 21-April-2015] Clear map crime summary. 2014. http://
gis.chicagopolice.org/CLEARMap_crime_sums/startPage.htm#. Online

Ecker MD, Gelfand AE. Bayesian variogram modeling for an isotropic spatial process. Journal of 
Agricultural, Biological, and Environmental Statistics. 1997:347–369.

Nethery et al. Page 14

Health Place. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.mesa-nhlbi.org
http://www.mesa-nhlbi.org
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
http://gis.chicagopolice.org/CLEARMap_crime_sums/startPage.htm#
http://gis.chicagopolice.org/CLEARMap_crime_sums/startPage.htm#


Evenson KR, Block R, Diez Roux AV, McGinn AP, Wen F, Rodriguez DA. Associations of adult 
physical activity with perceived safety and police-recorded crime: The Multi-Ethnic Study of 
Atherosclerosis. International Journal of Behavioral Nutrition and Physical Activity. 2012; 9(1):
146–158. [PubMed: 23245527] 

Gelfand AE, Smith AF. Sampling-based approaches to calculating marginal densities. Journal of the 
American Statistical Association. 1990; 85(410):398–409.

Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. 
IEEE Transactions on Pattern Analysis and Machine Intelligence. 1984; 6(6):721–741. [PubMed: 
22499653] 

Ghosh J, Dunson DB. Default prior distributions and efficient posterior computation in Bayesian factor 
analysis. Journal of Computational and Graphical Statistics. 2009; 18(2):306–320. [PubMed: 
23997568] 

Gilks WR, Best N, Tan K. Adaptive rejection metropolis sampling within Gibbs sampling. Applied 
Statistics. 1995:455–472.

Gordon-Larsen P, Nelson M, Page P, Popkin B. Inequality in the built environment underlies key 
health disparities in physical activity and obesity. Pediatrics. 2006; 117(2):417–424. [PubMed: 
16452361] 

Handcock MS, Stein ML. A Bayesian analysis of kriging. Technometrics. 1993; 35(4):403–410.

Hogan JW, Tchernis R. Bayesian factor analysis for spatially correlated data, with application to 
summarizing area-level material deprivation from census data. Journal of the American Statistical 
Association. 2004; 99(466):314–324.

Hume, S. [accessed 2005] Top 400 chain restaurants. Restaurants and Institutions. 2005. http://
www.rimag.com. Online

Kerr Z, Evenson K, Moore K, Block R, Diez Roux A. Changes in walking associated with perceived 
neighborhood safety and police-recorded crime: The Multi-Ethnic Study of Atherosclerosis. 
Preventive Medicine. 2015; 73:88–93. [PubMed: 25625690] 

Kesavan, Y. PhD thesis. University of Michigan; 2013. Methodological Approaches to Account for 
Residential Self-Selection and Time-Varying Confounding in the Association Between the 
Neighborhood Environment and Cardiovascular Disease. 

Liu X, Wall MM, Hodges JS. Generalized spatial structural equation models. Biostatistics. 2005; 6(4):
539–557. [PubMed: 15843593] 

Lopes HF, Salazar E, Gamerman D. Spatial dynamic factor analysis. Bayesian Analysis. 2008; 3(4):
759–792.

Lopes HF, West M. Bayesian model assessment in factor analysis. Statistica Sinica. 2004; 14(1):41–
68.

McGinn A, Evenson K, Herring A, Huston S, Rodriguez D. The association of perceived and 
objectively measured crime with physical activity: a cross-sectional analysis. Journal of physical 
activity and health. 2008; 5(1):117–131. [PubMed: 18209258] 

MESA Coordinating Center. [accessed 21-April-2015] About MESA. 2014. http://www.mesa-
nhlbi.org/aboutMESAOverviewProtocol.aspx. Online

Mezzetti M. Bayesian factor analysis for spatially correlated data: application to cancer incidence data 
in Scotland. Statistical Methods and Applications. 2012; 21(1):49–74.

Moore K, Diez Roux A, Auchincloss A, Evenson K, Kaufman J, Mujahid M, Williams K. Home and 
work neighbourhood environments in relation to body mass index: The Multi-Ethnic Study of 
Atherosclerosis (MESA). Journal of Epidemiology and Community Health. 2013; 67(10):846–
853. [PubMed: 23868527] 

Moore LV, Diez Roux AV, Nettleton JA, Jacobs DR. Associations of the local food environment with 
diet quality- A comparison of assessments based on surveys and geographic information systems: 
The Multi-Ethnic Study of Atherosclerosis. American Journal of Epidemiology. 2008; 167(8):
917–924. [PubMed: 18304960] 

Moore LV, Diez Roux AV, Nettleton JA, Jacobs DR, Franco M. Fast-food consumption, diet quality, 
and neighborhood exposure to fast food: The Multi-Ethnic Study of Atherosclerosis. American 
Journal of Epidemiology. 2009; 170(1):29–36. [PubMed: 19429879] 

Nethery et al. Page 15

Health Place. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.rimag.com
http://www.rimag.com
http://www.mesa-nhlbi.org/aboutMESAOverviewProtocol.aspx
http://www.mesa-nhlbi.org/aboutMESAOverviewProtocol.aspx


Powell L, Chaloupka F, Slater S, Johnston L, O’Malley P. The availability of local-area commercial 
physical activity related facilities and physical activity among adolescents. American Journal of 
Preventitive Medicine. 2007; 33(4):292–300.

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R 
Foundation for Statistical Computing; 2013. 

Rodriguez D, Evenson K, Diez Roux A, Brines S. Land use, residential density, and walking: The 
Multi-Ethnic Study of Atherosclerosis. American Journal of Preventive Medicine. 2009; 37(5):
397–404. [PubMed: 19840694] 

Rowe, DB. PhD thesis. University of California; Riverside: Citeseer; 1998. Correlated Bayesian Factor 
Analysis. 

Silverman, BW. Density Estimation for Statistics and Data Analysis. Chapman and Hall/CRC; 1986. 

Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures of model complexity and 
fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2002; 64(4):583–
639.

Stakhovych S, Bijmolt THA, Wedel M. Spatial dependence and heterogeneity in Bayesian factor 
analysis: A cross-national investigation of Schwartz values. Multivariate Behavioral Research. 
2012; 47(6):803–839.

Walls and Associates. [accessed 21-April-2015] National establishment time-series (NETS) database. 
2010. http://exceptionalgrowth.org/downloads/NETSDatabaseDescription2013.pdf. Online

Wang F, Wall MM. Generalized common spatial factor model. Biostatistics. 2003; 4(4):569–582. 
[PubMed: 14557112] 

West M. Bayesian factor regression models in the large p, small n paradigm. Bayesian Statistics. 2003; 
7(2003):723–732.

Wikstrom P. Preventing city-center street crimes. Crime and Justice. 1995; 19:429–468.

A Appendix

A.1 Data Likelihood

The location-specific vectors of data, conditional on the introduced model parameters, are 

independently distributed as ; i = 1, …, n which 

can also be written jointly as Y |Λ, η, Σ ~ MVN(Λ*η, Σ*) where Y = {Y(s1)T, …, Y (sn)T}T, 

Λ* is an np by nm block diagonal matrix with Λ on the diagonal, Σ* is an np by np block 

diagonal matrix with Σ on the diagonal, and η = {η(s1)T, …, η(sn)T}T.

A.2 Prior Specification

The diagonal elements of the factor loadings matrix, Λ, are given independent truncated 

normal prior distributions (truncated below by 0) with a common variance such that 

, j = 1, …, p. The off-diagonal entries (below the diagonal) are given 

independent normally distributed prior distributions with a common variance such that 

, j > k. The variance parameters which control the ε(si) vectors are assigned 

independent and identically distributed inverse gamma prior distributions such that 

, j = 1, …, p. For the non-spatial factor analysis, we assign independent and 

identically distributed multivariate normal prior distributions to the factor score vectors such 

that  where Im is the m by m identity matrix. We assume that the 

factor scores are independent both within and among locations as is standard in a common 

factor model. The introduced prior distributions lead to semi-conjugacy in the model. The 
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fixed values of the hyperparameters are chosen to be , α = 0.0005, and β = 

0.0005. These initial values are selected to produce vague yet proper prior distributions so 

that the inference is data-driven.

For the fully spatial factor model, the same distributions described above are used for Λ and 

, but without the assumption of independent factors between locations, an exchangeable 

prior distribution can no longer be assigned to each location’s vector of factor scores. We 

now specify a spatially referenced prior distribution to the complete η vector that still 

assumes independence within a location such that η ~ MVN(0, ΣS ⊗ Ik) where ⊗ represents 

the Kronecker product. The inter-location spatial dependence is taken into account by the ΣS 

matrix. Because point-referenced spatial data are available (latitude and longitude of each 

location), the structure of ΣS is determined based on the distances between locations. The 

specified prior distribution implies that each factor has the same spatial structure and a 

common level of spatial correlation at each distance. These assumptions are fully 

investigated and discussed in Section 3.1.

Based on results from the exploratory analyses, we select the exponential covariance matrix 

which results in ΣS(i, j) = exp{−ϕ ||si − sj||} where ΣS (i, j) is the (i, j)th entry of ΣS and ||si − 

sj|| is the Euclidean distance between locations si and sj. The parameter ϕ controls the level 

of spatial correlation in the data and is assumed to be common among the m factor scores 

with a prior distribution such that ϕ ~ Uniform(a, b) where the fixed values of a and b are 

chosen so that, a priori, the level of spatial correlation is allowed to vary between 0.05 and 

0.95 for the smallest and largest observed distances respectively (a = 0.001, b = 1116.141). 

This allows the data to determine the appropriate level of spatial correlation rather than our 

prior beliefs.

A.3 Posterior Sampling Algorithm

The non-spatial and spatial factor analysis models both employ a Gibbs sampler (Gelfand 

and Smith, 1990; Geman and Geman, 1984) to obtain draws from the posterior distribution 

of interest, although the spatial model requires the addition of a Metropolis step (Gilks et al., 

1995). The steps for sampling Λ and Σ are identical for the two models. For the non-spatial 

factor analysis model, sampling η (si) entails another Gibbs step. The steps include

1.
Sample λjj|Σ, η, Y, Λ(−j, −j) from 

for j = 1, …, p where Λ(−j, −j) is the Λ matrix with the (j, j) element removed, γhj = 

Yj (sh) − Λj(−j)T η−j (sh), Λj(−j) is the jth row of Λ with the jth component removed, 

and η−j (sh) is the set of factor scores for location sh with the jth component 

removed.

2.
Sample λjk|Σ, η, Y, Λ (−j, −k) from  for j > 

k, k = 1, …, p−1 where Λ (−j, −k) is the Λ matrix with the (j, k) element removed, 

γhjk = Yj (sh) − Λj(−k)T η−k (sh), Λj(−k) is the jth row of Λ with the kth component 
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removed, and η−k (sh) is the set of factor scores from location sh with the kth 

component removed.

3.
Sample , η, Y, Σ (−j, −j) from 

for j = 1, …, p where Σ (−j, −j) is the Σ matrix with the (j, j) element removed and 

Λj is the jth row of Λ.

4. Sample η(si)|Σ, Λ, Y, η (−si) from MVN({ΛT Σ−1 Λ+ I}−1{ΛTΣ−1Y (si),{ΛTΣ−1 Λ 

+ I}−1) where η (−si) is the complete vector of factor scores with those from 

location si removed.

In the spatial model, the change in the prior structure of the covariance matrix for η 

leads to a more complicated posterior, involving the complete data likelihood given 

in Section A.1 of the Appendix. Furthermore, the full conditional distribution for ϕ, 

the spatial correlation parameter, has no closed form; thus, a Metropolis step is 

necessary for sampling.

5. Sample η from

where Ψ = ΣS ⊗ Im.

6.
Sample  using a Metropolis sampler with a Normal proposal 

distribution. ϕ is obtained by transformation such that .

In order to facilitate model convergence, η (si) is standardized during each iteration of the 

sampler.

A.4 Spatial Prediction of Factor Scores

The prediction locations are selected on a grid over Chicago which provides full spatial 

coverage within areas where we observe data. We define η0 = {η (s0,1)T, …, η (s0,r)T}T as 

the vector of latent factor scores at unobserved locations s0,1, …, s0,r where r is the number 

of included prediction locations. The posterior predictive distribution (ppd) of interest is 

given as

In order to obtain samples from this ppd, we rely on the properties of the multivariate 

normal distribution and the conditional independence of our model formulation such that f 

(η0|Y, η, Λ, Σ, ϕ) = f (η0|η, Λ, Σ, ϕ) where 

 and 
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 with ΣS*(ϕ) representing the full spatial 

covariance matrix of all prediction and observed locations. For each sample from the 

posterior distribution, we can draw a sample from the ppd of interest using composition 

sampling (Banerjee et al., 2003).
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Figure 1. 
Scree Plot Used to Determine the Appropriate Number of Latent Factors.
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Figure 2. 
Posterior Predictive Means of Factor Scores over Chicago, Illinois. The Displayed 

Boundaries Represent Census Tracts from the 2010 Census.
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Figure 3. 
Posterior Predictive Standard Deviations of Factor Scores over Chicago, Illinois. The 

Displayed Boundaries Represent Census Tracts from the 2010 Census.
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Figure 4. 
Histograms of Estimated Regression Coefficients Based on Samples from the Posterior 

Distribution of the Latent Factor Scores. The Regression Coefficients are Describing the 

Association Between Each Factor and Body Mass Index.
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Table 3

Posterior Means of Variance Parameters for the Spatial and Non-Spatial Factor Models. The Posterior 

Standard Deviations for the Parameters from the Spatial Model Range from 0.0003 to 0.0700 with an Average 

Value of 0.0255 ((0.0034, 0.0612) and 0.0233 respectively for the Non-Spatial Model).

Spatial Model Non-Spatial Model

Variance Variance

Food Stores†

 Grocery Stores 0.94 0.82

 Supermarket Chains 0.54 0.37

 Supermarket Non-Chains 0.72 0.64

 Deli/Meat/Fish/Dairy 0.62 0.60

 Liquor Stores 0.18 0.14

 Alcohol Establishments 0.13 0.03

 Fast Food Chains 0.27 0.08

 Fast Food Non-Chains 0.26 0.07

 Restaurants 0.04 0.06

Recreational Facilities† 0.02 0.06

Land Use

 Residential Land Use (%) 0.62 0.62

 Commercial Land Use (%) 0.32 0.34

 Population Density (per km2) 0.56 0.46

Crime‡

 Outdoor Murders 0.26 0.27

 Indoor Murders 0.54 0.45

 Outdoor Criminal Offenses 0.48 0.34

 Indoor Criminal Offenses 0.28 0.26

 Outdoor Incivilities 0.20 0.34

 Indoor Incivilities 0.04 0.02

 Outdoor Assault and Battery 0.00 0.06

 Indoor Assault and Battery 0.00 0.08

†
measured in units per mile2

‡
measured in rates per 1,000 persons
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Table 4

Standard Deviation of Estimated Coefficients from Body Mass Index Analysis.

Spatial Model Non-Spatial Model

Standard Deviation Standard Deviation

City Neighborhoods 0.05 0.08

Neighborhood Safety 0.06 0.08

Commercialization 0.06 0.06
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