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Neurobiology of Disease

Selective VIP Receptor Agonists Facilitate Immune
Transformation for Dopaminergic Neuroprotection in
MPTP-Intoxicated Mice

Katherine E. Olson,' Lisa M. Kosloski-Bilek,' Kristi M. Anderson,' Breha J. Diggs,> Barbara E. Clark,’
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Vasoactive intestinal peptide (VIP) mediates a broad range of biological responses by activating two related receptors, VIP receptor 1 and
2 (VIPR1 and VIPR?2). Although the use of native VIP facilitates neuroprotection, clinical application of the hormone is limited due to
VIP’s rapid metabolism and inability to distinguish between VIPR1 and VIPR?2 receptors. In addition, activation of both receptors by
therapeutics may increase adverse secondary toxicities. Therefore, we developed metabolically stable and receptor-selective agonists for
VIPRI1 and VIPR2 to improve pharmacokinetic and pharmacodynamic therapeutic end points. Selective agonists were investigated for
their abilities to protect mice against MPTP-induced neurodegeneration used to model Parkinson’s disease (PD). Survival of tyrosine
hydroxylase neurons in the substantia nigra was determined by stereological tests after MPTP intoxication in mice pretreated with either
VIPRI or VIPR2 agonist or after adoptive transfer of splenic cell populations from agonist-treated mice administered to MPTP-
intoxicated animals. Treatment with VIPR2 agonist or splenocytes from agonist-treated mice resulted in increased neuronal sparing.
Immunohistochemical tests showed that agonist-treated mice displayed reductions in microglial responses, with the most pronounced
effects in VIPR2 agonist-treated, MPTP-intoxicated mice. In parallel studies, we observed reductions in proinflammatory cytokine
release that included IL-17A, IL-6, and IFN-vy and increases in GM-CSF transcripts in CD4 * T cells recovered from VIPR2 agonist-treated
animals. Moreover, a phenotypic shift of effector to regulatory T cells was observed. These results support the use of VIPR2-selective
agonists as neuroprotective agents for PD treatment.
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/Signiﬁcance Statement \

Vasoactive intestinal peptide receptor 2 can elicit immune transformation in a model of Parkinson’s disease (PD). Such immu-
nomodulatory capabilities can lead to neuroprotection by attenuating microglial activation and by slowing degradation of neu-
ronal cell bodies and termini in MPTP-intoxicated mice. The protective mechanism arises from altering a Th1/Th2 immune
cytokine response into an anti-inflammatory and neuronal sparing profile. These results are directly applicable for the develop-
ment of novel PD therapies. j

Ha et al,, 2012; Mosley et al., 2012). These result in chronic im-
mune activation perpetuated by the extracellular accumulation

Introduction
Aberrant innate and adaptive immune responses are known dis-

ease initiators for Parkinson’s disease (PD) (Kosloski et al., 2010;
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a-synuclein (a-syn) (Benner et al., 2008), which induces an in-
flammatory neurotoxic cascade affecting nigrostriatal degenera-
tion (Mosley et al., 2006; Reynolds et al., 2007; Benner et al., 2008;
Reynolds et al., 2008; Huang et al., 2009; Reynolds et al., 2010).
Infiltrating CD4 * and CD8 ™ T cells, microglial activation, and
dopaminergic cell loss affect PD pathobiology that is observed in
mouse models and in postmortem human brain tissues (McGeer
etal., 1988; Fiszer et al., 1994; Kurkowska-Jastrzebska et al., 1999;
Bas et al., 2001; McLaughlin et al., 2006; Brochard et al., 2009).
PD patients present higher frequencies of effector T-cell pheno-
types with reduced regulatory T cell (Treg) function relative to
controls (Saunders et al., 2012). T-cell transformation during
progressive disease correlates with worsening movement clinical
scores. Results from other laboratories confirm our observations
of the presence of altered peripheral CD4 ™ T-cell phenotypes in
PD and support a role of T-cell subsets in PD progression and
disease control (Romero-Ramos et al., 2014).

Work performed in animal models demonstrates that adop-
tive transfer of effector T cells (Teffs) exacerbates neurodegenera-
tion (Benner et al., 2008; Kroenke et al., 2008), whereas transfer
of Tregs elicits neuroprotective responses (Reynolds et al., 2007;
Reynolds et al., 2008; Huang et al., 2009; Kosloski et al., 2013).
Treg-mediated protection from dopaminergic cell death is com-
plemented by decreased microglial reactivity. Our work and the
work of others has shown that granulocyte macrophage-colony
stimulating factor (GM-CSF) is neuroprotective in neuronal le-
sions (Schibitz et al., 2008; Kosloski et al., 2013; Kelso et al.,
2015). GM-CSF changes a neurotoxic response to a protective
regulatory response (Kosloski et al., 2013). Nonetheless, ex-
tended use of GM-CSF is associated with secondary toxicities
including bone pain, fatigue, and nausea (Vial and Descotes,
1995). Therefore, a search for alternative immune-modulating
treatment strategies that restore regulatory capacity is warranted.

One agent that could improve disease outcomes is vasoactive
intestinal peptide (VIP). VIP is the natural 28-residue agonist of
the G-protein-coupled receptors VIPR1 and VIPR2 (Reubi,
2003). It acts as a cytokine and neuropeptide by positively affect-
ing immune responses (Delgado et al., 2001; Delgado et al,,
2004b; Dickson and Finlayson, 2009). The immunomodulatory
capabilities of VIP support its potential to transform T-cell phe-
notypes, leading to protection in models of inflammatory and
autoimmune conditions (Delgado et al., 2000; Delgado et al.,
2001; Abad et al., 2003; Abad et al., 2005; Chen et al., 2008; Abad
et al., 2010; Deng et al., 2010). Therefore, we reasoned that VIP
could also transform adaptive immune responses in PD. Indeed,
prior studies show that VIP protects against neurotoxicity by
attenuating microglial activation and degradation of neuronal
cell bodies and termini in both MPTP- and 6-OHDA-induced
injuries (Offen et al., 2000; Delgado and Ganea, 2003; Reynolds et
al., 2010; Korkmaz et al., 2012; Tungel et al., 2012). The protective
mechanism arises from shifting the cytokine response into an
anti-inflammatory profile (Vial and Descotes, 1995; Delgado et
al., 1999; Delgado et al., 2004a; Delgado et al., 2005; Chen et al.,
2008; Reynolds et al., 2010).

Based on these findings, we reasoned that VIP-induced neu-
roprotective responses could be harnessed for clinical benefit if
the rapid proteolytic degradation and lack of VIPR selectivity of
the native hormone itself could be overcome (Domschke et al.,
1978). To this end, we developed backbone-modified analogs of
VIP that resist protease degradation and display selective ago-
nism of VIPR1 or VIPR2. Both VIPR1 and VIPR2 agonists caused
reductions in the release of proinflammatory cytokines from
stimulated CD4 " T cells. Transformation of Teff responses to
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anti-inflammatory and regulatory T-cell responses was also ob-
served; however, the VIPR2-selective agonist better augmented
Tregactivity and elicited a greater neuroprotective response, thus
providing evidence for its potential to ameliorate PD.

Materials and Methods

Peptide synthesis and purification. Protected a-amino acids, resins, and
2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluoropho-
stphate (HBTU) were from GL Biochem. Protected 3-homo-amino ac-
ids were from PepTech. ACPC was from Chemimpex and Polypeptide;
APC was from the organic chemistry facility at Fox Chase Cancer Center
(Lee et al., 2001). Native VIP and [D-p-Cl-Phe®, Leu'”]-VIP were from
Genway Biotech and Tocris Bioscience. All other reagents and solvents
were from Airgas, ChemImpex, Fisher Scientific, PharmcoAaper, or
Sigma-Aldrich and used as received. Reverse-phase HPLC (RP-HPLC)
was performed on Supelco and Phenomenex analytical or preparative
scale C18 columns using gradients between 0.1% trifluoracetic acid
(TFA) in water or in acetonitrile using Agilent 1260 and Varian Prostar
systems. Peptides were synthesized by standard Fmoc-solid phase syn-
thesis on Rink amide 4-methylbenzhydrylamine hydrochloride resin
with norleucine. Microwave irradiation was used as previously described
for peptide syntheses (Korendovych et al., 2010; Shandler et al., 2011).
Briefly, protected amino acids were activated with HBTU and N-
hydroxybenzotriazole in the presence of N,N-diisopropylethylamine
(DIEA) in N-methyl-2-pyrrolidone for coupling reactions. Deprotec-
tions were effected using 20% piperidine in dimethylformamide (DMF).
After the final deprotection, peptides were capped using acetic anhy-
dride/DIEA in DMF. After synthesis was complete, peptides were cleaved
from the resin using a solution of 95% TFA, 2.5% H,0, and 2.5% triiso-
propylsilane. Excess TFA was removed under a stream of nitrogen and
crude peptide was precipitated by the addition of cold ether. Crude pep-
tide solutions were purified using RP-HPLC on a preparative scale using
C18 columns. The identity and purity of peptides were confirmed by
mass spectrometry. After lyophilization, peptides were dissolved in TFE.
An Agilent diode array, model 8453, was used to determine concentra-
tions, where an extinction coefficient of 2980 M ~' cm ~' was applied.
Aliquots for assays were dried under vacuum, resuspended in 20% ace-
tonitrile/0.1% HCI, and lyophilized to exchange the counter ion. Dried
peptide was resuspended in either DMSO or 1% DMSO in PBS.
Cell-based assays. ECy, values for both VIPR1 and VIPR2 were deter-
mined in triplicate for each time point by monitoring intracellular cAAMP
concentrations of DiscoveRX’s PathHunter CHO-K1 VIPR1 B-arrestin
or CHO-K1 VIPR2 B-arrestin cell lines, respectively. To initiate assays,
2000 cells per well were plated into a 384-well plate and incubated 16 h in
F-12K medium supplemented with 10% FBS. Both cell lines were used
between two and five passages. The following day, each reconstituted
compound was diluted by 12 3-fold serial dilutions and added to the
plated cells. The final concentrations for each compound in the assay
wells ranged between 1 uM and 5.6 pm in 1% DMSO/PBS. After a 90 min
incubation period, the medium and compound were removed and intra-
cellular cAAMP concentrations were determined using the cAMP HiRange
Kit available from Cisbio. All kit components were used at concentra-
tions according to the manufacturer’s recommendation. In brief, this kit
functions by lysing the activated cells to release the intracellular cAMP,
which is then available to disrupt a FRET pair. Homogenous time re-
solved fluorescence signals were monitored using a Tecan M 1000 Pro in
TR-FRET mode. All TR-FRET parameters, including excitation, emis-
sion, delay, and integration times, were set according to the manufac-
turer’s recommendations and 100 flashes were used per well. The
fluorescence intensity of each well at both 620 and 665 nm was collected
and the ratio of these values was used to determined AF%, which is
defined as [(standard or sample ratio — ratio of the negative control)/
ratio of the negative control] X 100. The resulting data were calibrated to
a negative control, baseline corrected, and then normalized using the
average VIP response for each cell line as boundaries. This normalized
log inhibitor response curve was fit to a four-parameter sigmoidal dose—
response curve using least-squares fitting in the GraphPad Prism soft-
ware package with a boundary constraint that each ECs, fit was <10 ~®m.
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Proteinase and pepsin assays. The degradation rate of peptides was
measured in the context of multiple aggressive proteases. All data were
analyzed using analytical HPLC in triplicate for each time point. Pepsin
assay proteinase stock was prepared fresh using 185 nm pepsin, 34 mm
NaCl, and 84 mm HCl in deionized water. At time 0, either 2.8 nmol VIP
or 7.0 nmol hybridtide was rapidly diluted into 350 ul of proteinase
stock. Hybridtides were run at slightly higher concentrations to account
for HPLC line broadening while detecting. At specified increments, 50 ul
aliquots were removed and quenched with 10 ul of 1 m Tris, pH 9.5.
Quenched samples were evaluated by HPLC. Peak integrals were deter-
mined using Chemstation software and normalized to the average inte-
gral value for the first time point for each dataset independently. These
data were then fit to a single exponential decay using least-squares fitting
through GraphPad Prism. Chymotrypsin and Proteinase K assays were
performed equivalently to the pepsin assay with the following exceptions:
all solutions were made in PBS, chymotrypsin was used at 40 nM, Protei-
nase K was used at 34.6 nM, and all time points were quenched with 10 ul
of 99% acetonitrile/1% TFA.

Pharmacokinetic assays. For pharmacokinetic assays, 250 nmol/kg
doses of LBT-3627 in 50 ul of 1% DMSO in PBS were injected subcuta-
neously into the neck scruff of six 25-week-old C57BL/6 mice across two
study arms. This experimental design was followed to minimize blood
sampling performed on each animal. Group 1 was sampled at 0, 30, 75,
and 180 min and Group 2 was sampled at 15, 45, 120, and 300 min. At
these designated time points, 20 ul of blood was removed from the tail
vein using heparin-coated glass capillaries and mixed with mixtures of
protease inhibitors (Thermo Scientific) and sodium heparin (Sagent
Pharmaceuticals) at a 1X concentration and 1 IU/ml, respectively.
Whole blood samples were centrifuged for 10 min at 7200 X g to isolate
plasma, which was flash-frozen in liquid nitrogen and stored at —20°C.
To prepare samples for LC-MS/MS analysis, an acetonitrile precipitation
was performed by mixing 5 ul of thawed blood plasma with 15 ul of
acetonitrile containing 1% formic acid; 13.3 nm LBT-3393 was used as an
internal standard. This mixture was vortexed on a Vortex Genie 2 and
then centrifuged for removal of precipitated proteins. Ten microliters of
the supernatant was removed and transferred to an HPLC autosampler
vial containing 23 ul of H,O of 5% formic acid in water. The sample was
immediately vortexed before LC-MS/MS analysis.

For LC-MS/MS analysis, samples were transferred to an Agilent 1260
autosampler and held at 25°C until injection. Thirteen microliters of the
sample was injected onto a Phenomenex Kinetex 2.6 um C18 column
(50 X 3.0 mm) heated to 50°C. An acetonitrile gradient of 20-35%
formed over 2.5 min at 400 wl/min was used to isolated LBT-3627. Com-
pound elution was detected with an AB Sciex 4000 mass spectrometer
equipped with a Turbo V ion source. Two product ions were collected,
summed, and integrated with Analyst version 1.6. Integral intensities
were normalized to an internal standard. The data were fit to a single-
compartment model using nonlinear regression within GraphPad Prism
version 6.0f.

Animals, drug treatment, and MPTP intoxication. Male C57BL/6] mice,
6—8 weeks old (The Jackson Laboratory) were used as donor and recip-
ient mice in all studies. Donor and pretreated mice were administered
either VIP (human ovine porcine rat; Genway Biotech), LBT-3393
(VIPR1 agonist), LBT-3627 (VIPR2 agonist), or scrambled peptide that
were reconstituted using Dulbecco’s PBS (DPBS) and given at a dosage of
15 pg intraperitoneally daily for 5 d before MPTP intoxication. For an-
tagonist treatment, mice were administered with [D-p-Cl-Phe6,Leul7]-
VIP at 8 ug intraperitoneally daily for 5 d. Recipient mice received four
subcutaneous injections of vehicle (DPBS, 10 ml/kg body weight) or
MPTP-HCI (Sigma-Aldrich) at 16 mg of MPTP (free base)/kg body
weight in DPBS; each injection was given at 2 h intervals. Twelve hours
after MPTP intoxication, splenocytes were harvested from donors and
adoptively transferred to MPTP-intoxicated recipient mice (n = 5-8
mice per group per time point). MPTP safety precautions were followed
in accordance with the determined safety and handling protocol
(Jackson-Lewis and Przedborski, 2007) and all animal procedures were
in agreement with National Institutes of Health guidelines and approved
by the Institutional Animal Care and Use Committee of the University of
Nebraska Medical Center.
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Isolation and adoptive transfer of CD4™ T cells. After 5 d of peptide
administration, donor mice were killed and single-cell suspensions were
obtained from spleen and lymph nodes (brachial, axillary, cervical, and
inguinal) and resuspended to 50 X 10° cells/0.25 ml for adoptive trans-
fer. Recipient mice received 0.25 ml of cell suspension intravenously via
the tail within 12 h of the final MPTP injection. CD4 " T cells were
negatively selected using a CD4 * T-cell isolation kit IT for mouse as per
manufacturer’s instructions (Miltenyi Biotech) and CD4"CD25™ T
cells were selected using the CD4 *CD25 * Treg isolation kit for mouse,
with purity ranging from 65% to 90% depending on the assay. Isolated
CD4 " T-cell populations were used for RNA isolation, genomic analysis,
and cytometric bead assays. Freshly isolated CD4 *CD25 * Tregs were
used for carboxyfluorescein succinimidyl ester (CFSE) inhibition assays
(Quah and Parish, 2010).

CD11b™ microglia isolation. After MPTP intoxication or 5 d of peptide
pretreatment, mice (1 = 8) were killed and perfused with cold PBS. Ventral
midbrain was collected from each mouse and dissociated into single-cell
suspensions using a neural tissue dissociation kit (Miltenyi Biotech). Myelin
was removed using a 30% Percoll discontinuous gradientin DPBS. CD11b *
cells were magnetically isolated using PE-conjugated anti-CD11b followed
by supraparamagnetic bead-conjugated secondary antibodies. The labeled
cells were passed through a magnetic MS column (Miltenyi Biotech), as
described previously (Nikodemova and Watters, 2012).

Perfusions and immunohistochemistry. Under terminal anesthesia (Fa-
tal Plus, pentobarbital), mice were transcardially perfused with DPBS
followed by 4% paraformaldehyde/DPBS (Sigma-Aldrich). Whole
brains were harvested, processed, and flash-frozen to assess dopaminer-
gic neurons in the substantia nigra (SN) and termini in the striatum
(Benner et al., 2004). Frozen midbrain sections (30 wm) were immuno-
stained for tyrosine hydroxylase (TH) (anti-TH, 1:2000; EMD/Milli-
pore) and counterstained for Nissl substance. To assess microglial
reactivity, midbrain sections (30 wm) were immunostained for macro-
phage antigen complex-1 (Mac-1) (anti-CD11b, 1:1000; AbD Serotech).
To assess dopaminergic termini, striatal sections (30 um) were labeled
with anti-TH (1:1000; EMD Millipore), as described previously (Koslo-
ski et al., 2013). Within the SN, total numbers of Mac-1" cells,
TH "Nissl = (dopaminergic neurons), and TH ~Nissl © (nondopamin-
ergic neurons) were estimated by stereological analysis using Stereo In-
vestigator software with the optical fractionator module (MBF
Bioscicence). Density of dopaminergic neuron termini in the striatum
was determined by digital densitometry using Image] software as de-
scribed previously (Benner et al., 2004).

MPTP metabolism and RP-HPLC. Mice (n = 5) were intoxicated with
MPTP alone or pretreated for 5 d with VIP, LBT-3393, or LBT-3627
followed by MPTP intoxication. Within 90 min after the last injection of
MPTP, striatum and ventral midbrain were isolated and processed for
MPTP and 1-methyl-4-phenylpyridinium (MPP*) levels (Jackson-
Lewis and Przedborski, 2007). MPTP and MPP " levels were determined
using RP-HPLC analysis with UV illumination and detection at 245 and
295 nm, respectively.

RNA isolations and PCR. Mice were pretreated with PBS, VIP, LBT-
3393, or LBT-3627. CD4 " T cells or CD11b " microglia were harvested
and total RNA isolated with an RNeasy Mini Kit (Qiagen). All procedures
were performed under RNase-free conditions. cDNA was generated
from RNA using the RevertAid First Strand cDNA Synthesis kit (Thermo
Scientific) and preamplification was performed using the appropriate
primer mixes for RT? PCR arrays for Mouse T Helper Cell Differentia-
tion or Mouse Proinflammatory Response and Autoimmunity (Qiagen).
Quantitative RT-PCR was performed on an Eppendorf Mastercycler Re-
alplex EP as per the manufacturer’s instructions (Eppendorf). Data anal-
ysis was performed using RT? Profiler PCR Array web-based data
analysis software, version 3.5 (Qiagen). Gene networks were generated
using Ingenuity Pathway Analysis (IPA; Qiagen) and were designed using
the pathway designer tool.

Flow cytometric tests and cytokine assessments. Cell fractions were iso-
lated from total splenocytes after peptide treatment. Samples were per-
meabilized using the FoxP3 staining buffer set kit (eBioscience);
fluorescently labeled with monoclonal antibodies to CD4, CD25, CD8,
and FoxP3 (eBioscience) to assess T-cell frequencies within the total
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Table 1. Amino acid sequences for the peptides evaluated in these studies
VIP HSDAV FTDNY TRLRK QMAVK KYLNS ILN-NH,

LBT-3393 “Ac-HSDAV FTDNY tRLRk QLAVK KYINA [IN-NH,

Ro 25-1553 SAc-HSDAV FTENY TKLRK Q"LAAK K*YLND* LKKGG T-NH,
LBT-3627 “Ac-HxDAx FTExy TKLRK qLAAZ KYXND LKkGg T-NH,
LBT-SCR Ac-Tyxtx EgLKx GFKTK RHzKA qYLxL ANADk D-NH,

“133-amino acids are in bold lowercase font, cyclic (3-amino acids (X and Z) are indicated in bold, italic, lowercase
font. Lowercase “L” is underlined.

®A lactam bridge between K* and D* exists in Ro25-1553 along with a single norleucine, indicated by "L.

population; and analyzed using a FACSCalibur flow cytometer (BD Bio-
sciences). To assess cytokine production, CD4 ™ T cells were isolated,
stimulated using anti-CD3/CD28 beads, and cell supernatant was col-
lected at 12 h. Supernatants were assessed for cytokine levels using a
multianalyte Th1/Th2/Th17 cytometric bead array (BD Biosciences) and
data acquired using a FACSArray bioanalyzer (BD Biosciences) (Reyn-
olds et al., 2010).

Statistical analyses. All values are expressed as mean *+ SEM. Differ-
ences in between-group means were analyzed using ANOVA followed by
Fisher’s least significant difference post hoc test (GraphPad Software).
Comparisons of slope and elevation for CFSE inhibition assays were
evaluated using linear regression. Slopes for all lines were significantly
nonzero (p < 0.0005) and no line deviated from linearity as determined
by a runs test (p = 0.6667).

Results

Peptide stability

VIP elicits significant immune-based neuroprotection (Delgado
and Ganea, 2003; Reynolds et al., 2010; Waschek, 2013). How-
ever, two properties of the peptide hormone are problematic
from the perspective of therapeutic applications. First, VIP has a
short half-life as a result of its rapid proteolysis (Domschke et al.,
1978). Second, VIP activates two broadly distributed receptors,
VIPR1 and VIPR2. Although both are members of the B-family of
GPCRs (Reubi, 2003), it is not clear whether one or both recep-
tors is responsible for VIP’s neuroprotective activities. Therefore,
we developed analogs of VIP that resist protease degradation and
display receptor selectivity.

Our design centered on replacing a-amino acid with 8-amino
acid residues (Horne et al., 2008; Boersma et al., 2012; Cheloha et
al., 2014; Johnson et al., 2014). These a— substitutions alter the
covalent spacing between amide groups along the peptidic back-
bone, which disrupts protease recognition while largely retaining
native side chains and helical propensity (Johnson and Gellman,
2013). We focused on the impact of periodic a— substitution in
the C-terminal portion of VIP, which is presumed to be helical
in the bound state. These efforts led to LBT-3393 (Table 1), an
analog that contains five a—f3 replacements at residues Thr11,
Lys15, Val19, Leu23, and Leu27. At each replacement site, the 3
residue bears the native side chain. In addition, LBT-3393 con-
tains two « residue changes that are known to be well tolerated in
VIP, Metl7—Leu, and Ser25—Ala (Nicole et al., 2000; Igarashi et
al., 2002a,b). LBT-3393 is a full agonist of VIPRI, although
~100-fold less potent than VIP itself. LBT-3393 is highly selective
for VIPRI1 relative to VIPR2 (Fig. 1), exhibiting VIPR2 activity
only at the highest concentrations tested.

Exploration of a—f3 substitutions based on the sequence of
VIP did not deliver a VIPR2-selective agonist; therefore, we
turned to the highly VIPR2-selective peptide Ro 25-1553 (Table
1) as a starting point (O’Donnell et al., 1994a,b). Analog LBT-
3627 contains nine a—f3 substitutions (Table 1), some bearing
the native side chains (Tyr10, GIn16, Lys28, and Gly30) and oth-
ers having a cyclic structure. Dose-response assays showed that
LBT-3627 is a potent agonist of VIPR2 and highly selective for
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VIPR2 versus VIPR1 (Fig. 1). LBT-3627 is superior to LBT-3393
in terms of resistance to proteinase activities (Fig. 2A-C), which
translates to an improved in vivo pharmacokinetic profile (t. =
24.33 min; Fig. 2D) of the unformulated peptide compared with
previous human pharmacokinetic studies of VIP itself (£ <1
min) (Domschke et al., 1978).

VIPR agonists induce neuroprotective responses in
MPTP-intoxicated mice

Our prior work demonstrated immune modulatory and neuro-
protective activities for VIP (Reynolds et al., 2010). Indeed, pre-
vious work showed VIP induction of Treg with concomitant
anti-inflammatory and neuroprotective responses in MPTP-
intoxicated mice, as well as a broad number of animal models of
inflammatory and neurodegenerative diseases (Delgado et al.,
2001; Delgado and Ganea, 2003; Delgado et al., 2005; Chen et al.,
2008; Reynolds et al., 2010). To extend such observations with an
eye toward clinical translation, we assessed the abilities of the
designed VIPR agonists to promote dopaminergic neuronal sur-
vival in our mouse model of PD. Mice were treated for 5 d with
VIP, VIPR1 agonist (LBT-3393), or VIPR2 agonist (LBT-3627)
and then intoxicated with MPTP. After MPTP treatment, total
numbers of surviving dopaminergic neurons (TH *Nissl *) were
observed in the SN (Fig. 3A). The numbers of dopaminergic neu-
rons were determined by investigator-blinded stereological
analysis and showed a significant increase in surviving neuron
numbers associated with LBT-3627 treatment compared with
PBS control (Fig. 3B). After MPTP intoxication, dopaminergic
neuron numbers decreased from 9789 = 1061 to 4411 *+ 1228
(Fig. 3B). No differences in numbers of nondopaminergic neu-
rons (TH ~Nissl ©) were observed because these are not suscep-
tible to MPTP intoxication (Otto and Unsicker, 1993; Jackson-
Lewis and Przedborski, 2007; Choi et al., 2008). After VIPR
agonist pretreatments, MPTP-induced TH ™ neuronal loss was
attenuated for all treatment arms. Compared with MPTP alone,
VIP, LBT-3393 and LBT-3627 pretreatment increased dopami-
nergic neuronal numbers to 5264 *= 1441, 4600 *= 945, and
7339 = 2115, respectively. However, only LBT-3627 pretreat-
ment showed significant protective capability. In contrast, striatal
termini were not significantly spared by any peptide pretreat-
ments (Fig. 3C). To determine whether the observed neuropro-
tective effects are linked to specific peptide-receptor interactions,
ascrambled peptide (LBT-SCR) as a negative peptide control and
a specific VIPR antagonist ([D-p-Cl-Phe6,Leul7]-VIP) were
used (Pandol et al., 1986). These experiments were designed to
inhibit binding of VIP, LBT-3393, or LBT-3627 to VIP receptors
(Fig. 3D). Coadministration of [D-p-Cl-Phe6,Leul7]-VIP with
VIP, LBT-3393, or LBT-3627 ameliorated neuroprotection pre-
viously observed by VIP or VIPR2 agonist. Under these condi-
tions, the numbers of TH™ neurons were not significantly
different compared with those from mice treated with MPTP
alone or with MPTP and scrambled peptide. In addition, as ex-
pected, density of striatal termini remained decreased with antag-
onist treatment (Fig. 3E). To determine the neuroprotective
efficacy, we administered graded doses of LBT-3627 (1.5, 5, 15,
45, or 90 pg/dose; Fig. 3F). Compared with MPTP treatment
alone, the 1.5 ug/dose failed to elicit neuroprotection. Nonethe-
less, linear regression analysis suggests that there is a dose-
dependent effect in TH™ neuronal sparing with treatment at
higher doses (R* = 0.4614, p = 0.001). The lack of increased
protection observed at the 90 ug dose and the high variation
observed at 45 ug suggested the attainment of a putative toxic
threshold.
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LBT-3393 and LBT-3627 peptides are VIPRT and VIPR2 agonists. cAMP dose—response assays comparing native VIP with LBT-3393 (top) and LBT-3627 (bottom). Data were generated

by activating engineered CHO cells that overexpress either VIPR1 or VIPR2 with increasing concentrations of peptide and detecting intracellular cAMP activation using a two-component HTRF pair.
The data are reported as normalized AF%, which is a measure of the ratio of nonfluorescent cAMP released by the cells being interrogated, which competes out the fluorescently labeled cAMP
initially present at the beginning of the assay. Therefore, the AF% can be thought of as the inverse of a traditional dose—response curve. Higher concentrations of VIP (>10 ~®w) were excluded from
analysis as appropriate because they began to increase in relative value, likely a result of receptor internalization (data not shown). A best-fit dose-response curve could not be determined for

LBT-3393 reactivity with VIPR2-expressing CHO cells.

In a next series of experiments, we assessed the VIP-induced
cellular response. Donor mice were treated with VIP, LBT-3393,
or LBT-3627 for 5 d and splenocytes were isolated from donor
mice and adoptively transferred to MPTP-intoxicated recipient
mice. Dopaminergic neuronal numbers and striatal termini den-
sities were assessed 7 d after MPTP intoxication by immunohis-
tochemical analysis of TH * nigral neurons and striatal termini
(Fig. 4A). MPTP diminished TH "Nissl * neuronal counts from
13011 = 1025 to 3414 * 382 (Fig. 4C). MPTP-induced neuronal
loss was attenuated by adoptive transfer of splenocytes from non-
intoxicated donor mice treated with the VIPR agonists showing
significantly increased numbers of surviving dopaminergic neu-
rons in mice receiving spleen cells from donors treated with LBT-
3393 or LBT-3627, respectively, compared with those treated
with MPTP alone. Transfer of splenocytes from VIP-treated do-
nors increased dopaminergic neuronal survival by 14% and
transfer using splenocytes from LBT-3393- or LBT-3627-treated
mice increased dopaminergic neuronal survival by 25% and 54%,
respectively. The numbers of nondopaminergic TH ~Nissl © neu-
rons were not significantly different in any group treated with
MPTP regardless of adoptive transfer. Compared with treatment
with VIPR agonists before MPTP (Fig. 3C,E), striatal density

analysis showed similar, nonsignificant effects for striatal sparing
after adoptive transfer of splenocytes from mice treated with VIP
or LBT-3393; however, in contrast, adoptive transfer of spleno-
cytes from LBT-3627 treated donors showed significant sparing
of striatal termini (Fig. 4D).

Microglial reactivity is decreased with VIPR2 agonism

As previously discussed, microglial activation is associated with
neuronal cell death in human PD and in mouse models of disease
(Kurkowska-Jastrzebska et al., 1999; McLaughlin et al., 2006).
Whether the neuroprotective effects upon either adoptive trans-
fer from agonist-treated mice or agonist pretreatment of mice
before MPTP intoxication were associated with changes in mi-
croglial morphology and proinflammatory responses was inves-
tigated. As described previously, donor animals were treated
for 5 d before splenic cell isolation and adoptive transfer to recip-
ient MPTP-intoxicated mice (Fig. 4B). Microglial responses were
evaluated 2 d after MPTP intoxication, at the peak of the
MPTP-induced neuroinflammatory response (Koziorowski et
al., 2012). The SN was immunostained with Mac-1 antibody and
reactive microglia were quantified. Microglia exhibiting amoe-
boid morphology and intense Mac-1 expression were scored as
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reactive microglia, whereas those with reduced Mac-1 expression
and ramified structures were considered quiescent microglia.
Adoptive transfer of splenic cells from agonist-treated donors
was performed 12 hours after MPTP intoxication of recipient
animals. Replicate datasets revealed reduced microglial reactivity
in the SN after transfer of splenocytes from donors treated with
VIP or either VIPR agonist (Fig. 4B). Compared with PBS-treated
animals, MPTP intoxication increased the number of reactive
microglia from 2.2 * 0.45 to 29.55 * 6.9 cells/mm? (Fig. 4E).
Adoptive transfer of cells from animals treated with VIP signifi-
cantly reduced the numbers of activated microglia to 18.68 = 7.6
cells/mm?. Comparable transfers from animals treated with ei-
ther LBT-3393 or LBT-3627 scored at 23.95 = 5.7 and 18.3 £ 2.9
cells/mm?, respectively. However, only VIP or LBT-3627 treat-
ment elicited significant decreases in activated microglial num-
bers compared with MPTP alone.

Assessment of reactive microglia was also performed directly
in mice receiving peptide pretreatment (Fig. 5A). Stereological
analysis showed that the numbers of activated microglia in-
creased from 2.8 + 1.14 cells/mm? in PBS-treated mice to 44.5 =

6.9 cells/mm? after MPTP intoxication (Fig. 5A). VIP pretreat-
ment decreased reactive microglia to 25.05 = 2.2 cells/mm?* and
VIPR1 agonism (LBT-3393) showed similar numbers of acti-
vated microglia (28.9 = 3.3 cells/mm?). The largest reduction in
MPTP-induced reactive microglia was seen after pretreatment
with the VIPR2 agonist LBT-3627, which significantly decreased
the activated cell numbers to 18.05 =+ 7.4 cells/mm*. Moreover,
treatment with LBT-3627 diminished numbers of reactive micro-
glia to levels below those from mice treated with MPTP alone, but
also to levels below those from MPTP-intoxicated mice treated
with VIP or LBT-3393. Together, these findings indicate that
VIPR agonism can reduce reactive microgliosis associated with
MPTP intoxication along two different treatment schemes. These
favorable effects may be associated with reduced inflammatory
responses induced by VIP and VIPR agonists that in turn result in
neuroprotection.

Neuroprotective mechanisms for VIPR agonists
We showed that VIP treatment expands Treg numbers and elicits
anti-inflammatory and immune-suppressive responses by mod-
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Figure3. LBT-3627 pretreatmentis neuroprotective in vivo. A, Photomicrographs of TH * Nissl ™ neurons in the SN.and TH * striatal termini (STR) in mice treated with PBS, MPTP, or pretreated
with VIP, LBT-3393, or LBT-3627 before MPTP intoxication (40X image; scale bar, 200 wum). Sections were immunostained with anti-TH and HRP-conjugated secondary antibody and visualized
with DAB. SN sections were counterstained with thionin. B, Total numbers of surviving dopaminergic neurons (TH * Nissl *) and nondopaminergic neurons (TH ~Nissl *) in the SN after MPTP
treatmentalone or pretreatment with VIP, LBT-3393, or LBT-3627. Percentages of spared dopaminergic neurons are included for each treatment (10X image; scale bar, 1000 um). D, Total number
of TH *Nissl * and TH ~Nissl ™ neurons within the SN after MPTP intoxication alone or with pretreatment of [D-p-CI-Phe6,Leu17]-VIP (Antag), scrambled peptide (LBT-SCR), or coadministration
of VIP, LBT-3393, or LBT-3627 with antagonist. F, Dose—response for LBT-3627 at varying pretreatment doses of 1.5, 5, 15,45, and 90 r.g/dose followed by MPTP intoxication. G, Linear regression
analysis of dose—response, R? = 0.4614p = 0.001. C, E, Relative TH densitometry of striatal dopaminergic termini after pretreatment. B—F, Differences in means (*SEM, n = 8) were determined
where p << 0.05 compared with groups treated with PBS (a), MPTP (b), VIP (c), or LBT-3393 (d).
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Adoptive transfer of splenocytes from mice treated with VIPR agonists is neuroprotective. A, Photomicrographs of TH *Nissl * neurons in the SN and STR in mice treated with PBS,

MPTP, or MPTP followed by adoptive transfer of spleen cells from mice treated with VIP, LBT-3393, or LBT-3627 (40X image; scale bar, 200 r.m). Sections were immunostained with anti-TH and
HRP-conjugated secondary antibody and visualized with DAB. SN sections were counterstained with thionin. B, Representative photomicrographs of Mac-1 * microglia within the SN of mice treated
with PBS alone, MPTP alone, or MPTP-treated mice receiving splenocytes from donors treated with VIP, LBT-3393, or LBT-3627 (40X image; scale bar, 200 wm; inset = 200X image). C, Total
numbers of surviving dopaminergic neurons (TH *Nissl ) and nondopaminergic neurons (TH ~ Niss| *)in the SN after MPTP treatment and adoptive transfer (10X image; scale bar, 1000 pm).
D, Relative TH densitometry of striatal dopaminergic termini. £, Quantification of reactive microglia taken from midbrains 2 d after MPTP treatment. Sections were stained for Mac-1* microglia
using an anti-Mac-1 antibody, HRP-conjugated secondary antibody, and DAB for color visualization. Numbers of reactive microglia (amoeboid Mac-1 ) were determined by stereological analysis.
C, D, Differences in means (== SEM, n = 8) were determined where p << 0.05 compared with groups treated with PBS (a), MPTP (b), VIP (c), or LBT-3393 (d). E, Differences in means (= SEM, n =
5) were determined where p << 0.05 compared with groups treated with PBS (a) or MPTP alone (b).

ulating immune cell profiles and phenotypes (Reynolds et al.,
2010). Therefore, to understand the immune-modulating poten-
tial of VIPR agonism, we assessed the ability of VIPR agonists to
affect the levels of CD4 " T-cell populations and the function
CD4"CD25 " Tregs and/or to modulate cytokine production.
Flow cytometric analysis of total lymphocyte populations recov-
ered from animals after 5 d of agonist treatment revealed no
significant changes in either CD4 " (Fig. 5B) or CD4 "CD25™"
T-cell frequencies within the total lymphocyte population (Fig.
5C). We next evaluated the Treg function after peptide treatment
as the capacity to inhibit CD3/CD28-stimulated proliferation of
CD4 ™" T responder cells (Tresps) using a CFSE proliferation as-
say (Quah and Parish, 2010; Saunders et al., 2012). Tregs isolated
from animals treated with LBT-3627 showed an increased func-
tional capacity compared with Tregs isolated from animals
treated with PBS, VIP, or LBT-3393 (Fig. 5D). Tregs from LBT-
3627 treatment afforded a 74% inhibition of proliferation ata 1:1
Tresp:Treg ratio, whereas Treg-mediated inhibition was 29%,
41.5%, and 47.5% from mice treated with PBS, VIP, or LBT-
3393, respectively. The inhibitory capacity of isolated Tregs de-
creased in a dose-dependent manner (R* > 0.88, p < 0.0005, for

all treatments); however, LBT-3627 Tregs were able to maintain
enhanced suppressive capabilities even at the lowest dose com-
pared with all other treatment arms. Linear regression analyses of
Treg-mediated inhibition indicated that Treg dose responses
from LBT-3627-treated mice were significantly enhanced (p <
0.03) over those from mice treated with PBS, VIP, or LBT-3393.
Dose responses of Tregs from mice treated with LBT-3393 were
significantly larger than those from PBS-treated controls (p =
0.016), whereas Treg responses from VIP-treated mice compared
with PBS controls did not reach significance (p = 0.0788). Collec-
tively, these data suggest that Treg frequencies are not affected by
treatment with VIPR agonists, but functional properties of Tregs are
enhanced upon these treatments, with the most pronounced en-
hancement resulting from the VIPR2-selective agonism.

Next, to determine the mechanism(s) by which VIPR agonists
could enhance Tresp suppression and diminish inflammation with
neuroprotective effects, we evaluated the effects of VIPR agonists on
cytokine production after T-cell stimulation. For these studies, mice
were treated with PBS, VIP, LBT-3393, or LBT-3627 for 5d. CD4 ™"
spleen cells from each treatment arm were isolated, stimulated with
anti-CD3/CD28, cultured, and assessed for cytokine production by
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of PBS- or MPTP-treated mice pretreated with VIP, LBT-3393, or LBT-3627 (40X image; scale bar, 200 pm; inset = 200X image). Bottom right, Quantification of reactive microglia taken from
midbrains 2 d after MPTP treatment, visualized as described in Figure 4. B, €, Mice were treated with PBS, VIP, LBT-3393, or LBT-3627 for 5 d and splenocytes assessed for frequencies of (D4 ™ T cells
(B) and (D4 *(D25 ™ Tregs (€). D, Assessment of Treg-mediated inhibition (= SEM) of CFSE-stained (D4 ™ Tresps that were stimulated for proliferation with anti-CD3/CD28. Tregs were isolated
from PBS-, VIP-, LBT-3393-, or LBT-3627-treated mice. E, Relative concentration of proinflammatory cytokines in cell culture supernatants of anti-CD3-/CD28-stimulated (D4 T cells after
pretreatment (== SEM, n = 3). Cytokine concentrations were determined by cytokine bead array for pro-inflammatory and anti-inflammatory cytokines. A, Differences in means (= SEM, n = 6)
were determined where p << 0.05 compared with groups treated with PBS (a), MPTP (b), or LBT-3393 (c). E, Differences in means (= SEM, n = 3) were determined where p << 0.05 compared with

groups treated with PBS (a) or VIP (b).

cytokine bead array. Relative to cytokine levels of stimulated CD4 *
T cells from PBS-treated controls, LBT-3393 and LBT-3627 treat-
ment significantly suppressed the production of the proinflamma-
tory cytokines IL-17A, IFN-v, and IL-6, but not TNF-« (Fig. 5E).
Interestingly, VIP administration resulted in an opposite effect, with
a significant upregulation of proinflammatory cytokines. This may
be due to the fact that VIP is ~10-fold more potent than the selective
VIPR agonists, suggesting that increased potency may yield an un-
desirable effect on proinflammatory cytokine production. Together,

these data demonstrated that selective agonism of either VIPR1 or
VIPR2 induces downregulation of proinflammatory T-cell pheno-
types and results in the enhanced immunosuppressive properties
observed by Tregs. Observation of such T-cell shifts in phenotype
within 12 h of stimulation also suggested that this VIPR-agonist-
mediated shift may occur before stimulation via CD3/CD28.
Because Treg numbers or cytokine production alone could
not readily explain differences in the preferential effects on Treg
function and neuroprotection mediated by VIPR2 versus VIPR1
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Figure 6.  VIPR2 agonism induces dysregulation of genes associated with inflammatory responses and cell-to-cell signaling. PBS controls received no treatment, whereas VIP, LBT-3393, and
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agonism, we next examined potential phenotypic shifts elicited
by VIPR agonists. We investigated T-helper differentiation gene
expression changes within the total CD4* T-cell population.
CD4 ™ T cells were isolated from animals treated for 5 d with PBS,
VIP, LBT-3393, or LBT-3627; RNA was isolated; and gene ex-
pression evaluated by RT-PCR array for genes associated with T
helper cell differentiation. Gene expression levels of T cells from
mice treated with VIP, LBT-3393, or LBT-3627 were compared
with those from animals treated with PBS alone. Significant fold
changes in mRNA expression for each pretreatment are listed

(Fig. 6A); each of the three VIPR agonists produces a distinct
profile change. For VIP pretreatment, transmembrane emp24
protein transport domain containing 1 (Tmed1) was significantly
upregulated, whereas Fas ligand (FasL), IL-18 receptor accessory
protein (II-18rap), IL-21, interferon regulatory factor 4 (Irf-4),
Rel, and suppressor of cytokine signaling 5 (Socs5) were signifi-
cantly downregulated. VIPRI agonist pretreatment yielded a
downregulation in Irf-4, Rel, and Tmed1. VIPR2 agonist pretreat-
ment elicited a robust and significant increase in Gm-csf, as well
as parallel increases in IL-17 receptor E (II-17re), IL-18 receptor 1
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Figure7.

Targeting VIPR2 with LBT-3627 changes inflammation-associated gene expression in microglial populations. CD11b ™ microglial populations from the ventral midbrain of eight mice

were collected after treatment with MPTP alone, LBT-3627 pretreatment + MPTP, or LBT-3627 treatment only. Gene expression changes within the (D11b ™ -enriched population were assessed
using qRT-PCR (Inflammatory Response and Autoimmunity PCR profiler array) in each experimental group. Fold changes were determined using MPTP alone as the control. A, Fold changes for
differentially regulated mRNA levels in response to LBT-3627 treatment only. B, Fold changes for mRNA levels in response to LBT-3627 pretreatment followed by MPTP intoxication normalized to
MPTP alone. Dark red coloration indicates a profound increase compared with MPTP, pink indicates a modest increase, light green indicates a modest decrease, and dark green indicates a profound

decrease in expression.

(Il-18r1), RAR-related orphan receptor C (Rorc), Toll-like recep-
tor 4 (Tlr4), and Tmed]I. II-21, inhibitor of DNA 2 (Id2), and
Socs5 were increased as well, but these increases did not
reach statistical significance. VIPR2 agonism did not lead to sig-
nificant downregulation of any genes associated with T-cell
differentiation.

Because the majority of the detected neuroprotective and
anti-inflammatory responses were associated with VIPR2 ago-
nism, we focused on relationships among genes for which mRNA
expression increased upon pretreatment with the VIPR2-
selective agonist LBT-3627. Mapping the relationships by IPA
among genes for which mRNA increased suggests that changes in
two overlapping networks are induced by VIPR2 agonism (Fig.
6B). The changes implicate immunological disease and inflam-
matory response networks and cell-to-cell signaling and interac-
tion networks. Changes in Gm-csf (CSF2) are central to these
networks. Changes linked to both anti-inflammatory and proin-
flammatory genes, as well as innate and adaptive immunity, were
observed, along with changes in T-cell transcription factors asso-
ciated with T-cell differentiation. Furthermore, because T cells

readily interact with microglial populations to elicit an immune
response, we next sought to examine the effect of VIPR2 agonism
on CD11b ™ cell populations isolated from the ventral midbrain
of MPTP-intoxicated mice. Investigation of the inflammatory
response mediated by CD11b * populations was performed after
pretreatment with both LBT-3627 alone (Fig. 7A) and in combi-
nation with MPTP (Fig. 7B). The results suggest a downregula-
tion in multiple innate and adaptive immune mediators with
LBT-3627 treatment. Specifically, with LBT-3627 treatment
alone, mRNA transcripts for genes associated with a proinflam-
matory and/or oxidative immune response, such as Il-13, II-23a,
Ifn-vy, Ptgs2 (prostaglandin-endoperoxide synthase 2, also known
as cyclooxygenase), Ltb (lymphotoxin B also known as TNF-C),
Tnf, and II-7, were profoundly decreased with a decrease of >10
fold compared with the inflammatory response associated with
MPTP treatment alone (Fig. 7A). In combination with MPTP
intoxication, LBT-3627 pretreatment yielded similar decreases in
the proinflammatory response, showing moderate decreases in
Ptgs2 and Ltb (at least a 2-fold decrease), as well as greater de-
creases in Tnf, II-7, and NFkB expression (>10-fold decreases
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compared with MPTP intoxication alone). Therefore, the
genomic analyses revealed that VIPR agonists, especially the ag-
onist specific for VIPR2, can positively affect both innate and
adaptive immune responses through modulation of gene expres-
sionin CD4 * T cellsand CD11b * microglial populations, with a
coincident downregulation of proinflammatory cytokine pro-
duction in vitro.

VIPR agonists do not affect MPTP metabolism

VIP can cross the blood—brain barrier (BBB) (Dogrukol-Aketal.,
2003) and possibly inhibit metabolism of the MPTP protoxin
into the active MPP * toxin, resulting in potential neuroprotec-
tion due to diminished intoxication. To rule out that possibility,
we analyzed levels of MPTP and MPP * by RP-HPLC within the
midbrain and striatum of intoxicated mice and compared them
with levels in intoxicated mice that received VIP, LBT-3393, or
LBT-3627 before MPTP. Treatment with VIP or either VIPR ag-
onist did not reduce the levels of MPP " intoxicant in either the
midbrain (Fig. 84) or the striatum (Fig. 8B). Therefore, conver-
sion from MPTP into MPP * was achieved in all treatment arms
and, in fact, MPP " levels were greater in mice treated with either
VIPR agonist before MPTP. Therefore, these data and the adop-
tive transfer data support the idea that VIPR2-agonist-mediated
neuroprotective responses do not arise from effects on MPTP
metabolism, which is consistent with a more direct immuno-
modulatory mechanism of action.

Discussion

VIP has potential for the treatment of neuroinflammatory con-
ditions based on its ability to transform T cells (Gonzalez-Rey et
al., 2007). An obstacle to the clinical use of VIP is the hormone’s
lack of specificity for VIPR1 and VIPR2, as well as its rapid deg-
radation (Usdin et al., 1994; Reubi, 2003). Our work aimed to
better define therapeutic potential in this arena by developing
protease-resistant VIPR agonists that target each receptor inde-
pendently. We hypothesized that targeting specific VIP receptors
individually would elicit a robust neuroprotective response
connected to changes in innate and adaptive immunity. To
achieve these goals, peptide modifications were made based on
prior studies showing that periodic a—f replacements in the
C-terminal portions of other peptide hormones that act on
B-family GPCRs, such as glucagon-like peptide-1 (GLP-1) (7—
37) and parathyroid hormone (PTH) (1-34), can yield potent
agonists with prolonged activity in vivo relative to the endoge-
nous proteins (Cheloha et al., 2014; Johnson et al., 2014). To this
end, we made a metabolically stable and VIPR2-specific agonist,
LBT-3627, and showed that it was an effective immunomodula-
tory agent in a disease-relevant PD model. Treatment of
MPTP-intoxicated mice with LBT-3627 significantly spared
dopaminergic neuronal cell bodies, decreased the amount of reactive
microgliosis, decreased levels of proinflammatory gene expression
associated with the inflammatory response in CD11b ¥ microglia
populations, downregulated proinflammatory cytokine production,
and modulated T-cell phenotypes with treatment. In contrast, treat-
ment with the stable, VIPR1-selective agonist LBT-3393 yielded only
lesser neuroprotective responses. This observation may be explained
by increased proteolysis during administration compared with LBT-
3627 alone, as observed in Figure 2. Therefore, in our model of PD,
VIPR2 agonism elicits a link between neuroprotection and modula-
tion of the immune response with systemic treatment. Interestingly,
significant sparing of striatal termini was only observed after adop-
tive transfer, not during pretreatment. We posit that the lack of ter-
mini survival may be due to increased MPP * levels associated with
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Figure8.  MPTP metabolismin the midbrain and striatum is not diminished by pretreatment

with VIPR agonists. Quantification of total MPTP and MPP ™ levels in /g tissue in the mid-
brain (4) and striatum (B) of mice pretreated with VIP, LBT-3393, or LBT-3627 followed by
MPTP intoxication. Tissues were collected at 90 min after the final MPTP injection. Differences in
means (=SEM, n = 5) were determined where p << 0.05 compared with groups treated with
MPTP only (a) or VIP (b).

VIPR pretreatment, whereas the increased MPTP conversion would
not have been observed with adoptive transfer because no drug in-
teraction would have been possible. The other possibility is that
MPTP/MPP* has been shown to be toxic to lymphoid cell
populations and MPTP treatment of pretreated mice may partially
diminish VIPR-agonist-induced T cells, whereas adoptively trans-
ferred T cells would not meet the same fate being transferred 12 h
after intoxication (Benner et al., 2004).

Specific targeting of VIPR2 has been shown to mediate anti-
inflammatory and therapeutic effects in rheumatoid arthritis
(Juarranz et al., 2008) and models of spinal muscular atrophy
(Hadwen etal., 2014), ultimately leading to enhanced production
of Th2-type transcription factors such as c-Maf and JunB, anti-
inflammatory cytokines such as IL-4 and IL-5 (Voice et al., 2004)
and IL-10 (Larocca et al., 2007), and decreased macrophage-
derived proinflammatory cytokine production (Delgado et al.,
2000). In addition, the loss of VIPR2 leads to enhanced and ex-



Olson et al. @ Immunomodulation by VIP Receptor Agonists

acerbated disease states in experimental autoimmune encephali-
tis and experimental colitis, suggesting that VIPR2 activity is
important for mediating disease processes (Yadav et al., 2011;
Tan et al,, 2015). This loss was associated with increased Th1/
Th17 responses and decreased Th2/Treg responses (Yadav et al.,
2008; Tan et al., 2015). These previous findings are consistent
with our observation of enhanced neuroprotective activity of a
selective VIPR2 agonist relative to a selective VIPR1 agonist or the
nonselective native hormone VIP. Our work highlights the po-
tential of a VIPR2-selective agonist to modulate the adaptive im-
mune response in therapeutically favorable ways.

Initially, we hypothesized that VIPR2 agonism would yield an
increase in the CD4 *CD25* Treg population, resulting in in-
creased neuroprotection. Even though prior work has shown
VIP-mediated increases in frequencies of Tregs (Fernandez-
Martin et al., 2006; Reynolds et al., 2010; Fraccaroli et al., 2015),
we were unable to demonstrate this response at the dose we used,
so we began to assess other avenues of regulatory function that
promote dopaminergic neuron survival upon MPTP intoxica-
tion. Therefore, we assessed the ability of Tregs isolated from
VIPR agonist-treated mice to suppress the proliferation of Tresp
in vitro. We found that coculture of Tresps with Tregs from ani-
mals treated with the VIPR2-selective agonist LBT-3627 elicited
an enhanced suppressive effect compared with Tregs from ani-
mals subjected to other treatments. This suppressive effect corre-
sponded with downregulation of proinflammatory cytokine
production associated with Th1/Th17 T-cell phenotypes. The
regulatory and immune-suppressive roles of LBT-3627 are likely
aresult of T-cell phenotype modulation leading to a change in the
adaptive immune response associated with inflammation.

The impact of VIPR agonists on MPTP-intoxicated mice led
us to use gene expression analysis for further exploration of T-cell
differentiation and possible phenotypic shifts induced by agonist
treatment. We observed increases in genes associated with both
proinflammatory and anti-inflammatory responses. The most
abundant change was a 45-fold upregulation of Gm-csf tran-
script. Previously, we and others have demonstrated the potent
and robust neuroprotective responses associated with GM-CSF
treatment, such as increased neuronal survival, decreased
microglial reactivity, induction of Tregs, and changes in innate
and adaptive immune responses associated with inflammation
(Schibitz et al., 2008; Kosloski et al., 2013). Although genes asso-
ciated with multiple T-cell subsets were altered upon LBT-3627
treatment, many were associated with anti-inflammatory subsets
including Tregs and Th2 populations. Id2 was upregulated 10-
fold with treatment. This gene has been associated with maintain-
ing Treg populations in inflammatory disease to enhance
suppressive capabilities (Miyazaki et al., 2014). Likewise, Trmed1
was upregulated 3.3-fold compared with PBS treatment. Trmed]
has been shown to be involved in IL-33 signaling (Connolly et al.,
2013); IL-33 is an IL-1-like cytokine that induces Th2 type cyto-
kines such as IL-4, IL-5, and IL-13 (Schmitz et al., 2005). Al-
though mRNA levels for these Th2-associated cytokines were
upregulated >2-fold with LBT-3627, the modest changes were
not significant for the current sample size. Small changes in cy-
tokine levels can ultimately affect T-cell subsets depending on the
microenvironment at the sites of inflammation. The expression
level changes we observed may suggest that LBT-3627 induces a
shift toward an anti-inflammatory response associated with
regulatory subsets rather than a proinflammatory, Th1/Th17-
mediated response. This possibility is supported by the down-
regulation of Th1/Th17 cytokine production after treatment.
Upon cytometric bead analysis, we found a significant down-
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regulation of IFN-v, IL-6, and IL-17A with LBT-3627 treatment.
The VIPR2-selective agonist also caused a >2-fold decrease in
IFN-v gene transcripts, although the effect did not reach signifi-
cance. Collectively, we showed alterations in inflammatory dis-
ease response and cell-cell signaling pathways after VIPR2
agonism. Gm-csfis a central component for both networks and its
upregulation can elicit changes linked to both innate and adap-
tive immunity (Kosloski et al., 2013; Kelso et al., 2015). This
ability to modulate the immune response was strengthened with
the observed changes in inflammatory response transcripts in
microglia populations isolated from the ventral midbrain. Treat-
ment with LBT-3627 alone elicited profound downregulation
of mRNA levels of potent proinflammatory mediators such as
IL-1B, TNF-a, TNF-¢, COX, and IFN-v. Given the enhanced
inflammatory cascade that occurs during MPTP intoxication, it is
important to note that pretreatment with LBT-3627 followed by
MPTP intoxication was also able to elicit changes in some of the
same detrimental mediators, such as decreased COX, TNEF-c,
and TNF-a. Collectively, these findings could be indicative of
cross talk between CD4 ™ T-cell populations and their interac-
tions with CD11b™ microglia populations, creating a shift in
responses that ultimately leads to enhanced neuroprotective
capabilities.

VIP can cross the BBB (Dogrukol-Ak et al., 2003), which may
allow direct interaction with resident cells within the CNS. Both
glia cells and neurons express VIP receptors (Chneiweiss et al.,
1985; Hosli and Hosli, 1989) and VIPRs are expressed within the
SN (Joo et al., 2004). Activation of VIPRI and/or VIPR2 within
the CNS could lead to other protective effects that are not directly
associated with the modulation of T-cell responses and/or phe-
notypes. VIP binding to its receptors on microglia and other
antigen-presenting cells has been associated with downregula-
tion of costimulatory molecules, possibly resulting in desensiti-
zation of an inflammatory response (Ganea et al., 2003), as well as
inhibition of proinflammatory cytokine production by microglia
(Kim et al., 2000). VIP interaction with astrocytes results in in-
creased neurotrophin production leading to decreased cellular
toxicities and increased neuronal survival (Gozes and Brenne-
man, 1996). VIP interaction with neurons has been documented
as well, causing VIP to be widely accepted as a neuropeptide for
neuronal signaling and regulation of reactive gliosis (Brenneman
and Foster, 1987; Waschek, 2013).

We have not determined whether LBT-3393 or LBT-3627 can
cross the BBB. It is possible that these agonists share the ability of VIP
to cross the BBB and act directly on microglia, astrocytes, and neu-
rons. Further exploration of the effects of LBT-3393 and LBT-3627
on cell types within and outside the CNS will be necessary to eluci-
date the immunomodulatory and neuroprotective effects mani-
fested by these compounds in the MPTP mouse model of PD.

Due to its influence on the immune system, we used the MPTP
acute inflammatory model of PD. Alternatives could include the
preformed a-synuclein model that allows Lewy body aggregate for-
mation, a clinical hallmark of PD (Volpicelli-Daley et al., 2011; De-
hay, 2012). MPTP intoxication causes nigrostriatal degeneration
with an accompanying neuroinflammatory response associated with
dopaminergic neuronal loss with the opportunity to effectively study
immunomodulatory neuroprotective therapies that were relevant in
the current study. Indeed, the results reported in this MPTP model
show that systemic administration of a VIPR2-selective agonist elic-
ited profound neuroprotective and anti-inflammatory responses,
supporting further exploration from a clinical perspective. Our eval-
uation has been limited to an animal model, but we hypothesize that
such agents would elicit similar anti-inflammatory responses and
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T-cell phenotypic shifts in humans. Such agonists might counteract
the imbalanced neuroinflammatory response associated with neu-
rodegeneration in PD. By enhancing the suppressive function of
Tregs and downregulating proinflammatory cytokine production, a
long-acting VIPR2-selective agonist might restore proinflammatory
and anti-inflammatory responses to a homeostatic state, ultimately
sparing dopaminergic neurons. Overall, we provide strong evidence
that VIPR2 agonism has the potential to slow the pathogenesis of PD
through modulation of the inflammatory response.
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