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Range shifts are of great importance as a response for species
facing climate change. In the light of current ocean-surface
warming, many studies have focused on the capacity of marine
ectotherms to shift their ranges latitudinally. Bathymetric
range shifts offer an important alternative, and may be the
sole option for species already at high latitudes or those
within enclosed seas; yet relevant data are scant. Hydrostatic
pressure (HP) and temperature have wide ranging effects on
physiology, importantly acting in synergy thermodynamically,
and therefore represent key environmental constraints to
bathymetric migration. We present data on transcriptional
regulation in a shallow-water marine crustacean (Palaemonetes
varians) at atmospheric and high HP following 168-h exposures
at three temperatures across the organisms’ thermal scope,
to establish the potential physiological limit to bathymetric
migration by neritic fauna. We observe changes in gene
expression indicative of cellular macromolecular damage,
disturbances in metabolic pathways and a lack of acclimation
after prolonged exposure to high HP. Importantly, these effects
are ameliorated (less deleterious) at higher temperatures, and
exacerbated at lower temperatures. These data, alongside
previously published behavioural and heat-shock analyses,
have important implications for our understanding of the
potential for climate-driven bathymetric range shifts
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1. Background
Global change events are profoundly altering biology [1–4]. Organisms occupying an environment
where directional change is occurring must move, acclimatize or adapt in order to prevent extinction
(acclimatization describes adjustments of phenotype not related to genome changes which occur within
a single generation, whereas adaptation describes a change in genotype which requires multiple
generations) [2,5]. Significant progress has been made in documenting latitudinal range shifts in response
to environmental warming both in terrestrial [4] and marine habitats [6,7]. Recently, studies have shown
that some marine ectotherms are undergoing bathymetric range shifts in response to warming surface
waters [8–10]. Bathymetric range shifts may be an important [11,12] but typically overlooked alternative
to latitudinal shifts, and share similar biotic and abiotic factors as marine latitudinal constraints with the
addition of hydrostatic pressure (HP).

HP is a thermodynamic variable, and as such affects all biological processes [13]. It is of particular
significance in the marine realm as pressure gradients are much steeper in water than in air.
Consequently, the upper and lower depth distributions of marine organisms are delineated in part by
HP [11]. Despite its significance, HP is rarely considered as a stressor in the marine environment in
comparison to other factors such as temperature. Undoubtedly, research involving HP is diminutive
in part due to technological limitations. Yet, research concerning the effects of acute elevated HP
(2 h exposures) has shown that temperature changes can mediate the effects of HP [14].

This study explores whether the apparent effects of HP and temperature, observed in acute
experimental exposures [14], are an artefact of rapid changes in these variables, or represent a
truly ecologically relevant response. Such findings have implications on our understanding of depth
distributions and range shifts of marine ectotherms. We have studied the transcriptional regulation of
genes linked with the onset of a variety of pressure intolerances in a shallow-water shrimp, Palaemonetes
varians, following a sustained hyperbaric exposure at three temperatures across the species’ thermal
tolerance breadth. Behavioural analysis and the observation of changes in heat-shock response have
been previously published from the same exposures in P. varians [15]. This study expands on previous
observations by quantifying the expression of a pressure-specific stress marker, and several metabolism-
related genes. Six genes were selected for expression analysis that had been previously shown to provide
insight into the sub-lethal effects of elevated HP and changing temperature [14] and are summarized
in table 1. The narg gene codes for an N-methyl-D-aspartate receptor (NMDAR)-regulated protein.
Upregulation has been shown under elevated HP scenarios in both the shallow-water shrimp P. varians
[14,21], and also a continental slope-depth king crab, Lithodes maja [22]. Elevated HP, beyond natural
distribution limits, has been shown to cause neurophysiological disturbances such as spasming and
convulsions in a number of organisms, from rats [23] to shrimp [24]. These disturbances are thought
to be associated with NMDAR hyperactivity [16], which is hypothesized to be related to differential narg
gene expression [17]. Thus, narg gene regulation can be thought of as a marker of pressure intolerances
associated with neurophysiological disturbances and behavioural pathologies [14]. The hsp70 f1 and
f2 genes code for 70 kDa heat-shock protein (HSP70) isoforms. HSP70s are molecular chaperones that
show increased transcriptional regulation and protein activity under stressful scenarios that lead to
intracellular macromolecular damage. Consequently, genes coding for HSP70s have been widely used as
general markers of stress as they are key members of the near-ubiquitous cellular stress response (CSR)
[18]. The ldh gene, cs gene and gapdh gene code for proteins involved in key metabolic pathways [19,20].
The ldh gene codes for the lactate dehydrogenase enzyme that catalyses the interconversion of pyruvate
and lactate [25]. Increased levels of lactate have been shown to correlate with lactate dehydrogenase
isozyme expression [26]. Expression of the ldh gene may therefore be a proxy for lactate accumulation
and consequently anaerobic metabolism. Both the gapdh gene and the cs gene code for important
members of aerobic metabolic pathways. The gapdh gene codes for the enzyme glyceraldehyde-3-
phosphate dehydrogenase which catalyses the sixth step of glycolysis. The cs gene codes for the enzyme
citrate synthase which is a key and rate-limiting member of the tricarboxylic acid cycle [19]. The
expression of the cs gene has been recently shown to be correlated with mitochondrial citrate synthase
activity [27,28], and the gapdh gene has shown increased expression during periods of elevated oxygen
consumption in P. varians [21]. Although not clearly resolved, changes in the transcriptional regulation
may have consequences for the abundance of the downstream proteins they encode, thus affecting
aerobic metabolism.

The adult life-stage was chosen for this study as it probably represents the most sensitive stage to
stress beyond very early life-stages [29], where a lack of tissue presents methodological challenges.
A recent study conducted on L. maja, a mid-depth king crab, suggested a reduction in HP tolerance
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Table 1. Short summary of the genes used, and their relevance to the study.

gene relevance to this study reference
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

narg gene an NMDA-receptor regulated marker of HP intolerance associated with
neurophysiological disturbances

[14,16,17]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hsp70 isoforms (f 1 and f 2) encode heat-shock proteins; markers of cellular macromolecular damage
associated with the generalized effects of cellular stress

[18]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cs gene encodes an enzyme (citrate synthase) involved in a rate-limiting step in aerobic
metabolism

[19]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ldh gene encodes an enzyme (lactate dehydrogenase) involved in anaerobic metabolism [20]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gapdh gene encodes an enzyme (glyceraldehyde-3-phosphate dehydrogenase) involved in
aerobic metabolism

[14,18]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

through ontogeny [22]. As such, the adult life-stage may be a particularly sensitive stage to changes in
HP. For successful climate-driven bathymetric range shifts to occur, all life-stages must be able to tolerate
increases in HP. Thus, in attempting to determine physiological limits to temperature and HP changes
the adult life-stage was chosen as a potentially sensitive stage in the life cycle of P. varians.

2. Material and methods
Adult P. varians shrimp (4–5 cm total length) were collected from Lymington salt marshes (Hampshire,
UK). The water temperature during collection was approximately 15◦C. The shrimp were acclimated to
5, 10 or 27◦C ± 0.5◦C at a rate of 2◦C day−1. Shrimp were maintained for a further 3 days at acclimation
temperature before HP experiments.

The IPOCAMP
TM

system [30] was used to conduct week-long 168 h HP and temperature exposures.
The 168 h exposure time was chosen as a step away from previous acute 2–6 h HP exposures, and
represents a trade-off between length of exposure, the effects of starvation (a current technological

limitation of the IPOCAMP
TM

system) and specimen mortality. Mortality was observed in the shrimp
from 192 h of exposure onwards at 15◦C and 10 MPa (JP Morris, A Brown, A Oliphant, D Cottin 2015,
unpublished data), and therefore 168 h exposures represent a significant but sub-lethal stress scenario.
The system was filled with aerated filtered seawater (salinity: approx. 32) and acclimated to either 5, 10 or
27◦C ± 0.1◦C. Shrimp were transferred into the hyperbaric chamber, and the system was set running at
atmospheric pressure for 1 h before the start of each exposure, allowing some time for recovery from any
minor handling stress experienced. HP was then increased stepwise, at a rate of 1 MPa every 5 min, up
to 10 MPa (10 MPa; ≈1000 m depth). Shrimp were held under these conditions for 168 h; 0.1 MPa control
treatments were run over the same time period at each temperature. After exposure, the system was
depressurized over 1 min, and shrimp were snap frozen with liquid nitrogen for RNA extraction.

RNA extraction, DNase-treatment and reverse-transcription were conducted and all necessary quality
control measures were met, according to Bustin et al. [31]. qPCR primers were designed and optimized
in accordance with the MIQE guidelines [31]. Primer sequences, concentrations, linear dynamic
ranges, reaction efficiencies and reference gene normalization strategies are listed in the electronic
supplementary material. Assay specificity was confirmed by melt curve analysis. Normalized relative
quantities (NRQs) were calculated using QBASE+ software. NRQs were then scaled giving a value of
relative fold change (RFC). RFC is a measure of relative changes in gene expression. The RFC of each gene
was determined relative to the atmospheric control exposures at each temperature. Statistical significance
of mean RFC was identified at p < 0.05, determined by GLM and post hoc Tukey-HSD test.

3. Results
Relative fold change (RFC) of five genes showed significant differences under elevated HP across the
three experimental temperatures (5, 10 and 27◦C; figure 1a) when compared with atmospheric control
treatments. To observe the effects of elevated HP at different temperatures, the RFC of each gene was
determined relative to the atmospheric control exposures at each temperature. Further, the atmospheric
control treatment was scaled to a RFC of 1 in each case (figure 1a). Consequently, the RFC values and
figure 1a represent the effects of elevated HP on each gene, and how such an effect is influenced by
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Figure 1. Relative fold change (RFC) of six genes after 168 h exposures at 0.1 MPa and 10 MPa at three temperatures: 5, 10 and 27◦C.
(a) RFCs of each named gene (hsp70 f1 isoform—black dots, hsp70 f2 isoform—white dots) at 10 MPa compared with 0.1 MPa at 5, 10
and 27◦C. RFCs are scaled to gene expression at the corresponding temperature at 0.1 MPa, represented by the grey line in each graph.
(b) Unscaled averaged RFCs at 0.1 MPa at 5, 10 and 27◦C (represented by straight grey line in a). RFCs and 95% CIs calculated from five
biological replicates. Significance displayed as ∗p< 0.05 determined by a GLM and a post hoc Tukey-HSD test.

different experimental temperatures. It is important to note that this study involved the quantification
of relative expression, as explained in the methods section, not absolute expression. Thus, direct RFC
comparisons between genes cannot be made. It is only correct to compare the RFCs and relative fold
patterns within each gene across the different HPs and temperatures. Further, by scaling the atmospheric
control treatments at each temperature to 1, temperature-only effects are removed from figure 1a. For
transparency, these temperature-only effects have been shown in figure 1b.

The narg gene, the cs gene, the gapdh gene and the hsp70 f1 gene showed significant relative fold
increases under elevated HP at 5 and 10◦C. The ldh gene showed a significant relative fold decrease under
elevated HP at 5◦C. The hsp70 f2 gene showed no significant RFC under elevated HP across the three
temperatures (figure 1a). All six genes showed no significant change in expression between atmospheric
and elevated HP at 27◦C (figure 1a).

At atmospheric pressure (0.1 MPa), the narg gene showed no significant changes in expression across
temperatures. The cs gene and the hsp70 f1 gene showed significantly higher relative expression under
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atmospheric HP at 27◦C in comparison to 5 and 10◦C. In the gapdh gene, a significant fold increase
was seen at 10 and 27◦C in comparison to 5◦C under atmospheric HP. Finally, significant relative fold
decreases were observed in the ldh gene, and the hsp70 f2 gene at 27◦C in comparison to 5 and 10◦C
under atmospheric HP (figure 1b).

4. Discussion
For a strictly shallow-water eurytopic invertebrate, large variation in temperature or HP, in isolation,
has effects on the transcriptional regulation of genes involved in distinct physiological mechanisms.
Importantly, these effects are considerably more pronounced when temperature and HP act in
combination [14]. Tested over a 168-h exposure, the current data show, for the first time, that the
antagonistic effects of HP and temperature in response to acute experiments [14] are not merely artefacts
of acute exposures. Therefore, these results have implications on our understanding of physiological
limits to the depth distributions of marine organisms, and their ability to shift distribution ranges.
The thermodynamics of volume change reactions indicate that decreasing temperature and increasing
HP both favour reactions in which volumes decrease, and vice versa [13]. Volume change reactions
are central to all biological processes, and the efficiency of such reactions has implications across
an organism’s physiology [32]. If temperature and HP are considered a single entity (they covary
throughout the marine biosphere) then all aquatic organisms exist within a specific thermodynamic
envelope that is determined by their physiology. Outside this physiological scope, survival would either
be time-limited or not possible [2]. Although ecological interactions are of clear importance in setting
distribution limits, the physiological scope of an organism is likely to be of fundamental importance also
[2,11]. When contemplating bathymetric migrations, the effects of the combination of temperature and
HP must be considered. The complexity of understanding current range shifts and forecasting future
shifts has been highlighted in several recent publications [10,33], and therefore an understanding of how
combinations of stressors dictate physiological limits is important moving forwards.

The expression of the cs and gapdh genes increases with higher temperature at atmospheric pressure
(figure 1b): such trends are expected and well understood, reflecting increasing metabolism with rising
temperature [34]. However, under high HP, the trend is reversed with elevated cs and gapdh gene
expression at lower temperature. The pattern of this gene expression may reflect changes in activity
of their coding proteins [27]. Alternatively, changes in the expression of these markers may reflect an
increase in ATP demand which cannot be met at high temperature when in combination with elevated
HP. This may result in reduced scope for energetically costly transcriptional regulation. Although yet
to be clearly resolved, a change in expression of these metabolic genes probably signifies some form
of disturbance in key aerobic metabolism pathways. Increases in metabolism are well known as an
important aspect of the CSR [18]. Under a combination of elevated HP and low temperature, increases
in aerobic metabolism/metabolic demand, or diminished metabolic scope may therefore be a sign of
increased stress. These inferences are corroborated by increased expression of the hsp70 f1 gene under
high HP and low temperature, another important aspect of the CSR indicating an increase in intracellular
macromolecular damage [18]. The ldh gene, a marker of lactate accumulation and thus anaerobic
metabolism [26], is downregulated where maximal expression of aerobic markers is observed. This may
be a consequence of high cellular-level aerobic activity. The narg gene, a marker of pressure sensitivity
associated with neurophysiological disturbances [14], shows the same trend under high HP conditions
as the metabolic and CSR related genes, further inferring that the negative physiological effects of HP
are greatest at low temperatures. The narg gene shows no change in regulation across temperatures at
atmospheric HP, consistent with previous studies [14,21].

Overall, the regulation of transcriptional markers associated with aerobic metabolism, anaerobic
metabolism, the CSR and pressure-specific intolerances indicate that the physiological effects of high HP
or low temperature are exacerbated in combination with one-another, in line with thermodynamic theory.
Equally, the effect of high HP is ameliorated at higher temperature. Our results corroborate previously
published behavioural analysis over the same experimental exposures. Cottin et al. [15] demonstrated
that at low temperature there was a reduction in locomotory activity under elevated HP in comparison
to atmospheric HP. A reduction in locomotory activity coincided with an increase in the transcription
of genes coding for HSP70 isoforms, suggesting that exposure to elevated HP and low temperature
was stressful for the shrimp. Consequently, the observed reduction in locomotory activity may be a
form of stress-induced energy conservation, a commonly observed response to stressful scenarios [35].
These data, considered alongside our observations of transcriptional regulation at 5◦C, indicate that
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high HP at lower temperatures produces the greatest detrimental physiological effects for temperate
marine ectotherms.

The transcriptional responses to HPs beyond current natural range limits observed in this study are
similar to those recently documented in a mid-depth king crab species, L. maja [22]. Although further
comparisons need to be made, this suggests that the response of P. varians to changing temperature
and HP may be used to infer responses of other, more difficult to study, marine ectotherms. Although
P. varians is an unlikely candidate for bathymetric migration under current conditions, it shares
phylogenetic ancestry with deep-sea lineages [36] that may have undergone bathymetric range shifts
from shallow-waters in the past [37]. As such we advocate P. varians as a useful experimental model
in studies concerning HP and bathymetric range shifts where other marine ectotherms provide greater
methodological and technological challenges in such laboratory-based physiological studies (such as
the king crab, L. maja [22]).

Current data show that elevated HP induces the CSR, influences aerobic metabolic pathways, and
induces pressure-specific physiological intolerances in a shallow-water ectotherm. These effects can be
reduced by higher temperatures within the organisms’ thermal scope. Likewise, the effects of increasing
HP are exacerbated by lower temperatures. It can be posited, from a purely physiological standpoint, that
bathymetric migration down a warm isothermal water column is a physiologically viable alternative to
latitudinal migration for marine ectotherms. By contrast, a cold isothermal water column may require
inherent pressure tolerance or acclimatization/adaptation in order to overcome the effects of increasing
HP. However, shallow-water cold-adapted ectotherms may have inherently higher HP tolerance due
to low temperature adaptation [38]; this should be investigated further. Isothermal water columns
currently exist at high latitudes and in some areas of enclosed seas, thus the potential for bathymetric
migrations may be greatest there. Coincidentally, these are the same regions where latitudinal migrations
are not possible. The more widespread stratified oceans, characterized by decreasing temperature with
depth, may represent the greatest physiological challenge for shallow-water organisms attempting
down-slope migration.

This study considers range limitation from a physiological standpoint, where in the natural
environment ecological factors are of at least equal importance. However, an organism cannot survive
where its physiology cannot sustain its life, and as such an understanding of physiological limits is
an important precursor to combined eco-physiological studies. Future studies will benefit from an
understanding of physiological limitations when combining ecological and physiological parameters,
providing a more holistic understanding of species range dynamics. Our results demonstrate that
temperature and HP are particularly significant environmental factors in combination and, as they
covary throughout the ocean, it is important to consider them as acting concurrently rather than in
isolation.
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input from all authors.
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