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   During cardiac surgery, several processes create an envi-
ronment conducive to clot formation ( Figure 1  ). Cardio-
pulmonary bypass (CPB) exposes blood to a large artificial 
surface, which creates a pro-coagulant state leading to 
thrombin generation. Intravascular catheters and cannulae 

cause disruption in laminar blood flow, which predisposes 
to clot formation (1,2). To minimize the risk of thrombo-
sis patients are given heparin while on CPB and are main-
tained in a fine balance between minimizing the risk of 
thrombosis, while preventing an increase in bleeding from 
excessive anticoagulation. In neonates and infants, this 
balance is more difficult to achieve because of inherent 
developmental characteristics of the coagulation and hae-
mostatic system (3). 

 Normal hemostatic mechanisms, including vascular 
integrity, coagulation factors, and platelet function, are 
usually sufficient to achieve hemostasis during most sur-
gical procedures. However, procedures that require CPB 
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are associated with derangements in most of these mecha-
nisms resulting in excessive and prolonged bleeding and/
or clot formation following heart surgery. In children who 
undergo CPB, restoration of hemostasis following surgery 
with CPB is more difficult. Hemodilution, hypothermia, 
low flow, circulatory arrest and the age related differ-
ences in the coagulation system, responses to heparin and 
protamine, hemostatic abnormalities, and polycythemia 
all contribute to the challenge (4–10). The management 
of anticoagulation for adult patients has been extensively 
studied; however there is a lack of evidence-based proto-
cols for children. 

  ASSOCIATION OF CPB WITH ACTIVATION 
OF THE HEMOSTATIC AND INFLAMMATORY 
SYSTEMS 

 Increased knowledge, refined techniques, and the devel-
opment of technology for CPB have lead to great advances 
in cardiac surgery. However, despite this, the interaction 
between the human body and the non-physiologic surface 
of the CPB circuit remains deleterious. 

 The typical arrangement of the bypass circuit requires 
a large artificial surface to which the patient’s blood is 
exposed. In the infant this is a physiologic stress. The circuit 
represents a relatively greater non-endothelialized surface 

compared with the infant’s blood volume (11). Both acti-
vation of the coagulation system and the inflammatory 
response are triggered when blood contacts the surface of 
the perfusion circuit. This causes disturbances in platelet 
function, coagulation factors, fibrinolytic system, and phys-
iologic inhibitors of coagulation, (11) and ultimately leads 
to platelet activation. Activated platelets have significant 
procoagulant activity by expressing binding sites for spe-
cific coagulation proteins (12,13). Coagulation markers 
thrombin-antithrombin (TAT) and the prothrombin frag-
ment F1.2 have been shown to increase significantly dur-
ing bypass in children (14–16). This elevation period lasts 
longer in infants than in older children and adults (17) and 
tends to be more pronounced in children with cyanotic con-
genital heart disease (18). Children with a congenital heart 
condition have hyperreactive platelets resulting in greater 
formation of thrombin-antithrombin complex, prothrom-
bin fragment F1.2, and thrombin (8,19–22). 

 It has been assumed that the degree of cellular activa-
tion and defects of platelet membrane receptors would be 
greater in neonates and young infants than in adults due 
to this disparity of circuit to blood volume ratio but few 
studies have examined this specifically (8). Ichinose et al. 
studied the effects of CPB on platelets in children (8). 
This study showed that children greater than 12 months of 
age have a significant increase of P-selectin (a measure of 
platelet activation) during CPB. Infants less than 2 months 

  Figure 1.     Association between CPB, anticoagulation, bleeding, and thrombosis. (AT, antithrombin; CHD, Congenital heart disease; ACT, Activated 
clotting time; INR, international normalized ratio; aPTT, activated partial thromboplastin time; IL, interleukin; TNFα, Tumor necrosis factor.)    
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had less activation and less reduction of the platelet adhe-
sive receptor, glycoprotein Ib. These findings suggest an 
age-dependent maturation process of platelets. Neonatal 
platelets appear to be intrinsically hyporeactive and less 
affected by CPB than those of children, but the clinical sig-
nificance of this is uncertain (8). 

 The inflammatory response to CPB is the result of the 
activation of complement, neutrophils, and monocytes, 
which produce a wide range of cytotoxins, cell-signaling 
proteins, and vasoactive substances. These disrupt intersti-
tial fluid balance and homeostasis. The combined throm-
botic and inflammatory response produces microembolic 
particles, fibrin fragments, and platelet aggregates that 
obstruct arterioles, and in conjunction with cytotoxins, 
temporarily disturb organ function (23). The inflammatory 
cascade often causes coagulopathy, respiratory and myo-
cardial dysfunction, renal insufficiency, and later neurocog-
nitive defects (24). 

 In adults, pro-inflammatory cytokines such as inter-
leukin-1B, tumor necrosis factor, IL-6, and IL-8 are 
detectable in the immediate postoperative period. The 
cytokine response is met by an almost simultaneous anti-
 inflammatory release. This balance is thought to be critical 
in determining the extent of tissue injury and clinical out-
comes (25). The cytokine response in infants and children 
is less well defined but it does occur (26,27). Most of the 
pro-inflammatory cytokines present preoperatively do not 
increase significantly during CPB (25), and anti-inflamma-
tory cytokines present preoperatively increase during CPB 
to a peak response after CPB. 

 Activation of the fibrinolytic system is documented in 
infants and children (14,16), but Petaja and colleagues 
report no activation of fibrinolysis in neonates during CPB, 
and instead, late activation on postoperative day 3 (28). 
They suggested that fibrinolysis during CPB is rarely seen 
in the neonate because tissue plasminogen activator and its 
inhibitor both increase creating a physiologic fibrinolytic 
shutdown (28). It has been argued that the use of aprotinin 
in this study may be the explanation for the lack of fibrin-
olysis detected (29). In adults, fibrinolysis has been linked 
to postoperative bleeding complications (30); however, this 
has not been well defined in children (31). 

   IMMATURITY OF THE COAGULATION AND 
HEMOSTATIC SYSTEM IN NEONATES 

 Hemostatic and coagulation systems in neonates dif-
fer significantly from those of older children and adults. 
Neonates have low levels of antithrombin, Protein S, and 
Protein C activity, which are generally 20–60% of adult lev-
els; the contact factors (XI, XII, PK, HMWK) and vitamin 
K-dependent factors (II, VII, IX, X) are all less than 70% 
of adult values ( Table1                 ) (3,32). 

 In adult patients undergoing CPB, hemodilution does 
not result in a clinically significant reduction of coagula-
tion factors or platelet numbers resulting in disturbances 
in postoperative bleeding. However, in neonates, the ini-
tiation of CPB can result in a 50% decrease in circulating 
coagulation factors and antithrombin levels in addition to 
a 70% drop in platelet counts (11). Chan et al. reported 
decreased plasma concentration of all hemostatic pro-
teins in young children following the initiation of CPB due 
to hemodilution with a priming volume that was void of 
plasma (14). The authors suggested that the pro-throm-
botic state observed through elevated D-dimers may 
have been due to decreased efficacy of anticoagulation. 
Minor alterations in concentrations of specific coagula-
tion proteins can rapidly increase the risk of hemorrhage 
or thrombotic complications (4,33). At the same time, oth-
ers have reported that the immature coagulation system 
has a decreased potential for clot formation due to high-
levels of α2-macroglobulin, C1-esterase inhibitor, and 
α1-antitrypsin (28,34,35). Neonatal plasminogen does not 
bind as well to cellular receptors because of its different 
carbohydrate composition from the adult form result-
ing in decreased fibrinolytic activity (36). Finally, plasma 
prothrombin concentrations are 10–20% lower in young 
children (4,33) and the capacity to generate thrombin is 
decreased by 26% (37). This imbalance between pro and 
anti-thrombotic states as seen in the neonatal coagulation 
system might explain why infants are generally less suscep-
tible to clots than adults, but also why these same infants 
are at very high risk of thrombotic and/or bleeding com-
plications following major haemostatic alterations, such as 
those associated with CPB. 

 While the immaturity of the coagulation system already 
places many children undergoing cardiac surgery at 
increased risk of coagulopathy, patients who are cyanosed 
have additional risks. A recent study reported that plasma 
thrombomodulin levels and Protein C activity were signifi-
cantly lower, while markers of platelet activation, plasma 
thrombin-antithrombin complex, and P-selectin were sig-
nificantly higher in patients with cyanotic congenital 
heart disease (18,38). Decreased concentration of throm-
bin inhibitors, heparin co-factor II, and α-2 macroglobu-
lin in congenital heart disease (CHD ) patients account 
for high levels of thrombin generation during CPB (39). 
Furthermore, cyanotic infants have lower platelet surface 
density, and thus a higher risk of platelet activation (21). 
A study by Rinder et al. determined that children (14–15 
months) with congenital heart disease undergoing CPB 
showed a significant decrease in platelet glycoprotein Ib 
adhesive receptor, and a high degree of platelet activa-
tion (21). This trend was studied in patients with cyanotic 
and non-cyanotic congenital heart disease with qualita-
tively similar findings across both groups. However, one 
important variable that emerged was that cyanotic patients 
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demonstrate a baseline deficit in the platelet adhesion 
receptor glycoprotein Ib. This may be part of the reason for 
the high prevalence of prolonged bleeding time in patients 
with cyanotic heart disease (21). 

  Bleeding, Transfusion, and Thrombosis as a Consequence 
of CPB 

 The nature of cardiac surgery and the use of cardiopul-
monary bypass mean that blood transfusion are frequently 
required (40–42). Younger patients experience more blood 
loss per weight equivalent compared to older pediat-
ric patients; blood loss and transfusion requirements are 
directly proportional to age at surgery (31). The use of fresh 
whole blood has been shown to reduce blood loss in infants 
(43,44). Blood product storage is associated with increased 
platelet dysfunction and activation increasing the risk of 
thrombosis (45). A recent study found that old blood is 
associated with increased inflammatory reactions to CPB 
and poorer post-operative outcomes including mortality 
in adults (46); this effect may be seen in children as well. 
Many bleeding abnormalities following adult cardiac sur-
gery are well documented, including thrombocytopenia, 
thrombocytopathy, increased fibrinolysis with excessive 
bleeding, and disseminated intravascular coagulation (47). 
Postoperative hemorrhagic diathesis associated with neo-
natal congenital heart surgery involving CPB is also well 
recognized and these complications continue to be preva-
lent in older children (31,42). 

 In addition to excessive bleeding another important 
complication of CPB is thrombosis. The true prevalence 
of venous thrombosis in children is not known (48). Early 
estimates (1990s) of the prevalence of venous thrombo-
sis and pulmonary embolism in children is estimated to be 
.07–.14 per 10,000 per year, and 5.3 per 10,000 in hospi-
tal admissions (49–52). A recent study found an increase 
in venous thromboembolism from 34–58 cases per 10,000 
pediatric hospitalizations over a 7-year period (53). These 
estimates are based on studies that examined all patients 
with thrombosis as a single, homogenous group and proba-
bly underestimate the risk of thrombosis in the population 
with CHD. Recent studies have started to identify children 
with congenital heart disease as a high-risk group because 
of the frequent requirement for cardiac surgery at a very 
young age (54,55). Despite this, there is no data to quan-
tify the scope of the problem. Research into treatment and 
long-term outcomes in children have been limited. Many 
studies with various designs following diagnosis and treat-
ment of patients with thrombotic complications report var-
ied resolution of thrombosis in children between 36–67%. 
Complications, persistence or resolution of thrombosis are 
influenced primarily by the affected vessel and degree of 
occlusion, and less so by age at diagnosis and course of treat-
ment (28,49,56–60 ). Patients with thrombosis are suscepti-
ble to numerous severe complications including pulmonary 

embolism, arterial ischemic stroke, hemorrhagic stroke, 
sinovenous thrombosis, and death. Following thrombosis, 
up to 18% of children may have a pulmonary embolism, 
and 1.4% of children may have a stroke (61–63). Venous 
thrombotic events in children with CHD result in a mor-
tality of approximately 7–9% (64,65). Mortality after pul-
monary embolism is approximately 20% (66). Outcomes of 
arterial strokes and sinovenous thrombosis are very poor, 
with high mortality and up to two thirds of patients with 
permanent neurological damage (67,68). Factors associ-
ated with poor outcomes (including recurrent thrombosis) 
following thrombotic complications are lower age at onset, 
no anticoagulant therapy, persistent venous occlusion, ele-
vated levels of D-dimer, and genetic prothrombin mutation 
(64,69). Thrombosis is also associated with increased length 
of intensive care unit, increased length of hospital stay, and 
increased mortality (70). A review by Henke et al. found 
the length of hospital stay for cardiac surgical patients was 
longer by 68–126% in patients with thrombosis, signifi-
cantly increasing the cost of care of these patients com-
pared with patients without a thrombotic complication (73). 
Occurrence of thrombosis after surgery has also been linked 
to a 3.4 fold increase in mortality (71–73). In patients surviv-
ing thrombotic complications, long-term complications are 
frequent and manifest as post-thrombotic syndrome (PTS). 
Post-thrombotic syndrome is caused by venous obstruction 
or occlusion at the site of proximal deep venous thrombo-
sis and can lead to venous valvular dysfunction and venous 
hypertension. Venous hypertension results in a widening of 
the endothelial cellular junctions and extravasations of red 
cells, fibrinogen, and inflammatory mediators, resulting in 
painful, discolored skin and brawny indurations of subcu-
taneous tissue. Signs of PTS can be present in 30–70% of 
children after venous thrombosis and are clinically signifi-
cant in 10–20% of all children post venous thrombosis and 
in 50% of children when thrombosis occurred after surgery 
(58,74–77). Current studies are most likely underestimat-
ing the true rate of PTS in children because of the high fre-
quency of unidentified thrombotic complications and the 
lack of uniformed diagnosis criteria for PTS (51,52). 

 There is a fine line in anticoagulation management 
between insufficient anticoagulation, which promotes plate-
let dysfunction, bleeding and thrombosis; and over anti-
coagulation, which results in hemorrhagic complications. 
Cardiac surgery tests this balance between pro-thrombotic 
and pro-hemorrhagic influences (78) and management of 
anticoagulation on bypass has major effects on the post-
operative outcome. The association between insufficient 
or excessive heparinization and coagulation morbidities is 
exemplified by children that require long-term extracorpo-
real support (ECMO) who have extended exposure to an 
ECMO circuit with only partial heparinization and experi-
ence an exaggerated frequency of bleeding, thromboembo-
lic and neurologic complications (79). 
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   Evolution of Anticoagulation Use and Monitoring 
During Cardiac Surgery 

 Extracorporeal circulation was not feasible until 1935, 
when a purified preparation of a physiological reversible 
agent became available for the safe and effective anticoagu-
lation of human patients (80). This agent, heparin, first dis-
covered in 1916 by Jay McLean, was the most universally 
used anticoagulant in the pioneering days of cardiopulmo-
nary bypass and little has changed in over 50 years (81–83). It 
is the only consistent element of anticoagulation therapy for 
CPB. Heparin has been used to manipulate hemostasis dur-
ing bypass since the first procedures performed in the 1950s. 
The thrombotic response to CPB is attenuated but not com-
pletely shut down by the use of heparin. Thrombin is gener-
ated via activation of the extrinsic and intrinsic coagulation 
pathways and platelets. It cleaves fibrinogen into fibrin, acti-
vating factor XIII to crosslink fibrin and activating platelets 
by specific thrombin receptors (84). Thrombin normally acts 
locally at the site of blood vessel injury, however during CPB 
it is generated systemically. 

 Early experience reported heparin dosing empirically 
calculated based on weight. Early protocols included a 
loading dose in the range of 2–5 mgs heparin per kilogram 
of body weight immediately prior to perfusion (83,85–87). 
Sometimes this was followed by a maintenance dose 
throughout bypass; 1 mg per kg after 30 minutes of bypass 
plus .5 mg per kg every 30 minutes after that or regimens 
that gave 50% of the loading dose every 1 hour while intra-
vascularly cannulated (85,88). The predominant fear was 
inadequate anticoagulation and the formation of clots in 
the circuit. Lower doses (1.5 mg/kg to the patient) resulted 
in the formation of gelatinous clots in both the donor 
blood and on the filters of the perfusion circuit (83). At 
the time, there were no tests to monitor anticoagulation. 
Visual inspection of the perfusion circuit was performed 
to determine the fluidity of the bypass circuit solution and 
lack of clot formation (89). In the 1960s and 1970s, signifi-
cant bleeding morbidity and mortality during and follow-
ing open heart surgery due to problems in hemostasis was a 
major concern. This was the early impetus for investigating 
methods of heparin management and monitoring of anti-
coagulation (90). The first test described for the purpose of 
measuring the whole blood coagulation time for heart sur-
gery was the Lee-White clotting-time (83). Following this 
work, Hattersley investigated and refined the technique 
for measuring the activated coagulation time (ACT). He 
established a range of normal clotting times and causes of 
variability between patient samples (91). Clinicians were 
hopeful that the use of the activated clotting time device 
as a bedside monitor would reduce the postoperative mor-
bidities of bleeding due to over heparinization and inad-
equate reversal with protamine. Too much heparin during 
CPB had already been identified as a major factor in exces-
sive postoperative bleeding (90). 

 These early investigations led the way to monitoring of 
heparin and protamine therapy as routine practice dur-
ing CPB although there were no standard protocols (92). 
At the time, questions were raised about the appropriate-
ness of empirical methods of heparin dosing using stan-
dardized protocols that did not take into account each 
patient’s individual heparin dose response and rate of hep-
arin degradation. Thereafter methods of dosing whereby 
each individual’s response to heparin was used to extrap-
olate the doses of heparin required throughout bypass 
were proposed (93). Bull’s group observed empirically that 
there were no clots in the bypass circuit when the ACT 
exceeded 300 seconds, and consequently established an 
“adequate” ACT range of 300–600 seconds as their “safe 
zone” and subsequently used guided heparin therapy with 
a target ACT of 480 seconds for all patients (92). This rec-
ommended ACT target was then corroborated in a study 
conducted on rhesus monkeys that found when the ACT 
fell below 400 seconds fibrin monomer was detected (94). 
Surgical literature in the late 1970s and early 1980s consis-
tently showed that use of the ACT as a monitor of antico-
agulation caused a reduction in postoperative chest tube 
drainage. In one clinical study where the ACT utilizing 
the dose-response curve was compared with the standard 
empirical dosing regimen, investigators showed that signifi-
cantly less heparin and protamine was required in the ACT 
group resulting in a 43% reduction in blood loss in the first 
48 hours after surgery (90). Similar clinical outcomes were 
observed in both adults and children (89,95,96). 

   Limitation of the Activated Clotting Time for the 
Monitoring of Anticoagulation  

 The ACT is a relatively crude and non-standardized bed-
side test of anticoagulation but it remains the most widely 
used device for monitoring the level of anticoagulation 
during CPB. The prolongation of the ACT as a measure 
of adequate anticoagulation does not account for factors 
unrelated to heparin activity, including hemodilution of 
contact factors and platelets as well as hypothermia of the 
patient and the blood sample (97,98). The reproducibility 
from sample to sample can be affected by the choice of 
activator, activation of the hemostatic activity, and operator 
technique (91,99–102). Furthermore, there is considerable 
variation between devices so results are not interchange-
able from one device to another (103–106). Many of the 
physiologic factors are exacerbated in the pediatric patient 
resulting in greater inaccuracy (14,103). There is evidence 
that ACT values do not correlate with plasma heparin 
levels. Many authors have shown that while ACT values 
increased on bypass, the plasma heparin level decreased 
(5,97,107,108). When these studies were replicated in the 
pediatric population, no correlation between the ACT 
and laboratory heparin concentration was shown in chil-
dren ( Figure 2  ) (103). The hemodilution, hypothermia, 



 ANTICOAGULATION FOR CHILDREN UNDERGOING CPB 15

JECT. 2010;42:9–19

and decreased platelet function that accompany CPB all 
contribute to prolongation of the ACT to values deemed 
“acceptable,” even if heparin levels are inadequate. 

   Dosing of Anticoagulation during Cardiac Surgery 
 Early on, it was noticed that adults and children 

responded differently to heparin during bypass. Studies 
demonstrated less post-operative blood loss in children 
when heparin dose response curves were used with ACT 
monitoring compared with an empiric dosing method with-
out the use of ACT monitoring (96,109). Pediatric patients 
metabolize heparin faster and seem to require a higher 
heparin dose to achieve the same anticoagulation level 
(110,111). This may be related to a larger relative blood 
volume to body weight, higher metabolic rate, and differ-
ences in protein binding and coagulation factors as outlined 
above. Studies showed that the heparin dose required to 
achieve an ACT >500 seconds ranged from 130–470 U/kg 
for adults and from 200–450 U/kg for children (112). The 
method to determine the heparin-dose-response curve was 
cumbersome for routine clinical use; many cardiac centers 

adopted the practice of administering 300 U/kg heparin 
in efforts to achieve an ACT >450 seconds to all patients. 
The ACT is then measured at regular intervals during CPB, 
with supplementary heparin administered to maintain the 
ACT >450 seconds. 

 Although the physiologic impact of CPB is known to be 
greater in children than that of adults, few well-designed stud-
ies have been carried out in young patients. Consequently, 
anticoagulation practices for children have been extrapo-
lated from adult protocols. The consequences of this practice 
have not been delineated however understanding that there 
are considerable differences between the adult and pediat-
ric coagulation systems highlights that there is a potential for 
this practice to be less than ideal. In a multivariate analysis 
of 487 consecutive adult surgeries it was demonstrated that 
lower initial heparin dosage was associated with increased 
blood loss and transfusion requirements (113). 

   Individualized Heparin and Protamine Management 
 The variability of patient’s response to heparin and the 

variable rate of heparin metabolism have been well docu-
mented since the early days of extracorporeal circulation 
(92,114–116). There is wide inter-individual variability in 
heparin response, which increases with decreasing patient 
weight (110,117). The limitations of ACT monitoring and 
the variability of the dose response to heparin makes the 
use of an individualized protocol attractive. 

 The efficacy of heparin and protamine administration as 
directed by a point-of-care whole blood (WB) hemostasis 
management system (HMS) (Medtronic, Inc. Minneapolis, 
MN) on reducing bleeding and blood transfusion when 
compared with an ACT-based protocol was evaluated 
in a prospective randomized control trial of 254 adult 
patients (118). An empiric dosing regimen for heparin 
and protamine was used for control patients utilizing the 
ACT for monitoring, whereas the protocol for intervention 
patients was based on a heparin dose response, ACT, and 
WB heparin concentration values. A pre-bypass, patient-
specific reference heparin concentration was maintained 
during bypass and the protamine dose was calculated from 
the final heparin concentration measurement on bypass. 
Patients in the intervention arm received 25% more hep-
arin and had smaller protamine-to-heparin ratios when 
compared with control patients. Patients in the interven-
tion group required significantly less transfusion including 
platelets, plasma, and cryoprecipitate when compared with 
the control patients. The control cohort patients had 10% 
longer post-CPB chest closure times, 15% more mediasti-
nal chest tube drainage in the first 4 hours postoperatively, 
and twice as many control patients required transfusion 
(i.e., platelets, fresh frozen plasma) in the intensive care 
unit. In another prospective randomized trial of 200 adult 
patients undergoing elective cardiac surgery, investigators 
compared the influence of the HMS for anticoagulation 

  Figure 2.     Lack of association between heparin levels and ACT in pedi-
atric patients undergoing cardiopulmonary bypass for cardiac surgery. 
There is no correlation between heparin concentration and ACT observed. 
Reprinted with permission from “Andrew M, MacIntyre B, MacMillan J, et al. 
Heparin therapy during cardiopulmonary bypass in children requires 
ongoing quality control. Thromb Haemost. 1993;70:940 ”.    
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management to that of an ACT-based management on the 
activation of the hemostatic and inflammatory system dur-
ing CPB (119). A significant reduction of thrombin genera-
tion, fibrinolysis, and neutrophil activation in the heparin 
concentration-based management strategy was observed. 

 The importance of monitoring patient-specific hepa-
rin concentrations during bypass may be of even greater 
importance in children given the greater variability in 
weight, circulating volumes, and metabolic rate (120). To 
date, few studies have investigated the use of individual-
ized heparin and protamine management in children. 

 Codispoti et al. compared the use of a fixed heparin pro-
tocol (300 IU/kg) to individualized dosing in children (121). 
The  results of this study showed that patients who were 
managed by individualized protocols received more hepa-
rin than those patients who were treated with a fixed dose 
regimen. These patients also had less activation of coag-
ulation proteins, less fibrinolysis, less bleeding post-oper-
atively, and required fewer blood transfusions ( Figure 3  ) 
(121). More recently, Guzzetta and colleagues also com-
pared empirical heparin dosing to an individualized dos-
ing regimen in infants less than 6 months of age (108 ). In 
their study, patients who had individualized heparin man-
agement had less thrombin generation, as measured by 
prothrombin fragment 1.2, and less factor VIII consump-
tion (108). In spite of these findings, many centers continue 
to use an empiric method of dosing (122,123) that has, in 
general, been extrapolated from adult data (42,112,124). 
Empiric heparin administration for bypass results in a 
decline in free heparin concentration with increasing time 
on bypass and inadequate suppression of thrombin genera-
tion and activity (125,126). 

 The maintenance of higher heparin concentration leads 
to better preserved antithrombin, factors I, V, and VIII 
most likely related to better suppression of thrombin (65% 

reduction in FPA levels), and fibrinolytic activity (50% 
reduction in D-dimers) (113,127,128). Higher heparin con-
centrations are better for procedures involving prolonged 
or complicated bypass. Higher stable heparin concentra-
tions during bypass are shown to preserve platelet function 
and decrease platelet activation (i.e., lower platelet factor 
IV  and β thromboglobulin levels) (113,127). Coagulation 
derangements in pediatric patients are complex and influ-
enced by many variables (129); individualized management 
of anticoagulation in children results in less activation of 
the coagulation cascade, less fibrinolysis, as well as reduced 
blood loss with a subsequent decrease in need for transfu-
sion (121). 

    CONCLUSION 

 Maintaining hemostasis and preventing bleeding and/
or thrombosis associated with CPB is a challenge in all 
patients, but even more so in young children because of 
the immaturity of the coagulation system, dilution of coag-
ulation proteins, and higher rate of heparin metabolism. 
Weight-based heparin doses and monitoring with ACT is 
not optimal to minimize thrombin generation and activa-
tion during bypass. Although the use of individualized hep-
arin and protamine management has been shown to reduce 
activation and platelet dysfunction, and improve clinical 
outcomes in older children and adults, there are no defini-
tive studies in the infant population . There is a clear need 
for further investigations in neonates and infants to under-
stand the maturation of the coagulation systems. In addition, 
clarification of the pharmacokinetics and pharmacodynam-
ics of neonates, infants, and children is also required. These 
studies should focus on identifying anticoagulation and 
monitoring strategies that optimize thrombin suppression 
while minimizing bleeding, transfusion, and thrombosis. 

  Figure 3.     Effect of HMS monitoring (HC) vs. weight based heparin management (C) on blood loss in pediatric patients. Blood loss during the first 24 
postoperative hours was significantly reduced in group HC. Reprinted with permission from “Codispoti M, Ludlam CA, Simpson D, Mankad PS . Individualized 
heparin and protamine management in infants and children undergoing cardiac operations. Ann Thorac Surg. 2001;71(3):922–7, Figure 5”.    
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