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SUMMARY

Genes expressing circadian RNA rhythms are enriched for metabolic pathways, however, the 

adaptive significance of cyclic gene expression remains unclear. We estimated the genome-wide 

synthetic and degradative cost of transcription and translation in three organisms and found that 

the cost of cycling genes is strikingly higher compared to non-cycling genes. Cycling genes are 

expressed at high levels and constitute the most costly proteins to synthesize in the genome. We 

demonstrate that metabolic cycling is accelerated in yeast grown under higher nutrient flux and the 

number of cycling genes increases ~40% - achieved by increasing the amplitude and not the mean 

level of gene expression. These results suggest that rhythmic gene expression optimizes the 

metabolic cost of global gene expression and that highly expressed genes have been selected to be 

down-regulated in a cyclic manner for energy conservation.
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INTRODUCTION

Circadian rhythms are an evolutionary adaptation of living systems to coordinate behavioral, 

physiologic and metabolic functions to the 24-hour cyclic environment (Bass and Takahashi, 

2010; Dibner et al., 2010; Green et al., 2008; Mohawk et al., 2012). They are widely 

observed across members of prokaryotes and multiple eukaryotic kingdoms, including 

cyanobacteria, fungi, insects, mice, and humans (Bell-Pedersen et al., 2005; Dunlap, 1999). 

Significant advances have been made in the identification of the molecular mechanisms and 

genes driving these rhythms (Lowrey and Takahashi, 2011; Partch et al., 2014; Zhang and 

Kay, 2010). In eukaryotes, circadian rhythms are generated by cell-autonomous 

transcriptional feedback loops composed of positive transcriptional activators that drive the 

expression of negative feedback elements that repress their own transcription (Dunlap, 1999; 

Lowrey and Takahashi, 2004).

While the core circadian regulatory pathway includes genes such as Clock, Bmal1, Cry1/

Cry2 and Per1/Per2 (Bass and Takahashi, 2010; Lowrey and Takahashi, 2011), thousands 

of transcripts have recently been identified as exhibiting circadian or cycling expression 

profiles using genome-wide approaches (Koike et al., 2012; Menet et al., 2012; Rey et al., 

2011; Vollmers et al., 2012; Zhang et al., 2014). For example, about 800 transcripts have 

been detected during normal diurnal conditions and about 1200 transcripts have been 

detected during continual darkness in the brains of the wild type fruit fly, Drosophila 

(Hughes et al., 2012). In mouse liver, over 1,300 cycling pre-mRNA transcripts and 2,000 

mRNA transcripts have been detected during 48 hours of continuous darkness (Koike et al., 

2012). Additionally, more than half of the genes (~3500) in the yeast genome have been 

observed as showing periodic expression during metabolic cycling (Tu et al., 2005).

It has been hypothesized that circadian rhythm/periodic genes are closely related to 

metabolic pathways of the cell (Green et al., 2008; Rutter et al., 2002). Recently, ChIP-seq 
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data suggest that genes that are enriched in metabolic pathways are preferentially bound by 

the mouse core transcriptional factors, including BMAL1, CLOCK, CRY1, CRY2, PER1, 

and PER2 (Koike et al., 2012; Menet et al., 2012; Rey et al., 2011; Vollmers et al., 2012). 

Moreover, genes that are involved in biosynthetic pathways also tend to be regulated in a 

periodic fashion, including glycolysis and gluconeogenesis pathways (Green et al., 2008). 

Thus, there are a number of essential cellular features that are driven by periodic gene 

expression; however, the underlying basis for whether a particular gene cycles or not is 

unclear.

Here we assess the role of energy needed to synthesize and degrade mRNAs and proteins in 

three species (yeast, Drosophila and mouse) and find that the expression of cycling genes 

costs as much as two times higher than other genes. We further show that the cycling 

expression of these expensive genes likely plays an important evolutionary function. For 

example, in genome-wide simulation experiments, we find that the periodic expression of 

empirically observed cycling gene sets leads to the least amount of energy consumed. 

Importantly, in yeast we find that increasing nutrient flux leads to an increase in the number 

and amplitude of cycling genes. Because the amplitude increase of cycling genes was 

achieved without an overall increase in the average expression level, these results reveal a 

previously unappreciated and efficient mode for increasing peak gene expression levels 

without an overall increase in energy expenditure. Thus, these results demonstrate that 

cyclic gene expression is an efficient strategy for optimizing metabolic cost.

RESULTS

Cycling Genes Are More Expensive Than Other Genes in Mouse

To identify potential mechanisms driving the expression of genes to be expressed in a cyclic 

manner, we evaluated the cost during mRNA and protein synthesis and degradation of 

whole transcriptome data from mouse liver (Koike et al., 2012). The synthetic cost of each 

mRNA and protein was calculated first based on the synthetic cost of each nucleotide or 

amino acid, which is determined from the number of activated phosphate bonds (~P) 

required for synthesizing each precursor (Wagner, 2005). Then the mRNA and protein cost 

per unit time were calculated by taking into account genome-wide mRNA abundance, 

protein abundance, mRNA and protein degradation rates and other costs such as amino acid 

charging of tRNA, translation initiation, translocation of ribosomes along the mRNA during 

elongation and termination (Wagner, 2005) (Figure 1A). This total “cost” for each gene, 

gene feature and protein sequence that takes into account all of the synthetic and degradative 

parameters listed above was then calculated for each circadian time point (Wagner, 2005). 

Similar to that described previously in yeast (Wagner, 2005), we find that translation rather 

than transcription of genes requires the greatest cost in mouse liver (Figures 1B-C).

We next asked whether circadian RNA cycling genes in the mouse liver (2037 exon RNA 

cycling genes) require more energy for synthesis than other expressed genes in the liver 

(12,680 expressed genes minus 2037 cycling genes based on RNA-seq experiments) (Koike 

et al., 2012). We first examined the cost for a single mRNA and protein generation 

independently. The cost of protein generation of cycling genes has a small but significant 

decrease compared to other genes (0.41%; p = 9.00E-03) and there is no difference in the 
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cost of mRNA generation between cycling genes and non-cycling genes (p = 3.53E-01). 

However, since the range of gene expression can vary by several orders of magnitude and 

contribute to energy costs, calculating the cost of mRNA sequences alone is not sufficient 

for estimating the total cost of genes. Thus, we calculated the total cost of expression using 

the magnitude of mRNA levels for both cycling and non-cycling genes. Strikingly, at each 

time point we examined, the total cost of cycling genes is ~4 times higher than other genes 

(Figure 1D; and see Table S1 for detailed information). Analysis using 1371 intron RNA 

cycling genes from the liver (Koike et al., 2012) also showed that cycling genes were more 

costly than non-cycling genes.

We next wanted to understand whether this increase in the total cost of cycling genes was 

being driven by either transcriptional or translational cost. We observed a ~4 fold increase in 

the cost of cycling genes at both the transcriptional and translational levels compared to the 

non-cycling genes (Figures 1E-F, Table S1). Thus, the increased cost of cycling genes is 

derived from an increase in cost at both the transcriptional and translational levels.

To explore whether the results found in the mouse liver apply generally to other tissues in 

the body, we analyzed recent circadian RNA-seq data from 12 different mouse tissues 

(Zhang et al., 2014). We find that cycling genes have increased cost in all 12 tissues 

implying that this feature is conserved (Figure 2A-L). Due to the lack of empirical protein 

measurement for every potential protein in our dataset, we estimated the protein abundance 

of genes lacking these data based on the mRNA expression data (see Experimental 

Procedures). To validate these estimates, we used the abundance of proteins from a mouse 

fibroblast proteomic dataset (Figure 2M) or from a mouse liver proteomic dataset (Figure 

2N) that overlapped with the mouse liver cycling genes to calculate the transcriptional and 

translational costs for these two subsets of proteins (Schwanhausser et al., 2011; Shi et al., 

2007). (Quantitative data from two recent circadian proteomics datasets (Mauvoisin et al., 

2014; Robles et al., 2014) were not available for this analysis.) We found that cycling genes 

have an increased cost of 42% or 10% using both empirical datasets (p = 1.88E-38 and 

2.09E-03, respectively, Table S1) consistent with our estimates based on mRNA expression 

levels alone. The difference in increased cost between the two empirical dataset is likely due 

to the different subset of proteins measured, as just 39% of the liver proteomic data and 10% 

of the fibroblast proteomic data overlap (764 genes).

The Increased Cost of Cycling Genes Can Be Extended to Drosophila and Yeast

To address whether our observation in mouse is a conserved feature of circadian and 

metabolic cycling gene networks in other organisms, we performed cost analysis in 

Drosophila (Hughes et al., 2012) and yeast (Tu et al., 2005). As seen in mouse, we observed 

an increase in the total cost of cycling genes both for circadian genes in Drosophila (~5.5-

fold increase) as well as for metabolic cycling genes in yeast (~2.5-fold increase) (Figures 

3A-B, left panels). The increase in cost of cycling genes was seen at both the transcriptional 

and translational level in these organisms (Figures 3A-B, middle and right panels, Table S1 

for more details). Thus, the increased energy requirement for cycling genes is conserved 

across both circadian and metabolic cycles as well as widely divergent species.
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The Increased Cost of Cycling Genes Can Not Be Explained by a Detection Artifact in 
Lowly Expressed Genes

Because it is possible that the detection of cycling genes may be influenced by expression 

level – where low levels of gene expression may compromise detection of cycling genes, we 

performed our cost analysis on subsets of the data that were partitioned by the level of gene 

expression. We first examined whether cycling genes have higher cost among the most 

highly expressed genes in all of the datasets. Figure S1 shows that cycling genes have 

significantly higher cost than non-cycling genes in the mouse and yeast datasets (p < 0.05) 

when only the genes with the highest expression are included (Figure S1A). In fact, 

regardless of whether the subset of genes have high, medium or low expression, cycling 

genes have a significantly higher cost than other genes in most of the datasets (Figure S1A). 

In addition, the mean cost of cycling genes remains higher than other genes even after 

removing the 20% lowest expressed genes (2583 genes in mouse liver, 3925 genes in 

Drosophila, 1355 genes in the yeast microarray dataset; Figure S1B; 3480 genes in 12 

tissues in mouse, Figure S2; and Experimental Procedures).

Cycling of Expensive Genes Minimizes Genome-Wide Cost

To explore the potential benefit of generating energetically expensive genes in a cycling 

manner, we evaluated how perturbations in the composition of cycling gene sets would 

affect the overall cost of the system. We randomized which genes were cycling compared to 

other genes in a series of 10,000 simulations for each circadian time point, and calculated 

the resultant mean cost of all of the genes. As shown in Figure 4A, the experimentally-

defined transcriptional and translational system results in one of the lowest energy cost 

usage combinations compared to the simulated genomes. In fact, none of the 120,000 

simulations performed in total for the 12 circadian time points in mouse have a lower energy 

usage than the experimentally observed transcriptome (Table S1). Similar findings were 

observed in both Drosophila and yeast (Figure 4B, 4C and Table S1). Thus, the cycling 

expression of the more expensive genes is a conserved strategy for minimizing overall 

cellular energy usage.

Cycling Gene Paralogs Exhibit Increased Cost

As an independent test of the utility of cycling genes, we leveraged whole genome 

duplication information, which has been shown to be integral for protein interaction 

networks and metabolic functions in yeast (DeLuna et al., 2008; Presser et al., 2008), to 

compare the cost of paralogous genes. We observed that for duplicated genes that originated 

from whole genome duplication in yeast, the mean cost of the cycling copies is higher than 

the cost of the non-cycling copies (p = 2.4E-02). Moreover, there is an enrichment of cases 

where the copy with the higher cost is regulated by the metabolic cycle (108 vs. 94, p = 

4.1E-02). This effect is stronger in mouse as there were two rounds of whole genome 

duplication: 240 cases with a higher cost for the cycling copy and only 116 cases for the 

reverse (p = 4.97E-11). The mean cost of the cycling copies is higher than that of the non-

cycling copies as well (p = 1.24E-20). These results further support evolutionary 

mechanisms for cyclical regulation of genes with higher cost.
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Increased Expression Level is a Conserved Feature of Cyclical Gene Expression

We next examined the contribution of specific molecular factors driving synthetic and 

degradative costs that could be responsible for the increased cost of cycling genes. We 

examined gene cost, protein cost, gene length, protein length, cost per nucleotide, cost per 

amino acid, mRNA half-life, protein half-life, and translation ratio across the three species. 

The only factor that we find consistently positively contributes to the high cost of the 

cycling genes in the three species examined is expression level (Figure 5A and Figure S3). 

For all of the 36 metabolic time points in yeast, 8 circadian time points in Drosophila and 12 

circadian times points in mouse, the expression level of cycling genes is significantly higher 

than other genes (Figure 5A and 5B and see Table S1 for details), which is consistent with 

recent findings (Wu et al., 2012). To summarize, expression levels always contribute 

positively to an increased cost for cycling genes, however, other genomic features such as 

the use of more expensive building blocks or the length of sequences can also contribute to 

the increased cost of cycling genes, in a species dependent manner.

High Glucose Results in Increased Numbers of Cycling Genes in Yeast

To test the hypothesis that differential energy requirements lead to alterations in cyclical 

gene expression, we designed a genome-scale experiment to manipulate the yeast metabolic 

cycle. We compared the effects of low and high steady-state glucose infusion rates on cyclic 

gene expression by changing the chemostat dilution rate of glucose-limited cells (Figure 6A 

and Experimental Procedures for more details). Although both conditions are energy-

restricted, high glucose accelerated the speed of the metabolic cycle from ~6 h (slow cycling 

in low glucose) to ~2 h (fast cycling in high glucose) and led to an overall increase in 

oxygen consumption, as reflected in significantly lower mean dissolved oxygen (dO2) levels 

(Figure 6A; p < 5.0E-04, Table S1). We then conducted RNA sequencing over two 

consecutive cycles from equally spaced samples from each group [24 samples from the low 

glucose and 20 samples from the high glucose conditions, respectively (Figure S4A)]. We 

found genes that are periodically expressed in both low and high glucose conditions (e.g. 

YLR069C, Figure 6B, adjusted p = 1.93E-08 for the low and adjusted p = 8.97E-07 for the 

high condition) and genes that only showed periodic expression in one condition (e.g. 

YBR284W, Figure 6B, adjusted p = 1 for the low and adjusted p = 4.56E-07 for the high 

condition). Surprisingly, there are over 1,000 more genes with cyclical expression under 

high glucose conditions compared to low (Figures 6C, D, adjusted p < 0.05 and p < 0.01). In 

total, we detected more than 4,500 genes with periodic gene expression, which accounts for 

greater than 70% of the transcribed yeast genome (Table S1). To control for the sensitivity 

of detection of cycling genes between the low and high glucose conditions, we also display 

heatmaps for expression of all ~6000 genes in yeast (Figure 6E). At all levels of 

significance, the number of cycling genes is much greater in the high glucose condition 

(note p values to the right of each heatmap in Figure 6E).

To assess whether the higher number of cycling genes in the high glucose condition could be 

due to misclassification of cycling genes by the algorithm (JTK_CYCLE), we evaluated the 

performance of JTK_CYCLE on the highly and lowly expressed genes using permutation 

tests. We asked whether JTK_CYCLE preferentially calls highly expressed genes as cycling. 

To determine this, we randomly shuffled the order of the time points while maintaining the 
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mean gene expression values. We then determined the frequency of occurrence of cycling 

genes at six different levels of gene expression from high to low expression in either glucose 

condition. As shown in Figure S4B, there is a significant increase of “artificial cycling 

genes” only in the lowest 1,000 expressed genes in both high and low glucose conditions 

(approximately the bottom 20%; p < 1E-04 for both datasets), which goes against the 

expectation that JTK_CYCLE would detect fewer cycling genes at low expression levels. 

Finally, after removing the bottom 20% of all expressed genes (1339 genes), we found that 

there are still more cycling genes in the high glucose than in low glucose condition (Figure 

S4C). In addition, cycling genes have higher cost than other genes regardless of whether the 

bottom 20% expressed genes are removed or not (Figure S1B and S2). Thus, counter to 

expectation, the detection of cycling genes by JTK_CYCLE does not decrease but rather 

increases at low expression levels, providing additional evidence that cycling gene 

expression is not biased towards highly expressed genes.

Increased Glucose Leads to Increased Cyclical Amplitude without Increasing Expression

In addition to an increase in the number of cycling genes, the amplitude of the expression of 

the cycling genes in high glucose was higher than in low glucose even though their mean 

expression levels were similar (p < 1E-50, Figures 7A, 7B, and S5A-B). This is exemplified 

in Figure 6B, where we show the amplitude (calculated from JTK_CYCLE, see 

Experimental Procedures) of the YBR284W gene is 3.5 in high glucose compared to 0.3 in 

low glucose. Additional examples are presented in Figures 7C-7H. Thus under higher 

metabolic conditions, the number of cycling genes increases as well as the amplitude of 

these oscillations. Because the mean expression level of cycling genes does not increase, 

increasing the amplitude of cycling genes is an extremely efficient mode for increasing the 

peak expression levels.

Surprisingly, our data suggest that increasing amplitude without increasing mean expression 

is an energy saving behavior in high glucose. When more nutrients/resources are available to 

yeast in high glucose, more molecules are expressed to "consume" those nutrients, thus the 

expression levels are increased. However, this increase in expression is offset by a 

concomitant downregulation in expression during another time period of the cycle. As such, 

the median of the peak (75th percentile) of gene expression in high glucose is significantly 

higher than in low glucose (p = 4.49E-05), which leads to an increased cost (p = 0.011). In 

line with this, we found that the median of the trough (25th percentile) of gene expression in 

high glucose is significantly lower than in low glucose (p = 0.003), and the cost is lower as 

well (p = 0.019) (Figure S5C). Therefore, it is cost-effective to reduce the expression of 

these cycling genes during the metabolic cycle when they are not needed. Interestingly, we 

observed 1162 out of 1673 genes following this pattern at the peak of the cycle and 1151 out 

of 1673 genes follow this pattern at the trough of the cycle, which is greater than expected 

by chance (p = 7.83E-57 and p =2.3E-53, respectively). These data suggest a mechanism for 

why more cycling genes are observed under the high glucose condition as more genes are 

using this strategy to reduce cost. Finally, a strong positive correlation is observed between 

the amplitude and the expression of genes (r = 0.838 for high glucose and r = 0.784 for low 

glucose condition, p < 2E-16 for both, Figure S5D). This indicates that for genes that are 

increasing their amplitude (experimental conditions - from low to high glucose), overall 
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expression levels are upregulated. However, we have observed unchanged mean expression 

levels for those cycling genes in the experimental data, which additionally indicates that this 

is an energy saving behavior.

Increased Glucose Alters Yeast Metabolic Pathway Costs

Previous work has shown that there are three major phases of the yeast metabolic cycle 

(Oxidative, Ox; Reductive, Building, R/B; Reductive, Charging, R/C) (Tu et al., 2005). We 

also find the same three major clusters of genes in these new analyses (Table S1). We also 

find an enrichment of genes in different cellular pathways among the cycling genes in the 

two conditions, and the genes periodically expressed in both glucose conditions are strongly 

enriched in mitochondrial and ribosomal functions (Table S1).

Because cycling genes can express higher peak levels without an increase in the overall 

mean level of expression, we asked whether this was also the case for the three metabolic 

phases of the cycle. We calculated the total amount of gene expression (RPKM) for proteins 

that are involved in the metabolic cycle in each condition. We found that there is less gene 

expression of mitochondrial ribosomal genes (e.g. MRPL10 and related genes, Figure S6A, 

28.5% less, p = 2.2E-09), the large (60S) ribosomal subunit and related genes (e.g. RPL17B, 

Figure S6A, 15.1% less, p =6.2E-07), or genes encoding nuclear-encoded mitochondrial 

ribosomal proteins (Figure S6A, 24.9% less, p = 6.8E-13) under high versus low glucose 

conditions. We next investigated whether each of the yeast metabolic phases have different 

molecular requirements. As expected, in each of the three phases (Ox, R/B, and R/C), there 

is less of a change in gene expression (from highly expressed to low expressed) observed in 

each of these phases in the high glucose condition compared to the low (7.3%, 2.3% and 

13.0% less, p = 4.4E-06, 4.5E-11 and 6.8E-18, respectively, Figure S6A). We also observed 

that the Ox and R/B phase contain more genes with conserved cycling across the two 

cycling conditions compared to genes in the R/C phases (65% and 62% vs. 33%), and the 

overall phase distribution of the cycling genes is likely determined by the Ox and R/B 

phases (Figure S6B and S6C). As the Ox phase is enriched for genes involved in ribosome 

synthesis and the R/B phase is enriched for genes involved in mitochondria biogenesis (Cai 

and Tu, 2012; Tu et al., 2005), these results indicate that the costs related to gene expression 

in yeast metabolic pathways are reduced in the high compared to the low glucose condition.

Cycling Genes in Both Nutrient Conditions Have the Highest Cost

To further distinguish the genes with periodic expression in each condition, we estimated the 

cost at each time point (Figures 7I and 7J, Table S1). We found that the periodically 

expressed genes have a higher cost on average in both high and low glucose conditions 

(Figures 7I and 7J). More importantly, the genes with periodic expression in both the high 

and low glucose conditions have a higher cost than the genes with periodic expression in 

only one condition (Figures 7I and 7J). These results strongly suggest that the yeast 

metabolic cycle promotes the periodic expression of genes with a higher cost, consistent 

with the prediction of our hypothesis. Figure 7K illustrates the model of our calculations, 

demonstrating that the cost of a gene from DNA to protein determines the cyclical 

expression of that gene.
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DISCUSSION

Cycling genes, whether circadian or metabolic, define an evolutionarily conserved 

mechanism for cellular energy conservation in three divergent eukaryotic organisms. 

Empirically we find that cycling genes are expressed at high levels and constitute the most 

costly proteins to transcribe and translate in the genome. The essence of the strategy for 

utilizing cycling genes is that peak cycling gene expression (amplitude) can be elevated 

relative to constitutive expression without an increase in overall mean levels of expression. 

The peak is offset by the trough. Thus, abundant proteins that are required at one time can be 

down-regulated at other times to economize on overall production. In testing this hypothesis 

using the yeast metabolic cycle, we discover the non-intuitive result that when metabolic 

rate increases under higher glucose conditions, the number of cycling genes increases 

dramatically. This result is in line with previous work demonstrating that yeast grown under 

higher glucose conditions exhibit altered gene expression patterns that correspond to growth 

rates (Slavov and Botstein, 2011). However, our sampling time period under high glucose 

was within a 2h period (Figure S4A) making effects of cell cycling less likely to be 

involved. This is supported by studies demonstrating that metabolic cycling in yeast occurs 

in the absence of cell division (Slavov et al., 2011). Paradoxically, in our study, the mean 

levels of the cycling genes do not increase and in some cases actually decreases. Thus, in 

yeast and in cells, cyclic gene expression is a potent mechanism for energy conservation. If a 

protein is not needed at a particular time, its production is shut down. In turn, if higher 

expression is needed, cyclic expression is efficient and thus increases in metabolic demand 

would be expected to lead to additional cycling genes under this scenario, as we have 

observed in yeast.

As translation requires a greater cost compared to transcription, we speculate that the 

cycling of proteins might be greater than for transcripts. However, such comparisons require 

comparable quantitative proteomic datasets to what is currently available for mRNA. It is 

possible that cost is not as relevant for directing cyclical expression of genes that are core 

components of the regulatory network of cycling behavior and biosynthetic pathways, such 

as Bmal1, Clock, Cry, Dbp, Per, and Nampt (Green et al., 2008). In fact, when we 

specifically examine the cost of core circadian genes, we do not observe that these genes are 

typically among the most expensive genes because these transcriptional regulatory genes are 

expressed at low levels. Among 16 of the canonical circadian genes, only one gene (Nampt) 

is among the top 10% of expensive cycling genes, and only 3 other genes (Atf6, Clock, and 

Creb1) are among the top 25%.

One might ask why it is necessary for a cell to synthesize new proteins in a cyclic manner 

instead of utilizing stable, long-lived proteins? We can offer at least two explanations. First, 

it is known that many cellular processes are incompatible, such as oxidative vs. reductive 

metabolic pathways. This has led to two different solutions in cells: subcellular 

compartmentalization and temporal partitioning of metabolic pathways. In cases in which 

subcellular compartmentalization is not efficient, then temporal partitioning (time sharing) 

may be the only solution. Indeed in many primordial photosynthetic organisms, temporal 

partitioning is the major strategy for separating processes such as photosynthesis during the 

day, which involves oxygen, and nitrogen fixation during the night, which must occur in an 
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oxygen-poor environment (Fay, 1992; Schneegurt et al., 1994; Stockel et al., 2008). 

Furthermore, there is considerable evidence in plants and animals that mis-expression of 

genes in the cell can cause unexpected deleterious effects (Fernandez et al., 2013; Lai et al., 

2012; Manansala et al., 2013; Montgomery et al., 2013), again discounting the long-term 

maintenance of global protein expression.

Second, in addition to partitioning of cellular processes, in yeast (Bristow et al., 2014) and 

parasites (Bozdech et al., 2003; Suvorova and White, 2014) there is considerable gene 

expression turnover and gene expression occurs “as needed” in these organisms. In the yeast 

metabolic cycle, the three phases (Oxidative; Reductive, Building; Reductive, Charging) 

follow the strategy of “just-in-time” delivery of components (Kuang et al., 2014). That is, at 

each of these phases, the basic building blocks of the cell are synthesized at the time that 

they are needed, in order to flexibly adapt with the environment. Cells do not store these 

components throughout the metabolic cycle. An example showing the importance of this 

“just-in-time” strategy is that cyanobacteria show higher reproductive fitness if the patterns 

of their the internal circadian oscillator and environmental cycles are similar, while fitness is 

decreased if the internal circadian system does not match the environment well (e.g. in 

constant light) (Woelfle et al., 2004). Why might this occur? Such “just-in-time” strategies 

have been successfully implemented in manufacturing as the cost of maintaining storage and 

completing regular inventory exceeds the cost of manufacturing and delivery of goods in 

real time (Gonzalez et al., 2006; Qureshi et al., 2013). Perhaps inventory storage is either not 

efficient in cells, or as in the first example, components might be incompatible to be stored 

together. Thus, we see in this temporal view of gene expression, a surprisingly efficient 

strategy for both the partitioning and deliver of cellular metabolic components on a genome 

scale. The hypothesis for a “just-in-time” strategy in transcriptional networks has been 

previously proposed (Zaslaver et al., 2004). However, our results not only provide evidence 

in support of this strategy in metabolic processes occurring in more simple organisms such 

as yeast, but our work expands and supports this hypothesis to mammals such as mouse. Our 

findings are also in line with the hypothesis that ultradian or time-keeping strategies are 

employed at the molecular level (such as in gene expression) to integrate cellular functions 

in yeast as well as mammalian systems (Lloyd and Murray, 2005)

Although the cost during synthesis and degradation of the transcription and translation of 

cycling genes has been evaluated here, there are other cellular processes that consume 

energy in the cell that may play a part in cycling gene expression, such as the transport of 

mRNA and protein outside of the nucleus (Gorlich and Kutay, 1999; Nakielny and Dreyfuss, 

1999; Vargas et al., 2005), protein folding and misfolding (Beissinger and Buchner, 1998; 

Goldberg, 2003), alternative splicing (Staley and Guthrie, 1998; Wahl et al., 2009) and DNA 

repair (Lindahl and Wood, 1999; Sancar et al., 2004). Because there is little difference 

among the cost of nucleotides (Table S1), it is unlikely that codon bias is a major contributor 

to changes in energetic cost; however, this needs to be investigated further especially with 

regards to translational efficiency (Quax et al., 2015) once quantitative proteomic datasets 

across cycling time points are available. The evaluation of noncoding RNAs also needs to be 

considered as these transcripts may have rapid turnover but also contribute to the regulation 

of whether coding transcripts are ultimately expressed as proteins. Future studies that 

determine targets and functions of these noncoding RNAs on a genome scale will need to be 
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incorporated. Also energy generation and consumption are linked to the temporal 

compartmentalization of metabolic functions, which allows for increased efficiency of 

metabolism especially under depleted nutrient conditions (Tu et al., 2005; Tu and McKnight, 

2007). The organization of the genome may also play a role in energy usage as genes 

physically near each other on chromosomes have similar expression profiles (Wang et al., 

2011), and such relationships may lead to similar cost and energy usage during expression. 

How the constraints on the cost of gene expression constrain other biological circuits such as 

feedback loops, enzymatic activities, proportional regulation of promoter activities in 

coexpression networks, or transcriptional networks that are involved in cyclical gene 

expression still needs to be investigated (Alon, 2007; Hart and Alon, 2013; Keren et al., 

2013; Koike et al., 2012; Milo and Last, 2012; Wagner, 2007). In addition, overall energy 

utilization in cells includes processes other than the ones leading to protein expression. 

These include, but are not limited to, lipid, carbohydrate, and triglyceride production and 

turnover (Palinkas et al., 2015), and ion transport across plasma membranes. Future studies 

that empirically calculate these parameters over time can ultimately be incorporated into this 

model to determine total energy use and whether cycling genes contribute to an energy 

saving mechanism.

Future experiments that empirically measure the energetic properties of all of these 

processes on a genome-wide basis will contribute to our overall knowledge of cycling gene 

energy usage. In all, the data presented here highlight the importance of investigating energy 

usage, and how such fundamental processes can deeply influence cellular and organismal 

physiology.

EXPERIMENTAL PROCEDURES

Transcriptome data

Three large-scale transcriptomic profiling data sets were used to characterize the cycling 

behavior of the three species (Table S1): a ~300 min metabolic cycling data set for the 

diploid yeast strain CEN.PK (Tu et al., 2005), a 12 hour light/dark transcriptomic data set 

for wild type Drosophila brain (Hughes et al., 2012), and a 48-hour constant darkness 

transcriptomic profiling of mouse liver (Koike et al., 2012). For each of these datasets, only 

the expressed genes were used for further analysis. For each gene, the average expression 

values were used if multiple expression signals were detected.

Mouse liver proteome data

The mouse liver proteome data were obtained from a public mouse liver proteome database 

(Shi et al., 2007).

Calculation of cost of each mRNA and protein

The cost of each gene/protein that met our criteria described above was calculated. The 

energy usage of synthesizing each amino acid and nucleotide was based on a previous 

analysis of the yeast metabolic system, which is calculated by the activated phosphate bonds 

(~P) (Wagner, 2005) (Table S1). On average, the synthetic cost per nucleotide residue (mean 

cost: 49.5 ~P) is greater than that of an amino acid (mean cost: 29.1 ~P).
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Cycling genes

The cycling genes from these three studies (Hughes et al., 2012; Koike et al., 2012; Tu et al., 

2005) were used for the primary analyses. Cycling genes in 12 tissues from mouse (Zhang et 

al., 2014) were also used for confirmation. For the mouse liver data, only exon based cycling 

genes are included, although we found that intronic cycling genes have higher cost 

(transcriptional) than other genes as well (data not shown). For the genes that do not have an 

annotated Ensembl ID, the transcript names were first mapped to an Ensembl ID by the 

BioMart data mining tool.

The cost during mRNA and protein synthesis and degradation of the transcriptome

The expression cost of a gene was calculated based on two parts, as previously proposed 

(Wagner, 2005). Please note that the degradation rate of a particular mRNA and protein are 

assumed constant in the given environment as the genome-wide measurement of this 

parameter across each cycling time point is not available. That assumption should have 

limited influence on our calculation of the cost of peak and trough as the transcriptional 

burst is a major mode of gene expression regulation (Cai et al., 2006; Dar et al., 2012).

Yeast metabolic cycle experiments

Yeast strains and methods—Yeast manipulations were performed using standard 

methods (Sherman, 2002).

Continuous culture conditions—Yeast cultures were grown as previously described 

(Tu et al., 2005). Samples were collected over two metabolic cycles. For the low glucose 

condition, samples were taken every 36 minutes for ~14.5 hours. For the high glucose 

condition samples were taken every 13 minutes for ~4.25 hours.

Library Preparation—RNA-seq libraries were prepared as described in detail previously 

(Takahashi et al., 2015).

Bioinformatic analysis of metabolic cycles under low and higher glucose—
TopHat v2.0.10 was used as the mapping program (Trapnell et al., 2009); the unmapped 

reads and the reads with mapping quality score less than 10 were filtered out after mapping 

(Table S1). The mapped and filtered reads were used to calculate the RPKM values with 

HOMER (Heinz et al., 2010). Mapping the reads to the less well-annotated CEN.PK genome 

(Nijkamp et al., 2012; Otero et al., 2010) or normalizing the RPKM between samples did not 

change the major findings of this study (Figure S7). JTK_CYCLE was used to determine the 

circadian behaviors of the genes (Hughes et al., 2010). Genes with an adjusted P value < 

0.05 were further regarded as cycling genes.

Full experimental procedures are available in the Supplemental Experimental Procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cycling genes have an increased total cost
(A) Schematic formula demonstrating that the cost of transcription and translation contribute 

to the overall cost of a gene. (B) The distribution of the cost for each genomic feature. (C) 

The distribution of the cost for each genomic feature after incorporation of gene expression 

data (only one time point from the transcriptomic experiment was plotted, however, all other 

time points are similar). Protein synthesis costs more energy than gene synthesis after taking 

into account the expression data. (D) Cycling genes have approximately a four times higher 

total mean cost than other expressed genes. The cost of cycling is increased at both (E) the 

transcriptional and (F) translational level (p < 2.2E-16 for all comparisons). Red line, 

cycling genes; black line, other genes. Two lines for red and black represent the two 

circadian cycles analyzed. In (D), significance levels are shown in the heatmap. See also 

Figure S1.
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Figure 2. Validation of increased cost in 12 mouse tissues and using proteomics datasets
(A-L) Cost was calculated from all expressed genes in the mouse 12 tissue RNA-seq dataset 

from (Zhang et al. 2014; PNAS 111(45):16219-24). Eight time points (two cycles) from 

adrenal gland, aorta, brainstem, brown fat, cerebellum, heart, hypothalamus, kidney, liver, 

lung, skeletal muscle, and white fat were plotted and only the first time unit is shown for the 

two cycles (CT22, CT28, CT34, CT40). Red lines indicate cycling genes and black lines 

indicate other genes. The two lines for red and black represent the two cycling cycles 

analyzed. In all cases, the cycling genes exhibit significantly greater cost than non-cycling 

genes (p < 1E-04 in all comparisons). (M) Using only the overlap of the cycling gene dataset 

with empirical proteomic data from mouse fibroblasts, both the transcriptional (left panel) 

and translational (right panel) cost of cycling genes is increased in mouse. (N) Again, using 

only the overlap of the cycling gene dataset with empirical proteomic data from mouse liver, 

both the transcriptional and translational cost of cycling genes is increased in mouse. See 

also Figure S2.
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Figure 3. Cycling genes have an increased cost in Drosophila and yeast
The increased cost of cycling genes in both (A) Drosophila and (B) yeast. The red lines 

indicate the cycling genes, whereas the black lines are non-cycling genes. Two and three 

lines for red and black in fruit fly and yeast represent the two circadian cycles and three 

yeast metabolic cycles analyzed. Only the time unit for the first cycle is shown for the radar 

plot of yeast.
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Figure 4. Cycling gene expression yields an optimized overall cost
Simulation experiments were performed by randomly switching the cycling genes with other 

genes and measuring the mean cost of all the genes in (A) mouse, (B), Drosophila or (C) 

yeast. The red lines indicate the experimentally observed results, whereas the blue lines are 

the simulations.
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Figure 5. Expression levels positively contribute to the increased cost of cycling genes
(A) Factors that contribute to the increased cost of cycling genes. Among the factors 

examined, only expression level positively contributes to the increased cost of the cycling 

genes in all three genomes. Red: positive contributions; blue: negative contributions; black: 

no significant changes. Significance levels are shown in the blue-yellow heatmap with p > 

0.05 indicated by black (Wilcoxon rank-sum test). (B) Cycling genes have increased gene 

expression in all three species. Cycling genes are indicated by red bars in histograms (left 

panels) and red lines in density plots (right panels). See also Figure S3.
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Figure 6. Speed of metabolic cycling in yeast is linked to cyclical gene expression
(A) Differential nutrient content leads to either slow (low glucose) or fast (high glucose) 

metabolic cycling in yeast. (B) Individual genes show differential periodic expression 

patterns within the low and high glucose conditions. Expression of YBR284W is only 

cyclical in the high glucose condition while YLR069C is cyclically expressed under both 

conditions. AMP indicates amplitude values. (C) Expression pattern of cycling genes in the 

low and high glucose conditions across the time points sampled. Red, high expression; blue, 

low expression. (D) More cycling genes are observed in the high compared to the low 

glucose condition. Left, p < 0.05; right, p < 0.01. At both significance levels, more than 

3,000 genes have periodic expression in the high glucose condition. (E) Expression pattern 

of all genes in the low and high glucose conditions. Red, high expression; blue, low 

expression. Genes were phase adjusted and ranked by P values. See also Figure S4 and S7.
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Figure 7. Differential Cycling Amplitude and Cost of Genes with Differential Metabolic Cycling 
in Yeast
(A) Amplitude and (B) RPKM comparisons of cycling genes in low and high glucose 

conditions. (A) Red, the genes whose amplitude is greater in high glucose compared to low 

glucose; black, the genes whose amplitude is smaller in high glucose than in low glucose. 

(B) Red points, the genes with mean RPKM greater in high glucose compared to low 

glucose; black points, the genes with mean RPKM smaller in high glucose compared to low 

glucose. (C-H) Examples of genes with higher cycling amplitude but not significantly higher 

RPKM in high compared to low glucose conditions. Amplitude strength and average RPKM 

in the two conditions are indicated in red. (I-J) Differential cost of genes with differential 

metabolic cycling in yeast. The cost of cycling genes and non-cycling genes in low (I) 

compared to high (J) glucose conditions. Blue, cycling genes; black, non-cycling genes; red, 

genes with periodic expression in only one condition. Two lines for red and black represent 

the two metabolic cycles analyzed. Only the time unit for the first cycle is shown for the 

radar plot (K) Schematic representation of cost of cycling genes during protein synthesis. 

See also Figure S5 and S6.
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