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Abstract
Various genetic markers such as IS-elements, DR-elements, variable number tandem

repeats (VNTR), single nucleotide polymorphisms (SNPs) in housekeeping genes and

other groups of genes are being used for genotyping. We propose a different approach. We

suggest the type II toxin-antitoxin (TA) systems, which play a significant role in the formation

of pathogenicity, tolerance and persistence phenotypes, and thus in the survival ofMyco-
bacterium tuberculosis in the host organism at various developmental stages (colonization,

infection of macrophages, etc.), as the marker genes. Most genes of TA systems function

together, forming a single network: an antitoxin from one pair may interact with toxins from

other pairs and even from other families. In this work a bioinformatics analysis of genes of

the type II TA systems from 173 sequenced genomes ofM. tuberculosis was performed. A

number of genes of type II TA systems were found to carry SNPs that correlate with specific

genotypes. We propose a minimally sufficient set of genes of TA systems for separation of

M. tuberculosis strains at nine basic genotype and for further division into subtypes. Using

this set of genes, we genotyped a collection consisting of 62 clinical isolates ofM. tubercu-
losis. The possibility of using our set of genes for genotyping using PCR is also

demonstrated.

Introduction
According to WHO data, tuberculosis (TB) is one of the deadliest among infectious and para-
sitic diseases with an estimate of 9 million new TB cases and 1.5 million deaths in 2013. Most
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of TB cases occur in African countries, Russia, Southeastern Asia and Middle East [http://
www.who.int/tb/publications/global_report/en/]. Today the most dangerous forms of TB are
not only those caused by drug-resistant strains ofMycobacterium tuberculosis [1], but also
those with modified virulence, transmissibility and pathogenicity. A number of researches
found a correlation betweenM. tuberculosis genotypes and their virulence and tendency to
acquire drug resistance [2,3]. TheMycobacteria genus and strain identification is of great
importance for the proper treatment assignment and epidemiologic situation evaluation.

NowadaysM. tuberculosis strains are classified in several genotypes, the basic of which are
Beijing, X, Delhi/CAS, LAM, Haarlem, EAI, T, Ural and S [4,5]. Several genotyping techniques
are available forM. tuberculosis, using different genetic markers [6].

Spoligotyping is based on polymorphism of the DR (direct repeat) locus on the chromo-
some, which contains a variable number of 36 base pairs (bp), separated by unique sequences
(spacers) with length from 34 to 41 bp [7]. IS6110-RFLP-typing is based on the analysis of the
restriction fragment length polymorphism obtained by the digestion of the genomic DNA at
specific restriction endonuclease sites. The sizes and localization of the restriction fragments
after their electrophoretic separation are determined by Southern blotting [8]. MIRU-VNTR-
typing usesM. tuberculosis genomic loci containing conservative tandem repeats as genetic
markers (MIRU—Mycobacterial Interspersed Repetitive Units, VNTR—Variable Number
Tandem Repeat). The number of these repeats is variable in different strains [9]. Besides these
techniques, which are the most widespread, a number of additional approaches forM. tubercu-
losis genotyping are also available [6].

All these methods have their advantages and drawbacks [6]. Currently single nucleotide
polymorphisms (SNPs) are considered the most promising genetic markers due to their low-
level homoplasy and a high discriminating ability of genotyping techniques using SNPs. The
main problem of these markers is the direct dependency of discriminating ability and the num-
ber of genes analyzed. Thus, the search for a set of genes with an optimal ratio of the number of
loci and discriminating ability represents a significant task [10,11].

Type II toxin-antitoxin (TA) systems are widely spread among bacteria and archaea [12],
including human commensal [13,14] and pathogenic bacteria [15,16]. Functions of type II TA
systems are very diverse and actively studied [17,18]. It has been shown that this group of
genes is involved in persistence regulation, biofilm formation, antibiotic tolerance, stress adap-
tation and virulence [19–23].

Type II TA systems represent a module of two genes, one after another, forming an operon.
One of the genes encodes a stable toxin protein, the other one—a small labile antitoxin protein,
which can bind to the toxin and inactivate it. Under stress conditions the antitoxin degradation
occurs, leading to the toxin accumulation and cell growth inhibition [12].

Type II TA systems include a number of families, such as vapBC, relBE, mazEF, ccd, parDE,
phd/doc, higBA, hipBA, which vary in their mode of action. Toxins belonging to families phd/
doc, higBA, relBE, mazEF and vapBC are RNAses [24–28], toxins ParE and CcdB are DNA
gyrases [29,30], HipA toxin phosphorylates elongation factor Tu, thus inhibiting peptide chain
elongation [31].

TheM. tuberculosis genome harbors a large number (from 70 to 90, according to various
estimates) of type II TA systems, belonging to the following families: VapBC, MazEF, HigAB,
RelBE and ParDE [32,33]. The functions of type II TA systems ofM. tuberculosis are quite
diverse [33], one of the most important being their involvement in virulence and transmissibil-
ity regulation [34, 35]. Correlation between SNPs in genes of TA systems type II ofM. tubercu-
losis and belonging of the strains to a particular genotype, allows us to offer TA system as new
markers for genotyping.
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Materials and Methods

Bacterial strains and culture conditions
The bacterial strains used in this study are described in S1 Table. TheM. tuberculosis strains
were obtained from the collection of the Central TB Research Institute (CTRI), Moscow, Russia
(http://www.cniitramn.ru/).M. tuberculosis cultures were cultured on an automatic growth
detection system Bactec Mycobacterial Growth Indicator Tubes (MGIT) 960 (Becton Dickin-
son, Franklin Lakes, NJ, USA) according to the manufacturer's manual. Samples from Bactec
MGIT 960 test tubes were plated on blood agar and incubated for 24 h at 37°C. If any growth
was detected, the culture was considered contaminated and eliminated from the study.

DNAmanipulations
Genomic DNA was isolated fromM. tuberculosis cultures on a robotized system EVO 150
(Tecan, Männedorf, Switzerland) with “M-Sorb-Tub-Avtomat” kit (Syntol, Moscow, Russia).

Quantitative PCR (qPCR)
Detection of SNPs in TA genes was performed using a High Fidelity PCR Enzyme Mix (Fer-
mentas) in a CFX96 thermocycler (Bio-Rad Laboratories Inc., Hercules, CA, USA). Probes and
primers are described in S2 Table. Briefly, the PCR mixtures (final volume of 25 μl) contained
5 pmol each primer and probes, 1 ng cDNA, 5 mM dNTP mix, 2.5 μL of 10x PCR buffer with
MgCl2 and RNase-free water to a final volume 25 μL. The thermal cycling conditions were as
follows: 95°C for 5 min, then 35 cycles of denaturation at 94°C for 1 min, annealing at 64°C for
40 s and extension at 72°C for 40 s, and a final extension at 72°C for 10 min.

Bioinformatic analysis
We analyzed 71 type II toxin-antitoxin systems belonging to five different families: VapBC,
MazEF, HigAB, RelBE и ParDE (see S3 Table). We also included 3 «novel» TA systems that is
not attributed to any family [32] (S3 Table). Gene sequences were obtained from GenBank
(NCBI). The classification of putative toxin and antitoxins in families was performed according
to Ramage et al. [33].

For our study 173 sequenced genomes were analyzed which were obtained from GenBank
(NCBI), including 16 complete genomes, 84 genomes represented by contigs and 37 genomes
represented by SRA archives (see S4 Table). The genomes with unknown genotype were classi-
fied according to the method of Homolka et al. [10].

All studied type II TA systems were checked for the presence of SNPs (TA systems from the
M. tuberculosisH37Rv were taken as a reference). Polymorphisms (SNPs) and their locations
were identified by BLAST software in conjunction with the Python scripts developed by us (see
S5 Table). The program for genotyping strains was created based on the correlation of poly-
morphisms with genotypes.

Phylogenetic analysis
To determine the position of genotypes and subtypes on the phylogenetic tree, we used nucleo-
tide sequences of 71 type II TA systems (S3 Table) from 173 sequenced genomes ofM. tubercu-
losis (S4 Table). Nucleotide sequences of 71 TA systems from each genome were concatenated
in ‘supersequence’ (supergene), and the resulting 173 long supersequences were aligned with
each other using Clustal W ver. 2.1. [36]. A phylogenic tree from the resulting alignment was
constructed using Molecular Evolutionary Genetic Analysis (MEGA) software version 6 [37]
by the neighbor-joining (NJ) method.
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In addition, we constructed a phylogenetic tree based on the minimum set of genes,
which we offer for genotypingM. tuberculosis strains. Thirteen genes were concatenated in
supersequence (for each strain), and resulting 173 supersequences were aligned using Clus-
talW ver. 2.1. The phylogenetic tree was constructed using MEGA ver. 6 analogous to the
large tree.

Results and Discussion

Genetic diversity of type II TA systems inM. tuberculosis genomes and
the correlation of their genotypes with SNPs
A bioinformatics analysis of the genes of the type II TA systems from 173 sequenced genomes
ofM. tuberculosis showed that, out of 142 tested genes, 106 (74.6%) had polymorphisms (S5
Table). Missense SNPs were found in 42.2% cases, 29.0% were silent SNPs, 28.8% had inser-
tions and deletions leading to a frameshift. Among missense SNPs originating in TA systems
belonging to the VapBC family, most were localized in the functional part of the gene, the PIN-
domain [38].

Along with the high degree of polymorphisms, the genes of the TA systems are partially
conserved. The number of genes containing more than one SNP did not exceed 5% of exam-
ined genes. A homolog of the TA system VapBC31 (rv0749-rv0748) was found in allM. tuber-
culosis genomes and was annotated in the strain H37Rv as VapBC25 (rv0277c-rv0277A). The
homology between those genes reached 89%; there was 93% homology for the toxin and 88%
for the antitoxin. Presumably, the TA system VapBC25 (rv0277c-rv0277A) only partially func-
tions or does not function at all because the SNP in 24 codons of the antitoxin becomes a stop
codon. This system was excluded from further analysis.

All 142 genes of the type II TA systems were found in the examined genomes except in two
cases: the lack of the MazEF8 system (rv2274c-rv2274A) of the Haarlem genotype and the lack
of the toxin gene (rv2760c) from that VapBC42 system, which were not found in strains
NA-A0008 and NA-A0009 (EAI-Manila subtype, according to our classification, see S4 Table)
(Fig 1).

For a number of type II TA systems, there were polymorphisms that correlated with a spe-
cific genotype. In summary, based on SNPs in TA systems, at first theM. tuberculosis
genomes can be divided into two groups in accordance with the concept of global phylogeny
of tuberculosis for the Euro-American lineage and non-Euro-American lineage, including
the Indo-Oceanic lineage, East Asian lineage and East African-Indian lineage. The Indo-
Oceanic lineage corresponds to the genotype EAI, East African-Indian lineage to genotype
CAS, and East Asian lineage to the Beijing genotype [4]. In the Euro-American lineage, the
following basic genotypes can be distinguished: Ural, X, Haarlem, LAM, S and T [5, 39].
Therefore, SNPs in the seven genes of the type II TA systems (higA1, vapC6, vapC10,
vapC38,mazF3, mazF8 и vapC47) allow for the identification of nine basic genotypes
(Table 1).

Thus, using polymorphisms in seven genes of type II TA systems, we were able to index
some of the nine basic genotypes by their subtype. Genotyping within the Beijing genotype has
the most significant value to epidemiology.

According to modern concepts, the Beijing genotype was divided into the two most signifi-
cant subtypes: modern and ancestral, which have differences in virulence and propensity for
the formation of resistance [40–42]. The subtypes Beijing-modern and Beijing-ancestral,
according to our classification, correspond to the following combination of SNPs: themazF3
and higA1 genes, Beijing-ancestral subtype, and themazF3, higA1, vapC38 and vapC37 genes,
Beijing-modern subtype (Table 1).
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With the addition of the vapC12 gene, a cluster of B0/W-148 as part of the Beijing-modern
subtype can be identified. This cluster has epidemiological significance and is endemic in Rus-
sia; however, it has become widespread [43,44].

According to our proposed classification, the strains 94_M4241A and CWCFVRF MDRTB
670 have SNPs in themazF3 (rv1102c) gene, and the lack of polymorphisms in the higA1
(rv1956) gene, in connection with the SNPS in themazF3 (rv1102c) gene, allowed these strains
to be allocated into a separate Beijing-like subtype. Strain 94_M4241A, according to the geno-
typing by Homolka et al. [10], belonged to the Beijing (Beijing-ancestral) subtype; however,

Fig 1. The type II TA systems of mycobacteria were investigated. Schematic diagram of the toxin-antitoxin system. (A) TA systems are annotated
according to the GenBank database, excluding VapBC50 (rv3750c-rv3749c), VapBC49 (rv3180c-rv3181c), HigBA3 (rv3182-rv3183), HigBA2 (rv2022c-
rv2021c), MazEF10 (rv0298-rv0299) and VapBC45 (rv2018-rv2019) systems; these systems are annotated according to Sala et al. [32]. The system RelBE3
(rv3358-rv3357, GenBank database, NCBI) is called the YefM/YoeB system by Sala. All of the TA systems depicted here are type II (systems marked with an
asterisk are novel TA systems that are not classified to any family, but for which functional activity has been shown [32]). The 13 genes, our proposed set for
genotyping, are highlighted in bold. (B) Type II TA systems are encoded by two genes, a toxin and an antitoxin, that form one operon with a promoter located
upstream of the first antitoxin gene. PIN domain is the functional part of the toxin gene, the four conserved acidic residues marked at the picture: the three
well-conserved acidic residues, at positions 4[D], 40[E] and 93[D], and with fourth acidic residue is less well conserved at position 112[D].

doi:10.1371/journal.pone.0143682.g001
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according to recent studies, Homolka et al. took an intermediate position between the Beijing
and EAI genotypes [45]. Strain CWCFVRFMDRTB 670, according to genotyping by house-
keeping genes [10], belongs to the Beijing genotype.

Thus, the Beijing genotype, using the three additional genes, vapC37, vapC12 and vapC38,
can be divided into four subtypes: Beijing-modern, Beijing-ancestral, Beijing-like and endemic
to the Russia cluster B0/W-148, which are associated with drug resistance and elevated viru-
lence [3] (Table 2).

This classification is not final; with increasing amounts of type II TA systems, the discrimi-
native power of the method increases. In particular, by adding two genes, vapC1 and higB1,
which are possible Beijing-ancestral subtype genes divided in three groups, and adding four
genes,mazF7,mazE3, vapC46 and higB2, which are possible Beijing-modern subtype genes
divided in four groups, the cluster B0/W-148 is divided into three groups. In total, using poly-
morphisms in 11 genes, the Beijing genotype can be divided into 11 groups. Of particular inter-
est is the division of the most important genes into subgroups, and in an epidemiological sense,
the cluster of B0/W-148 is associated with an increased virulent phenotype because recent
studies indicate that the composition of this cluster included strains with different phenotypes,
including with reduced virulence [46].

The remaining genotypes were divided into the following subtypes: we distinguish the EAI-
Manila subtype within the genotype EAI, using SNPs in the rv2653 gene, a member of the fam-
ily which has not yet been determined. The LAM genotype was divided into four subtypes cor-
responding with LAM1, LAM2, LAM9 and LAM4/F15/KZN by using polymorphisms in the
following four genes: vapC30, vapC3, vapC38 andmazF8. The T genotype can be distinguished
into subtype SMI-049 using a polymorphism in the vapB17 gene (Table 2). Earlier, the LAM4/
F15/KZN and SMI-049 subtypes were identified by using RFLP-typing only [47,48].

Genes that are proposed to set genotyping are involved in the following known mechanisms:
inhibition of the growth ofM. smegmatis [33] (mazF3, higA1, vapC10, vapC47, vapC37,
rv2653c, vapC30, vapC3), regulation of the growth rate (slowing) ofM. bovis under stressful
conditions [49] (vapC37 and vapC38) and others (S3 Table).

Table 1. The division of Beijing genotype on subtypes using the polymorphisms in five genes belong to type II TA systems.

Subtype by
Merker et al.1

Ancestral Asia 1–3 (CC6, BL7) Typical/modern Beijing (CC1—CC5) Europe-Russia W-148
(CC2)

Subtype Beijing-like Beijing- ancestral Beijing-modern B0/W-148

Gene Genomes

CWCFVRF MDRTB
670, 94_M4241A

02_1987, 1034, XDR1221,
NCGM2209, CTRI-4,

R1207

210, WX1, WX3, T85, SP4, X122, XDR1219, SP6, SP11,
SP5, SP9, SP16, SP18, SP2, MOS14, G-12-005,

Beijing/NITR203, BT1, BT2, CCDC5079, CCDC5180,
HKBS1, HN878, PanR0605, PanR0606, SP34, SP29,

SP3, SP8, SP12, MOS12

SP1, SP10, SP21,
SP22, SP7, W-148,

SP13, MOS11

mazF3 194: C!T2 194: C!T 194: C!T 194: C!T

higA1 - 363: C!T 363: C!T 363: C!T

vapC38 - - 143: T!C 143: T!C

vapC37 - - 46: A!G 46: A!G

vapC12 - - - 95: A!G

1 The division into subtypes according to Merker [40].
2 The H37Rv strain was used as a reference.

doi:10.1371/journal.pone.0143682.t001
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Phylogenetic relationship between different genotypes of theM.
tuberculosis strains
To establish the phylogenetic relationship between different genotypes ofM. tuberculosis
strains, a set of nucleotide sequences of 71 type II TA systems (S3 Table) from 173 sequenced
genomes ofM. tuberculosis (S4 Table) were compared. These genes are highly conserved, but
some of them have different SNPs conserved for the genotype, allows to divide genomes into
clusters according to their genotypes. We aligned 71 TA systems (concatenated in the
sequence) for each strain, and build the phylogenetic tree (Fig 2A). Additionally, we build a
phylogenetic tree based on the minimum set of genes, which we offer forM. tuberculosis strains
genotyping (Fig 2B).

Both phylogenetic trees indicated that theM. tuberculosis strains can be divided into nine
basic genotypes (Table 2). Moreover, both trees showed clearly that the Beijing genotype may
be subdivided into 4 large clusters, including Beijing-like, Beijing-modern, Beijing-ancestral
and B0/W-148, and that the cluster of B0/W-148 located on the same branch with the cluster
of Beijing-modern but this two clusters clearly separate; clusters of the Beijing and EAI geno-
types located nearby, showing their evolutionary relationship. There are also clearly distin-
guishable clusters for the following genotypes and subtypes: S, Ural, Haarlem, X, LAM1,
LAM2, SMI-049 and F15/LAM4/KZN. Most of the major internal nodes on the both trees had
bootstrap support> 60%.

Table 2. The minimum set of genes for genotyping strains ofM. tuberculosis, developed on the basis of SNP in genes of TA systems of VapBC,
HigAB and MazEF families.

Genotype Genes SNP1 Subtype Genes SNP

Beijing mazF3 higA1
vapC47

194:C!T 363:C!T 137:
C!T

Beijing-like mazF3 194:C!T

Beijing-
ancestral

mazF3 higA1 194:C!T 363:C!T

Beijing-
modern

mazF3 higA1 vapC37 vapC38 194:C!T 363:C!T 46:A!G 143:
T!C

B0/W-148 mazF3 higA1 vapC37 vapC38
vapC12

194:C!T 363:C!T 46:A!G 143:
T!C 95:A!G

Delhi/
CAS

mazF3 vapC6
vapC47

194:C!T 194:G!T
137: C!T

- - -

EAI mazF3 vapC10
vapC47

194:C!T 308:A!G
137: C!T

EAI-Manila rv2653c3 111:C!T 272:A!T 294:C!G

S vapC6 vapC47 280:G!A 137: C!T - - -

Haarlem vapC38 vapC47
mazF8

197:G!C 137:C!T No
gene

- - -

LAM vapC47 137:C!T LAM1 vapC30 38:G!C

LAM2 vapC3 222:G!A

LAM9 mazF8 3:G!A

LAM4/F15/KZN vapC38 168:C!T

T - -2 SMI-049 vapB17 213:G!C

Ural vapC10 vapC47 394:C!T 137:C!T - - -

X vapC38 vapC47 197:G!C 137:C!T - - -

1 The H37Rv strain was used as a reference.
2 No polymorphisms relative to strain H37Rv because H37Rv relates to T genotype.
3 Novel family.

doi:10.1371/journal.pone.0143682.t002
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A phylogenetic tree built based on the 71 TA systems (Fig 2A) showed that the clustering of
M. tuberculosis strains is almost identical to that obtained from the phylogenetic tree based on
a minimum set of genes (Fig 2B). Thus, we can state that in the case of M. tuberculosis, geno-
typing based on the full set of genes generates groups similar to the one achieved by using a
smaller number of genes.

On the PATRIC (Pathosystems Resource Integration Center, https://www.patricbrc.org/
portal/portal/patric/Phylogeny?cType = taxon&cId=1763) website a phylogenetic tree for path-
ogenic actinobacteria, including pathogenic mycobacteria andM. tuberculosis, is available. The
comparison of the trees based on SNPs in genes of TA systems and the tree from the PATRIC
website showed high similarity—all three trees show the division of all the strains in two main
lineages: Euro-American and non-Euro-American. The branch containing the Beijing geno-
type located near the one of the Delhi/CAS genotype, it can be more clearly observed on tree
built on the minimal set of genes; the branch containing the EAI genotype (and EAI-Manila
subtype) can be clearly identified on all three trees. Inside the Euro-American lineage clusters
of the following genotypes and subtypes can be determined quite distinctly: S, LAM1, Haarlem,
X и SMI-049. Moreover, Haarlem and X genotypes are nested on one the branch in all of the
three trees. Strains of the Ural genotype are absent on the tree from the PATRIC website.

Some common features can be also observed in the comparison of our phylogenetic trees
with the trees published by Homolka et al., [10]: the EAI genotype is localized on a branch sep-
arated from the branch harboring Beijing and Delhi/CAS genotypes; X, LAM1, S, Ural and
Haarlem are clearly divided and belong to the Euro-American lineage.

The phylogenetic analysis confirms our findings, that we can genotype mycobacterial strains
using a set of genes of TA systems with significant SNPs, and that our results can not only
divide the strains at the nine basic genotypes, but also allow to identify subtypes within them.

Fig 2. Phylogenetic relationship between different genotypes of theM. tuberculosis. (A) Phylogenetic tree constructed on the basis of polymorphisms
(SNP) in all of the considered genes of type II TA systems. An unrooted phylogenetic tree for the 173 strains from this study was constructed based on the
presence/absence of SNPs in the nucleotide sequences of 71 TA systems (S3 Table); (B) Phylogenetic tree constructed on the basis of SNP in a minimum
set of genes of type II TA systems. An unrooted phylogenetic tree for 173 strains constructed based on SNPs in the nucleotide sequences of 13 genes
(Table 2). In both of cases strains included in the one cluster belong to the same genotype (various genotypes highlighted by color). The trees was
constructed by the neighbor-joining approach. The TA systems sequences were retrieved from different databases (see Materials and Methods). Sequences
were multiply aligned by using ClustalW ver. 2.1 software. The trees was calculated using MEGA ver. 6. Bootstrap support > 60% is indicated for the trees.

doi:10.1371/journal.pone.0143682.g002
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Polymorphisms of type II TA system genes: a new set for genotyping
The correlation between a strain belonging to a particular genotype and the presence of SNPs
in different genes of type II TA systems allows us to consider the TA systems as a new func-
tional bio-marker for genotypingM. tuberculosis. Currently, there are several different geno-
typing methods that differ by a variety of markers, that is, DR-repeats, VNTR (variable
number tandem repeats) and an IS6110-element [6]. Recently the interest emerged to SNPs, in
particular, in housekeeping genes, as markers for genotyping. The advantage of SNPs is the low
level of homoplasy and an unambiguous interpretation; the disadvantage is a reduced discrimi-
nating ability and a decreased number of genes that can be used for genotyping.

When using SNPs in type II TA systems with a minimum number of genes (13 genes), all
basic groups ofM. tuberculosis can be represented, including those with clinical significance,
such as the LAM4/F15/KZN and B0/W-148 subtypes; the Beijing genotype can be divided into
four subtypes. Fig 3 shows a scheme for genotyping using 13 genes of the type II TA systems.

Fig 3. Scheme of typing ofM. tuberculosis strains using 13 genes of type II TA systems. The algorithm for determining the genotype is presented. The
scheme shows that, after the first iteration to determine the genotype, the number of genes for the analysis is decreased twofold. Each gene in the brackets is
given its position that is replaced, and the appropriate nucleotide is indicated. All replacements are calculated relative to the reference strain H37Rv.

doi:10.1371/journal.pone.0143682.g003
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The following algorithm is proposed, which reduces the number of genes that need to be used:
1) a SNP in themazF3 gene classifiedM. tuberculosis into two lineages, including the Euro-
American and not Euro-American lineages; 2) further, if themazF3 gene has a thymine (T) at
the position 194, the following seven genes should be used: vapC6, higA1, vapC10, vapC37,
vapC38, rv2653c and vapC12; 3) and if themazF3 gene has a cytosine (C) at the position 194,
the following eight genes should be used: vapC6, vapC10, vapC30, vapB17, vapC38, vapC3,
vapC47 andmazF8. Therefore, in both cases, the number of genes is reduced to nine, without
the loss of resolution.

After the completion of the work with the GenBank database we randomly took 10 addi-
tional genomes. These genomes were genotyped in two ways: using SNPs in the housekeeping
genes, and using the SNPs in the genes belonging to the type II TA systems (Table 3).

As shown in Table 3, the genotypes determined by both methods coincided, but the method
of SNPs in the TA system genes allows to determine the subtype along with the genotype. All
the above confirms that the genotyping method proposed by us can be applied to any genome
to accurately indicate the genotype/subtype of the microorganism.

Comparative genotyping of isolate collection
Using the proposed set of markers, we genotyped a collection of 62 clinical isolates ofM. tuber-
culosis, including three groups that differ in drug resistance and clinical manifestations [50].
For each isolate, the sequence of the 13 genes was determined. As a reference, the method [10]
was used. We identified 43 isolates belonging to the Beijing-modern subtype (including 16 iso-
lates of the B0/W-148 subtype), 1 isolate belonging to the X genotype, 2 isolates with the Ural
genotype and 16 isolates belonging to the LAM genotype (including one belonging to the
LAM9 subtype, Table 4).

Detection of polymorphisms using qPCR
We carried out genotyping of 62 clinical isolate ofM. tuberculosis using the qPCR and the pro-
posed set of genes. As a reference, the H37Rv strain (belongs to T genotype of the Euro-Ameri-
can lineage) was used. The absence of an SNP (the position is same as the reference strain) was

Table 3. Determination of genotypes of tested strains in two ways.

Strain Method is based on the

TA genes Housekeeping genes

2484AR LAM not defined1

49–02 Beijing- modern Beijing

96075 Beijing-modern Beijing

96121 EAI-Manila EAI-Manila

K Beijing Beijing

KIT87190 Beijing Beijing

Kurono LAM not defined1

MD17898 Beijing-modern Beijing

ZMC13-264 Beijing Beijing

ZMC13-88 Beijing Beijing

1 These two genomes belong to the Euro-American lineage according to SNPs in the housekeeping genes.

doi:10.1371/journal.pone.0143682.t003
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detected via FAM (blue) channel, while the presence of SNPs was detected via HEX (green)
channel.

At first, according to Fig 3, all isolates were divided into two groups: Euro-American and
non-Euro-American. Isolates belonging to the Euro-American lineage had cytosine in the
mazF3 gene in the position 194 (no substitution compared to the reference) whereas the iso-
lates of the non-Euro-American lineage had thymine (substitution compared to the reference).
Thus, 43 isolates were identified as the non-Euro-American lineage, and 19 as the Euro-Ameri-
can lineage.

All 43 isolates belonging to the non-Euro-American lineage had a polymorphism in the
higA1 gene (C363!T363), and therefore belonged to the Beijing genotype. With further geno-
typing using SNP in vapC37, vapC38 and vapC10 genes these isolates were divided into two
groups: 27 belonged to Beijing-modern genotype and 16 were attributed to B0/W-148
genotype.

Among the isolates of the Euro-American lineage one belonged to X genotype, 2 isolates to
the Ural genotype, and 15 to the LAM genotype (including one of the LAM9). All the results
obtained by PCR were consistent with the data presented in Table 4. Therefore, polymor-
phisms as the markers for a particular genotype can be identified not only by sequencing but
by a less laborious qPCR technique.

Fig 4 shows an example of the Ural genotype detection by qPCR. Two strains 13–3147 and
13_2978 belonging to the Ural genotype were identified in the Euro-American lineage. This
strain carried a substitution (C394!T394) in the vapC10 gene, typical for the Ural genotype.

Concluding Remarks
We propose an alternative approach for genotyping ofM. tuberculosis strains based on SNPs in
type II TA systems. Type II TA systems play an important role in the pathogen’s adaptation to
adverse conditions and SNPs in these genes may potentially alter the activity of the encoded
proteins. Two phylogenetic trees were constructed. One is based on SNPs identified in the 71
type II TA systems, and another one on the basis of SNPs in 13 genes included in the set for
genotyping. Both phylogenetic trees break down into identical clusters, confirming a possibility
of using a minimal set of genes to divide the M. tuberculosis strains into genotypes and sub-
types. Thus, a set of 13 genes of the type II TA system was developed, and using this set of
genes, 62 clinical isolates were genotyped. A program for genotyping was created based on
SNPs in genes of TA systems. The possibility of using our set of genes for genotyping using
PCR has been also demonstrated. Investigations of the functional roles of the detected poly-
morphisms in type II TA systems are of great interest because different strains ofM. tuberculo-
sis (and, respectively, different genotypes) may adapt to the host conditions with different

Table 4. Comparative genotyping of the Russian collection of isolates by twomethods.

Genotype Genotyping using housekeeping genes Genotyping using genes of toxin-antitoxin
systems

Genotype Subtype

Beijing 43 43 16 (B0/W-148) 27 (Beijing-modern)

Ural 2 2 -

LAM 7 16 1 (LAM9) 15 (LAM)

X 0 1 -

Unknown strain of Euro-American lineage 10 0 -

doi:10.1371/journal.pone.0143682.t004
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efficiency. SNPs of TA systems and other groups of genes associated with virulence and patho-
genicity require further systematization and research.
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Fig 4. Detection of the Ural genotype by qPCR. Fluorescence in the FAM channel (blue): (1)13_2978, (2) 13–3114, (3) 13–3086, (4) 13_3158, (5)
13_4178, (6) 13_3539, (7) 13_2566, (8) 13_3632, (9) 13_3599, (10) 13_3896, (11) 13_3582, (12) 13_4189, (13) 13_3535, (15) 13_3147; Fluorescence in the
HEX channel (green): (14) 13_3147, (16) 13_2978. Fluorescence of the channel FAM (blue) indicates the accumulation of the PCR product containing
cytosine (C); the fluorescence of the channel HEX (green) indicates the accumulation of the PCR product containing thymine (T, the variable nucleotide) and
indicates the SNP in the vapC10 gene (C394!T394) characteristic of the Ural genotype. Line 14 (13_3147) and 16 (13_2978) belong to the Ural genotype.
For isolate 13_2978 fluorescence is detected on the two channels (FAM and HEX), this can indicate the presence of impurities (coinfection). qPCR
fluorescence in RFU (relative fluorescence units) vs. PCR cycles. Intensity of fluorescence depending on the number of qPCR cycles for strains belonging to
the Euro-American lineage.
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