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Abstract

Kernel machine based association tests (KAT) have been increasingly used in testing the 

association between an outcome and a set of biological measurements due to its power to combine 

multiple weak signals of complex relationship with the outcome through the specification of a 

relevant kernel. Human genetic and microbiome association studies are two important applications 

of KAT. However, the classic KAT framework relies on large-sample theory, and 

conservativeness has been observed for small-sample studies, especially for microbiome 

association studies. The common approach for addressing the small-sample problem relies on 

computationally intensive resampling methods. Here, we derive an exact test for KAT with 

continuous traits, which resolves the small-sample conservatism of KAT without the need for 

resampling. The exact test has significantly improved power to detect association for microbiome 

studies. For binary traits, we propose a similar approximate test, and we show that the 

approximate test is very powerful for a wide range of kernels including common variant- and 

microbiome-based kernels, and the approximate test produces correct null distribution of 

association p-values for these kernels. In contrast, the sequence kernel association tests (SKAT) 

have slightly inflated genomic inflation factors after small-sample adjustment. Extensive 

simulations and application to a real microbiome association study are used to demonstrate the 

utility of our method.
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Introduction

Human genetic association studies, which identify associations between human genetic 

variation and phenotypic variation, have been instrumental in revealing the genetic 

architecture of human complex traits and diseases [McCarthy, et al. 2008]. Recently, the 
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human genetic association studies have been extended to the human microbiome, which 

consists of the collection of the microbial genomes associated with the human body, and 

have now been seen as the ‘extended’ human genome [Cho and Blaser 2012]. The human 

microbiome association studies thus aim to establish a link between the human microbiome 

and a phenotype and can improve our understanding of the non-human genetic component 

of complex traits and diseases. Although single feature (variant)-based association tests are 

still being used for both human genetic and microbiome association studies, joint testing of 

multiple features (e.g. multiple genetic variants from a gene or multiple species in a genus) 

has become increasingly popular due to its ability to increase the statistical power by 

reducing the multiple testing burden and by pooling individually weak signals.

One of the most successful joint tests is the kernel association test, wherein the genetic/

microbiome effects are specified by a kernel function [Kwee, et al. 2008; Lee, et al. 2012; 

Liu, et al. 2008; Liu, et al. 2007; Wu, et al. 2011a; Wu, et al. 2010; Wu, et al. 2011b]. The 

kernel framework allows flexible modeling of complex genetic/microbiome effects through 

the kernel function, easy adjustment of covariates, and analytic calculation of the p-value 

without permutation. Many forms of kernel association tests have been proposed, ranging 

from the sequence kernel association test (SKAT) for human genetic data, to the 

microbiome regression-based kernel association test (MiRKAT) for human microbiome data 

[Zhao, et al. 2015]. Kernel-based association tests share a common framework and are based 

on a score test which compares similarity in the features to similarity in the outcome. 

However, despite sharing a framework, the approach has evolved particularly with regard to 

how a p-value for association is computed. The original kernel association tests computed a 

p-value for association using moment matching, yet this sometimes led to inflated type I 

error. Thus, the SKAT modified the original kernel association tests to use an asymptotically 

exact distribution, which represents the current standard. It works sufficiently well for large 

sample size, for example, over 2,000 samples, but in practice, the sample size of DNA 

sequence data is still much smaller than array-based genotype data and it is not uncommon 

to have a sample size less than 200 for an exome sequencing study [Emond, et al. 2012]. 

This is also the case for microbiome data [Wu, et al. 2011a]. When the sample size is 

modest, SKAT is often conservative, leading to potential power loss to detect meaningful 

associations. The conservatism is worse for binary traits and when kernels are more 

complicated, as in microbiome profiling studies. For binary traits, Lee et al. [Lee, et al. 

2012] addressed the small-sample problem by using moment matching with resampling, yet 

this correction can over-correct and lead to inflated type I error and no correction has been 

previously published for continuous traits.

To address the problems with current approaches to p-value computation for kernel 

association tests with modest sample sizes, in this paper, we propose an exact test based on 

SKAT score statistic for quantitative traits, which resolves the small-sample problem of 

SKAT for quantitative traits. Then for binary traits, we propose an alternative approximate 

test based on modified SKAT score statistic to account for overdispersion. We show that the 

approximate test works sufficiently well for microbiome-based kernels without any 

resampling. In the following, we first introduce our proposed method and then compare it 

with SKAT (with/without small-sample adjustment) in both human genetic association 
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studies and microbiome association studies. We also apply our method to a real microbiome 

data to demonstrate its advantage.

Methods

Exact Test of SKAT for Quantitative Traits

For quantitative traits, we propose an “exact” method for small-sample inference. It does not 

depend on asymptotics, bootstrapping or permutation. Suppose y is the vector of phenotypes 

of n individuals, and X is the n × p covariance matrix including the intercept. Then the null 

model can be expressed as

where I is the n × n identity matrix, σ2I is the variance matrix of error ε. Then the score 

statistic in SKAT is computed as

where K is the n × n kernel matrix, ŷ0 is the fitted phenotype value under the null model, 

i.e., ŷ0 = X(XT X)−1 XT y, and P0 = I − X(XT X)−1 XT is a projection matrix. Because P0KP0 

is a real symmetric matrix, the eigendecomposition can be written as UΛUT, where U is an 

orthogonal matrix and Λ is a diagonal matrix. , then z is a vector of independent 

standard normal variables. The score statistic becomes , where λi is the ith 

diagonal component of Λ and zi is the ith component of z. Therefore the score statistic 

follows a mixture of chi-squared distribution and the Davies method [Davies 1980] 

[Duchesne and De Micheaux 2010] can be used to produce an exact p-value, regardless of 

the sample size. In reality, σ2 is unknown and we can use a consistent estimate of σ2, such as 

the maximum likelihood estimate (MLE). In such case, the score statistic will asymptotically 

have a mixture of chi-squared distribution. Therefore, when the sample size is large, the 

asymptotic distribution is quite accurate. However, when the sample size is small, the 

variability of the estimate of σ2, which has a chi-squared distribution, will cause inaccurate 

approximation of the null distribution of the test statistic, leading to the apparent 

conservativeness using the Davies method. However, the conservativeness is not due to the 

Davies method per se but rather not accounting for the variability of the σ2 estimate. If we 

plug in the MLE estimate σ̂2, the score statistic becomes

which is a ratio of two quadratic forms of normal variables. To derive the p-value, we have

Chen et al. Page 3

Genet Epidemiol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where r is the observed (scaled) score statistic using σ̂2. Therefore, the p-value depends on 

the distribution of εT (P0KP0 − rP0)ε/σ2, which has an exact mixture of chi-squared 

distribution because P0KP0 − rP0 is also a real symmetric matrix. Note that the Davies 

method only requires a linear combination of independent chi-squared random variables, 

and it can be applied even if some eigenvalues of (P0KP0 − rP0) are negative.

An Alternative Test of SKAT for Binary Traits

For binary traits, we do not have an equivalent exact method. However, we can derive an 

approximate method that is similar to the exact test for quantitative traits that accounts for 

trait overdispersion that mitigates the type I error problems associated with kernel 

association tests with binary traits. Compared to the moment matching method used in [Lee, 

et al. 2012], the proposed method does not require resampling, and yet it alleviates the 

conservatism for many kernels including the common variant- and microbiome-based 

kernels as shown by simulations and real data.

Suppose y is the vector of phenotypes of n individuals, 0 indicates controls and 1 indicates 

cases. The null model is

where μi = P(yi = 1), (Xγ)i denotes the ith element of Xγ. The original SKAT test statistic for 

binary traits assumes no overdispersion (dispersion parameter ϕ = 1 for binomial 

distribution) and has the following form

where K is the n × n kernel matrix, and ŷ0 is the vector of fitted probabilities under the null 

model. Here we instead propose a modified score statistic

to account for potential overdispersion, which is commonly seen in real data due to 

unmodelled risk factors in the link function.

We estimate ϕ based on the iteratively reweighted least squares (IRLS) algorithm for 

generalized linear models. The tth step of IRLS can be expressed as solving the linear model
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where ỹt is the working response, σ2 = ϕ the dispersion parameter, and W̃t is the diagonal 

weight matrix with  [McCullagh and Nelder 1989]. We drop the superscript 

t to denote corresponding quantities at convergence, and let D be a diagonal matrix with the 

ith diagonal element μ̃
i (1 − μ̃

i). Our proposed score statistic for binary traits accounting for 

overdispersion is then equivalent to

where σ̂2 is the dispersion estimate at convergence based on reweighted least squares. If we 

define ỹ* = W̃1/2ỹ, X* = W1̃/2 X and ε* = W1̃/2ε, the linear model becomes

and

This form is the same as that for the quantitative traits, and we thus have similar results as

where P0 = I − X* (X*T X*)−1 . Assuming the 

normality of ε*, the p-value can be calculated using Davies method based on

where r is the observed score statistic of R. Because our method is based on the normal 

approximation of the logistic model at convergence, it is not an exact test. Considering the 

overdispersion mitigates the conservatism due to small-sample even if no overdispersion 

really exists as shown by simulations.

Simulation Study

Human Genetic Association—The simulation for human genetic association is similar 

to that used in Lee et al. [Lee, et al. 2012]. We generated 10,000 chromosomes/haplotypes 

over 1Mb regions based on the coalescent model using the software cosi [Schaffner, et al. 
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2005]. Then we randomly sampled a region of length 3 kb for each data set. Genotypes of 

each individual were generated by randomly sampling two haplotypes.

Type I error Simulations: We simulated both quantitative traits and binary traits for case-

control design. For quantitative traits, we used the linear model for individual i:

where yi was the phenotype, x1i and x2i were two covariates, and x1i followed a standard 

normal distribution, x2i followed a Bernoulli distribution with probability 0.5, ei followed a 

standard normal distribution. For binary traits, we used the logistic model for individual i:

where P(yi = 1) is the probability of being a case, x1i and x2i had the same distribution as in 

the quantitative model, γ0 was set to a value so that the prevalence P(yi = 1) was 0.01. The 

same number of cases and controls were sampled in each data set.

We considered both linear and weighted linear kernel for genotype data. For a linear kernel, 

K = GGT, where Gn×m is the genotype matrix of n individuals and m variants. For linear 

weighted kernel, K = GWWGT, where W is a diagonal matrix with weights for each variant. 

Two scenarios were simulated. For the first scenario, both common and rare variants were 

used with the linear weighted kernel. The weight function used the default beta distribution 

density function, specifically, wj = Beta(pj; a1, a2), where pj was the estimated minor allele 

frequency (MAF) for SNP j using all cases and controls, a1 = 1 and a2 = 25. Because 

common variants were heavily down-weighted, the results were influenced mainly by rare 

variants. For the second scenario, only common variants with MAF > 0.05 were used with 

the linear kernel. For each scenario, we considered three different total sample sizes: 50, 

100, and 200. To save computing time, as in Lee et al. [Lee, et al. 2012], we simulated 500 

phenotype sets for each genotype set. A total of 107 phenotypes were simulated. Type I error 

was estimated as the proportion of p-values less than the nominal level α. In order to better 

characterize the inflation and conservativeness, we also provided a 95% confidence interval 

(CI) of the estimated type I errors. Since by simulation each genotype corresponded to 500 

phenotypes, the p-values from the same genotype data were dependent, and the number of 

rejected hypotheses at a given α will not follow a binomial distribution. We thus used a 

block bootstrap approach to calculate CI. These 500 p-values were treated as a block 

(resampling unit) in bootstrap, and 1,000 bootstrap samples were used to estimate the 95% 

CI (2.5 – 97.5 percentile).

Power Simulations: We added the effects of causal variants into the null model to form the 

alternative model. Specifically for individual i, for quantitative traits:
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and for binary traits:

where (β1, …, βs) were the effect size of the corresponding causal genotypes (gi1, …, gis). 

Genotypes were additively coded as 0, 1, and 2. The rest were the same as in the null model.

We also considered three scenarios. For the first scenario, all candidate causal variants were 

rare variants with true MAF < 0.03. We randomly selected 20% of these candidate causal 

variants as causal variants. Following Lee et al. [Lee, et al. 2012], the effect sizes were 

specified using |βj| = c|log10(pj)|/2, where pj was the MAF of variant j. For quantitative traits, 

we set c = log(5); for binary traits, c = log(7). We chose 80% of the causal variants to be 

deleterious, i.e., positive sign of βj, and the rest were protective, i.e., negative sign of βj. For 

the second scenario, the causal variants were common variants (true MAF > 0.05). We 

simulated 1 and 3 common causal variants. For a proper range of power in comparison, for 

quantitative traits, we set c = log(5) for 1 causal variant and c = log(2.5) for 3 causal 

variants. For binary traits, we set c = log(10) for 1 causal variant and c = log(7) for 3 causal 

variants. All common causal variants were deleterious. For the third scenario, both the rare 

and common variants were causal. The settings for the rare and common causal variants 

were the same as the first and second scenarios, respectively, except that we only simulated 

1 common causal variant. We used the weighted linear kernel for the first scenario and 

linear kernel for the second. Both kernels were used for the third scenario. We simulated 103 

data sets for each setting and the power was estimated as the proportion of p-values less than 

the nominal level α.

Human Microbiome Association—We simulated microbiome datasets according to the 

method used in [Chen and Li 2013] and [Zhao, et al. 2015], which has been shown to 

generate simulated data reflective of real Operational Taxonomic Units (OTU) counts. 

OTUs are clustered sequence units for 16S rRNA gene targeted microbiome sequencing 

study [Caporaso, et al. 2010], and are proxies for biological species. Specifically, we 

simulated datasets with a total sample size of 50, 100, and 200, and generated the OTU 

counts for each sample from a Dirichlet-multinomial distribution with the parameters 

estimated from a real upper respiratory tract microbiome dataset, which consists of 856 

OTUs measured on each of 60 samples [Charlson, et al. 2010]. To conduct type I error and 

power analysis, we simulated the outcome using a similar method as the genetic association 

studies described above. The only difference is that the outcome was related to a cluster of 

taxa that depend on a phylogenetic tree. For microbiome data, bacterial species exhibit a 

hierarchical clustering pattern, and the outcome is usually related to the abundance of a 

cluster of species such as species from the same genus. To reflect this, we partitioned the 

species into 20 clusters based on the patristic distances (sum of branch lengths on the 

phylogenetic tree) among the species. We used partitioning around medoid (PAM) for the 

clustering [Reynolds, et al. 2006], which is a general clustering algorithm based on a 

distance matrix. Then we let the outcome depend on the abundance of one cluster. 
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Specifically, we chose a moderately abundant OTU cluster that constituted 3.7% of the total 

OTU reads to be related to the outcome. For continuous traits, we simulated under the model

Where x1i followed a standard normal distribution, x2i followed a Bernoulli distribution with 

probability 0.5 and standardized to have mean 0 and variance 1, A is the set of OTU indices 

from the cluster, β is the effect size, and zij is the OTU relative abundance (proportion). 

Similarly, for binary traits, we have

We considered using the weighted and unweighted UniFrac kernels (Kw and Ku, 

respectively), the Bray-Curtis kernel (KBC), which were converted from the corresponding 

distances based on the distance-to-kernel approach in Zhao et al. [Zhao, et al. 2015]. 

Specifically, let Dist be the pairwise n × n distance matrix, then it can be used to calculate 

the kernel matrix as:

where I is the n × n identity matrix, 1 is a n × 1 vector with all 1s. Dist2 is the element-wise 

square of Dist. The three corresponding distances used for kernels are the most used 

ecological distance metrics for microbiome data and represent a range of different classes of 

distances [Chen, et al. 2012]. Consider two microbiome communities A and B and suppose 

that we have a rooted phylogenetic tree with p taxa and m branches. Let bi be the length of 

the branch i and ,  are the taxa proportions descending from the branch i for 

community A and B, respectively. The UniFrac-based distance is defined as

where I(x) = 0 if x = 0, I(x) = 1 elsewhere. The weighted UniFrac distance is defined as

The Bray-Curtis distance is defined on the leaf nodes
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The UniFrac-based distance utilizes phylogenetic relationships, whereas the Bray-Curtis 

distance does not, and the weighted UniFrac and Bray-Curtis distance accounts for 

abundance information, whereas the unweighted UniFrac distance does not.

To evaluate the type I error, we set the effect size to 0 and generated 105 data sets for each 

setting. Type I error was estimated as the proportion of p-values less than the nominal level 

α. We also calculated the 95% CI assuming the type I error is α. Because of the 

independence among replicated data sets, the number of rejected hypothesis has a binomial 

distribution, based on which 95% CI was calculated. To evaluate the power, we set different 

effect sizes so the power varied between 0 and 1. We simulated 103 data sets for each setting 

and the power was estimated as the proportion of p-values less than the nominal level α.

For quantitative traits, there is no default small-sample adjustment, and the original SKAT 

on quantitative traits was denoted by uSKAT. For binary traits, the original SKAT without 

small-sample adjustment was denoted by uSKAT, SKAT with small-sample adjustment was 

denoted by SKAT, our method was denoted by aSKAT (adjusted SKAT).

Results

Results on Quantitative Traits

Type I Error and Power of Human Genetic Association—Table 1 shows the 

empirical type I error on both common and rare variants using the linear weighted kernel. 

Because of the use of weights, the results were influenced mainly by rare variants. The exact 

test used by aSKAT had type I errors very close to different nominal levels for different 

sample sizes. Only two 95% CIs were above, but still close to, the nominal level, which was 

probably due to statistical fluctuation. On the contrary, uSKAT was conservative, which had 

much smaller type I errors and the upper endpoint of the 95% CI was always lower than the 

nominal level. Figure 1 shows the power comparison when the causal variants were rare. 

The power of aSKAT was consistently larger than uSKAT. The increase in power can be 

0.04 in absolute terms. Table 2 shows the empirical type I error on common variants using 

the linear kernel. Again aSKAT controlled the type I errors at nominal levels, and uSKAT 

was conservative. Figure 2 shows the power comparison when there was one common 

causal variant. aSKAT had consistently improved power than uSKAT. Figure S1 in 

supplementary material shows the power comparison when there were three common causal 

variants and the pattern was similar. Figure S2 shows the power comparison when there 

were both rare and common causal variants using the weighted linear kernel. Due to 

downweighting on common variants, the power was mainly influenced by the rare variants 

and has similar pattern as that in Figure 1. Figure S3 shows the power comparison when 

there were both rare and common causal variants using the linear kernel. Due to no 

upweighting on rare variants, the power was mainly influenced by the common variants and 

has similar pattern as that in Figure 2.

Type I Error and Power of Human Microbiome Association—Table 3 shows the 

empirical type I error using different distance functions. aSKAT maintained the type I error 

at desired levels, and all empirical type I error fell into the 95% CI assuming the nominal 

level. uSKAT had conservative type I errors as expected, and in some cases very 
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conservative. For example, when the total sample size was 50 and the nominal level was 

10−3, the type I error of uSKAT using Kw distance was 10−5. Therefore we expected the 

power gain would be much larger in the microbiome genetic association than that in human 

genetic association. Figure 3 shows the power comparison using significance level 0.05. As 

expected, the power difference was very dramatic. For example, when the total sample size 

was 50 and the effect size was 1, the power of uSKAT was 0.382, and the power of aSKAT 

was 0.626, an increase of 0.244. Even for sample size of 200, the increase of power can be 

over 0.10 depending on different distance functions.

In summary, for quantitative traits, aSKAT controled the type I error at desired levels due to 

its exactness. aSKAT had consistently higher power than uSKAT with similar 

computational cost. The increase of power was huge for microbiome association studies.

Results on Binary Traits

Type I Error and Power of Human Genetic Association—Table 4 shows the 

empirical type I error for binary traits on both common and rare variants using the linear 

weighted kernel. Because of the use of weights, the results were influenced mainly by rare 

variants. uSKAT and aSKAT were both conservative, but aSKAT was less conservative for 

α < 0.05. Due to the small-sample adjustment, SKAT was much less conservative than 

uSKAT and aSKAT. However, we found that when the nominal level was relatively large, 

e.g., 0.05 or 0.01, the empirical type I error of SKAT was slightly anti-conservative. For 

example, when the total sample size was 50 and the nominal level was 0.05, SKAT had type 

I error 0.065, estimated from 107 replicates. For α=0.05 and 0.01, all 95% CIs of SKAT 

were above the nominal level. Figure 4 shows the power comparison when the causal 

variants were rare. SKAT had the highest power in all scenarios. The increase of power can 

be over 0.10 than uSKAT and aSKAT. uSKAT and aSKAT had similar power, even though 

aSKAT usually had slightly higher power than uSKAT.

Table 5 shows the empirical type I error for common variants. The pattern was different 

from that of rare variants. When α ≥ 10−3, all methods showed no conservativeness, 

however, the 95% CIs for SKAT were all above the nominal level 0.05 for all three different 

sample sizes, which indicates inflated type I error. When α was 10−4 or lower, uSKAT was 

the most conservative, aSKAT was less conservative and usually had type I error close to 

that of SKAT. However, the differences of all three methods were not as large as in the 

scenario of rare variants. Figure 5 shows the power comparison when there was one 

common causal variant. All three methods had similar performance. SKAT had slightly 

higher power than aSKAT, and aSKAT usually had slightly higher power than uSKAT. 

Figure S4 in supplementary material shows the power comparison when there were three 

common causal variants and the pattern was similar. Figure S5 and S6 shows the power 

comparison when there were both rare and common causal variants using the weighted 

linear kernel and the linear kernel, respectively. Due to specific weighting on rare and 

common variants, the power pattern in Figure S5 is similar as in Figure 4, and the power 

pattern in Figure S6 is similar as in Figure 5.

For common variants association, though the power difference is modest between methods, 

an advantage of using aSKAT is that under the null hypothesis, its QQ-plot behaves better 
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than uSKAT and SKAT when the sample size is small. Figure 6 shows the QQ-plot where 

the total sample size is 50 for binary traits. On the original scale, when the p-values were 

large, uSKAT and SKAT had smaller than expected p-values. On the log10 scale, SKAT 

had larger deviation from the expected values in the middle than aSKAT. To assess the 

deviation, we adapted the concept of inflation indicator. Specifically, we first converted 

these p-values to test statistics assuming a χ2(1) distribution, then we took the median test 

statistic and divided it by 0.455, which is the theoretic median of χ2(1). If the median of 

these p-values is close to 0.5, the inflation indicator should be close to 1. The inflation 

indicator λ was 1.16 for uSKAT, 1.14 for SKAT and 1 for aSKAT. Therefore for common 

variants, when the sample size is small, QQ-plot of aSKAT behaves as expected, while 

uSKAT and SKAT can produce misleading QQ-plots.

Type I Error and Power of Human Microbiome Association—Table 6 shows the 

empirical type I error using different distance functions. The pattern was more similar to the 

scenario of common variants in human genetic association. aSKAT had type I errors close to 

the nominal levels, though sometimes slightly conservative. For SKAT, there were several 

empirical type I errors above the desired 95% CIs. uSKAT was more conservative than 

aSKAT and SKAT. Figure 7 shows the power comparison. When the total sample size was 

100 and 200, aSKAT and SKAT almost overlapped with each other. Both showed much 

higher power than uSKAT. When the total sample size was 50, SKAT had slightly higher 

power than aSKAT when the effect size was large. The increase of power was very modest 

(0.03 or 0.04). Both SKAT and aSKAT had much larger power than uSKAT, where the 

increase of power can be over 0.20.

In summary, for rare variants using the linear weighted kernel, SKAT had much higher 

power than both uSKAT and aSKAT. However, for common variants in human genetic 

association, as well as microbiome association, aSKAT had power similar or close to SKAT 

with a huge reduction in computational cost. Compared to uSKAT, being similar in the 

computational cost, aSKAT had the power increase most obvious in the application of 

microbiome genetic association.

Type I Error and Power when the model is misspecified—We studied the 

influence on type I error and power when the model assumptions were violated. All 

simulations were the same as in the microbiome association with quantitative traits except 

the following three types of misspecifications. Firstly, we replaced the normal error term 

with a heavy-tailed t distribution with degree of freedom (df) 1 and 5. The type I errors were 

reported in Table S1 (supplementary information). All methods showed no inflation on type 

I error even though all of them assume a normal distribution for the error term. However, the 

power was influenced by the misspecification as shown in Figure S7 (supplementary 

information). When the true distribution (t distribution with 1 df) was far from normal, all 

methods had very low power. When the true distribution (t distribution with 5 df) was closer 

to normal, the power pattern was similar to that using a normal error term, and aSKAT 

achieved higher power than uSKAT.

Secondly, we simulated nonlinear covariate effect. Specifically, the true model used was
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while only the linear terms were modeled in testing. The type I errors were reported in Table 

S2 (supplementary information), where all methods showed no inflation of type I error. The 

power was shown in Figure S8 (supplementary information), where aSKAT still achieved 

higher power than uSKAT. If there are strong nonlinear effects from covariates, we 

anticipate that all methods will have low power, similar as that in the first type of 

misspecification.

Thirdly, we simulated an interaction effect between the covariate and the genetic 

components. Specifically, the true model used was

where the interaction term was not included in the model for testing. The power was shown 

in Figure S9, where aSKAT achieved higher power than uSKAT.

In summary, when the model assumptions were slightly violated as shown above, aSKAT 

achieved higher power than uSKAT while controlling the type I error; when the true model 

was very different from the assumption, all methods had low power. This illustrates the 

importance of careful model selection and diagnostics.

Results on Real Data

To demonstrate the small-sample performance of our proposed method, we applied our 

method to a microbiome data set from a study of long-term dietary effects on the human gut 

microbiome [Wu, et al. 2011a]. One goal of the study was to identify nutrients associated 

with the gut microbiome composition. In this study, both gut microbiome data and nutrient 

intake data were available for 98 healthy subjects. The gut microbiome data was produced 

by sequencing the V1–V2 region of the bacterial 16S rRNA gene using 454/Roche Titanium 

technology after the bacterial DNA was extracted from the stool and PCR amplified. 

Multiplexed 454 pyrosequencing generated about 900,000 high quality, partial (~ 370 bp) 

16S rRNA gene sequences. These sequences were analyzed using the Qiime pipeline 

[Caporaso, et al. 2010], where the sequences were clustered at 97% sequence identity into 

OTUs. Each OTU was represented by a DNA sequence, which was used to build a 

phylogenetic tree. Based on the OTU abundance data and the phylogenetic tree, we 

calculated the three most used distance metrics for microbiome data: the nonphylogeny-

based Bray-Curtis distance and the phylogeny-based UniFrac distances (unweighted and 

weighted). The study also measured the intake amounts of 214 nutrients, calculated based on 

a carefully designed food frequency questionnaire. The nutrient data was further 

standardized against total caloric intake by regressing the nutrient intake on the total caloric 

intake and taking residuals. We converted the distance matrices into kernel matrices using 

the same method from [Zhao, et al. 2015] and conducted kernel-based association tests for 
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these 214 nutrients separately. We compared aSKAT and SKAT to a permutation method 

(105 permutations), where we permuted the rows (and corresponding columns) of the kernel 

matrix to get a permutation p-value based on the score statistic. The permutation p-values 

were used as benchmarks. The original nutrient intake values were continuous and, to 

demonstrate the performance of aSKAT on binary traits, we also discretized the nutrient 

intake data into “Low” and “High” intake using the median value as the cutoff. The p-values 

from aSKAT agreed perfectly with the permutation p-values in both large and small p-value 

regions across the three distance-based kernels, see Figure 8. For the continuous traits, 

aSKAT produced “exact” p-values and we had expected perfect correlation with the 

permutation p-values under any type of kernel. For binary traits, however, the aSKAT p-

value is approximate and the performance depends on the type of kernel. Consistent with the 

simulation results, binary-case aSKAT performed adequately for microbiome-based kernels 

in this application. In contrast, the continuous-case SKAT, which does not take into account 

the estimation uncertainty of the error variance, was slightly anti-conservative in large p-

value region and conservative in small p-value region. The problem was most serious for 

unweighted UniFrac-based kernel, indicating potential power loss for SKAT under certain 

scenarios. For the binary-case SKAT, which uses a small-sample correction strategy, the 

SKAT p-values agreed well with the permutation-based p-values in the tail region while a 

small inflation was observed in the non-tail region. In computational aspect, aSKAT was 

much faster and completed the analysis in less than 1 second on a desktop computer since it 

does not reply on permutation or bootstrapping. On the other hand, SKAT, which employs 

computationally intensive bootstrapping to estimate the moments, took around 300 seconds 

to complete the analysis since it needed to fit the null model for each nutrient. In summary, 

for the continuous traits, aSKAT produced “exact” p-values and was more powerful than 

SKAT for small-sample association studies. For the binary traits, aSKAT was more 

computationally efficient and had comparable performance to SKAT for microbiome 

association studies.

Discussion

We proposed two improved kernel association tests based on SKAT. For quantitative traits, 

it is an exact test and completely solves the small-sample problem of SKAT. The increase of 

power was more dramatic for microbiome association studies, though the increase of power 

in human genetic association studies was limited. The exact test works on any type of kernel 

and thus is recommended for all kernel-based association tests for quantitative traits.

For binary traits, the proposed test is approximate and the association p-values are calculated 

analytically without using any resampling method. It worked much better than the original 

SKAT without small-sample adjustment in terms of both type I error control and power for 

all scenarios considered in the simulations. Interestingly, it also had similar results as SKAT 

with adjustment for common variant- or microbiome-based kernels, though no resampling 

was performed to adjust for small sample sizes. The computation speed was therefore much 

faster than SKAT with small-sample adjustment. For rare variants, when the sample size 

was small, SKAT with adjustment still had the best results, even though it was more time-

consuming. However, in our simulations we found that the result of SKAT with adjustment 

could be anti-conservative when the nominal significance level was relatively large, e.g., 
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0.05. This might be due to the fact that the small-sample adjustment was focused on the tail 

region at the slight sacrifice of the accuracy in the non-tail region. The consequence was the 

slight inflation of the genomic inflation factor, which is typically used to assess the potential 

confounding in genetic association studies such as population stratification. Therefore, users 

have to be aware of this artifact when performing sequence-based genetic association studies 

using SKAT. Further research on binary traits and rare variants in the small-sample setting 

may be needed.

In principle, the proposed method can be extended to other SKAT-based tests since it does 

not require any specific kernels. For example, we can apply the proposed method to SKAT-

O, where the only change is the kernel matrix [Lee, et al. 2012]. Another example is the 

combined test of both rare and common variants as implemented in SKAT-C, which is based 

on a different type of kernel matrix [Ionita-Laza, et al. 2013]. The method can also be 

extended to testing the global gene/environment effect in presence of GxE interaction. For 

example, we can use a sum of three kernels, one for the genotypes, one for the specific 

environment covariates and one for the GxE effects [Wang, et al. 2015]. The null hypothesis 

for the global test is that there is no effect for the genetic component, no effect for the 

specific environment covariates and no effect for the interaction between the genetic 

component and the specific environment covariates. Because the sum of the three kernels 

can be viewed as a new kernel, the extension of our method to this global test is 

straightforward. However, extension to testing GxE effects directly conditioning on genetic 

and environmental effects may need further investigation.

We anticipate many other types of kernel association tests may benefit from our method. 

Association tests between a phenotype and gene expression from a gene pathway or CpG 

methylation in a gene region are both potential applications of our methods. These data are 

more like the common variants scenario in human genetic association and we expect our 

method will work well, even for binary traits.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Power comparison of quantitative traits with rare causal variants in human genetic 

association studies. The linear weighted kernel was used. 20% of the rare variants (MAF < 

3%) were causal. 80% of the causal variants were deleterious. Total sample sizes considered 

were 50, 100 and 200. Significance levels considered were 0.01, 0.001, 10−4 and 2.5×10−6. 

103 replicates were used to estimate the power.
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Figure 2. 
Power comparison of quantitative traits with one common causal variant in human genetic 

association studies. The linear kernel was used. The causal variant was randomly sampled 

with MAF > 0.05. Total sample sizes considered were 50, 100 and 200. Significance levels 

considered were 0.01, 0.001, 10−4 and 2.5×10−6. 103 replicates were used to estimate the 

power.
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Figure 3. 
Power comparison of quantitative traits in microbiome genetic association studies. Kw 

denotes the kernel from the weighted phylogeny-based UniFrac distances, Ku denotes the 

kernel from the unweighted phylogeny-based UniFrac distances, and KBC denotes the 

kernel from the nonphylogeny-based Bray-Curtis distance. Total sample sizes considered 

were 50, 100 and 200. Significance level was set to 0.05. 103 replicates were used to 

estimate the power.
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Figure 4. 
Power comparison of binary traits with rare causal variants in human genetic association 

studies. The linear weighted kernel was used. 20% of the rare variants (MAF < 3%) were 

causal. 80% of the causal variants were deleterious. Total sample sizes considered were 50, 

100 and 200. Significance levels considered were 0.01, 0.001, 10−4 and 2.5×10−6. 103 

replicates were used to estimate the power.
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Figure 5. 
Power comparison of binary traits with one common causal variant in human genetic 

association studies. The linear kernel was used. The causal variant was randomly sampled 

with MAF > 0.05. Total sample sizes considered were 50, 100 and 200. Significance levels 

considered were 0.01, 0.001, 10−4 and 2.5×10−6. 103 replicates were used to estimate the 

power.
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Figure 6. 
QQ-plots of different methods on binary traits and common variants. The total sample size 

was 50. The x- axis and y-axis of the upper 3 plots were on original scale. The x- axis and y-

axis of the lower 3 plots were on log10 scale. The inflation indicator lambda was calculated 

for each method.
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Figure 7. 
Power comparison of binary traits in microbiome genetic association studies. Kw denotes 

the kernel from the weighted phylogeny-based UniFrac distances, Ku denotes the kernel 

from the unweighted phylogeny-based UniFrac distances, and KBC denotes the kernel from 

the nonphylogeny-based Bray-Curtis distance. Total sample sizes considered were 50, 100 

and 200. Significance level was set to 0.05. 103 replicates were used to estimate the power.
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Figure 8. 
Comparison of SKAT and aSKAT on a real microbiome association study of nutrient intake 

and the gut microbiome composition. The nutrient data were discretized into binary data to 

illustrate the performance on binary traits. The original scale p-values were plotted in (A) 

and the log scale p-values were plotted in (B). In each subfigure, the upper panel shows the 

result on continuous traits, and the lower panel shows the result on binary traits.
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