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The ClC-2 chloride channel is a member of the voltage-
gated chloride channel family. ClC-2 is involved in various
physiological processes, including fluid transport and
secretion, regulation of cell volume and pH, maintaining the
membrane potential of the cell, cell-to-cell communication,
and tissue homeostasis. Recently, our laboratory has
accumulated evidence indicating a critical role of ClC-2 in the
regulation of intestinal barrier function by altering inter-
epithelial tight junction composition. This review will detail
the role of ClC-2 in intestinal barrier function during intestinal
disorders, including experimental ischemia/reperfusion injury
and dextran sodium sulfate (DSS)-induced inflammatory
bowel disease. Details of pharmacological manipulation of
ClC-2 via prostone agonists will also be provided in an effort
to show the potential therapeutic relevance of ClC-2
regulation, particularly during intestinal barrier disruption.

Introduction

The gastrointestinal epithelium forms the body’s largest inter-
face between biological compartments, namely the gut mucosa
and its lumen. Epithelial cells allow for the absorption of
nutrients while providing a physical barrier to the permeation of
pro-inflammatory molecules, including pathogens, toxins, and
antigens, from the luminal environment into the mucosal tissues
and circulatory system. The intestinal barrier is composed of epi-
thelial cells linked by tight junctions that, together with an adher-
ent layer of mucus, form a physical barrier that separates the
luminal contents from the lamina propria and associated circula-
tory elements. Tight junctions have a crucial role in maintaining

the intestinal barrier, and can be altered acutely or chronically by
physiological and pathological factors.1-3 Our research group has
revealed that the ClC-2 chloride channel has a key role in regulat-
ing barrier function under various pathophysiological condi-
tions.4-8 Our lab has also demonstrated that the prostone ClC-2
agonist, lubiprostone, induces barrier protective and barrier
recovery processes in ischemic injury and experimental colitis
models.9-12 Furthermore, knockout of ClC-2 has deleterious
effects on the intestinal barrier under disease conditions. How-
ever, the function of ClC-2 and mechanisms of action of lubipro-
stone are still controversial. This review summarizes the structural
and functional elements of the tight junction, and their regula-
tion during gastrointestinal health and disease. Additionally, we
review the role of ClC-2 in regulation of tight junction barrier
function, and the role of ClC-2 prostone agonists in intestinal
barrier function, suggesting potential therapeutic targeting of
ClC-2 in diseases that compromise the intestinal barrier.

The Intestinal Mucosal Barrier

The intestinal barrier supports nutrient and water movement
while preventing microbial penetration of the intestinal tissue.13

The mucosal barrier is composed of cellular as well as extracellular
components including a layer of mucin.14 Mucins are secreted by
intestinal goblet cells and create a barrier, limiting the exposure of
intestinal epithelial cells to physical trauma from large particles
within the lumen and also preventing direct contact of microorgan-
isms with the epithelial cell layer.14-16 The cellular components of
the intestinal barrier consist of a single-cell layer, of which the larg-
est population is columnar enterocytes responsible for absorption
and secretion, but which also includes goblet cells, Paneth cells, and
enteroendocrine cells. Other cells include intraepithelial lympho-
cytes, which are far less numerous, and are not considered to con-
tribute to barrier function. Columnar epithelial cells are polarized
with an apical (luminal) and basolateral membrane, divided by the
tight junction at the apical-lateral membrane.17
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There are 2 major routes for ions and macromolecules to tra-
verse the epithelial barrier: the transcellular (transepithelial) and
paracellular pathways.18 The transcellular pathway is associated
with active movement of solutes through transmembrane trans-
port proteins in the plasma membrane.19-21 The paracellular path-
way is associated with passive movement of water and solutes
through the space between adjacent cells. The majority of trans-
mucosal movement of solutes is via the paracellular pathway, par-
ticularly in the small intestine, where epithelia are considered to
be ‘leaky’ as compared to colonic epithelium. This ‘leakiness’ in
the small intestine is thought to enhance solute absorption.22 Para-
cellular permeability is regulated primarily by tight junctions,23-26

although the degree to which the lateral epithelial membranes are
apposed is also thought to contribute to overall barrier function.27

The paracellular junctional pathway is composed of 2 functionally
distinct tight junction pathways. The first of these pathways is the
pore pathway, which is high capacity and charge-selective, and
allows movement of small ions and uncharged molecules. The sec-
ond of these pathways is a low-capacity leak pathway that allows
flux of larger ions and molecules regardless of charge.26

Role of Tight Junctions in Intestinal Barrier
Function

Tight junctions are the apical-most constituents of the inter-
cellular junctional complex which also includes adherens junc-
tions, desmosomes, and gap junctions.28 They have 2 functions:
gate (barrier) function and fence function. Barrier function refers
to regulation of passive diffusion of solutes and macromolecules
through the interepithelial space, whereas fence function refers to
the ability of tight junctions to restrict the movement of lipids
and membrane proteins between apical and basolateral mem-
branes.1 The anatomic structure of the tight junction was first
visualized by electron microscopy, which identified regions where
the outer leaflets of plasma membranes from adjacent cells
appeared to fuse together and obliterate the intercellular space.1

However, freeze-fracture microscopy revealed that the tight junc-
tion is an intramembranous network of anastomosing strands
lying within the apical-most aspect of the lateral membrane of
epithelial cells. Several studies have shown that these strands con-
sist of multiple protein complexes of transmembrane, cytoskele-
tal, and signaling proteins.29 At least 4 different types of
transmembrane proteins have been identified at tight junctions:
occludin,30 claudins,18 tricellulin,31 and junctional adhesion
molecules (JAM).32 Also present within the tight junction are the
scaffold PDZ domain-expressing zonula occludens (ZO) pro-
teins, and peripheral membrane proteins. The latter adhere only
temporarily to integral membrane proteins, or penetrate the
peripheral regions of the lipid bilayer.33

Occludin is highly expressed at tight junctions and appears to
be involved in barrier and fence functions. However, the precise
role of occludin in tight junction regulation is controversial.
Occludin homozygous null mice display intact morphology of
tight junctions and barrier function despite post-natal growth
retardation and infertility in the male mice.34 However, there is

substantial evidence supporting a functional role for occludin.
Firstly, the overexpression of occludin in cultured Madin-Darby
canine kidney (MDCK) cells increases the number of tight junc-
tion strands and elevates the transepithelial electrical resistance
(TER), as a measure of barrier permeability to ions.35,36 Sec-
ondly, the paracellular leakage of small molecules increases in
MDCK cells or Xenopus embryo cells expressing C-terminal trun-
cated occludin mutants.35,37 Lastly, stable occludin knockdown
Caco-2BBe monolayers had markedly enhanced tight junction
permeability by increased leak pathway.38

The Tsukita group first identified 2 22-kDa proteins from
occludin-containing chicken liver junctional fractions: Claudin-1
and -2.39,40 To date, 24 claudins have been identified. Freeze-frac-
ture electron microscopy revealed that the claudins constitute the
tight junction strands formerly noted on freeze fracture electron
microscopy.40 Cell-type-specific barrier properties in tight junc-
tions appear to be determined by the combination and ratios of
multiple claudin family members.41 Claudins have 2 different
functional subcategories with regard to paracellular permeability.
Some claudins, called “sealing claudins,” decrease paracellular per-
meability; the others, called “pore forming claudins,” enhance par-
acellular permeability in a charge-selective fashion.42,43 The
“sealing claudins” include claudins-1, -3, -5, -9, and -11. Claudin-
1 is crucial for barrier function, as shown in claudin-1 null mice,
which die within hours after birth because of dehydration induced
by an impaired epidermal barrier.44 The “pore forming claudins”
include claudins-2, -7, -10, -15, and -16. Claudin-2 forms a para-
cellular channel, which is selective for small cations. Overexpres-
sion of claudin-2 in MDCK cells results in a decrease in TER and
enhances the permeability to select small cations.45,46

Defect of the Intestinal Mucosal Barrier in Intestinal
Disorders

The importance of an intact epithelial tight junction becomes
evident in intestinal disorders. For example, the tight junction
complex is structurally impaired, as revealed by electron micros-
copy, in tissues from patients suffering from Crohn’s disease
(CD),47 ulcerative colitis (UC)48 and ischemic injury.49 Dysregu-
lation of tight junction proteins contributes to barrier loss in
patients with intestinal diseases. For instance, claudin-2, a pore
forming tight junction protein, was significantly upregulated in
CD,47 UC,50 and in patients with collagenous colitis51 by a Th2
cell cytokine (IL-13)-dependent mechanism. Occludin and select
sealing claudins (claudins-1, 3, and 4) were reduced in expression
or redistributed in intestinal permeability disorders, including
ischemic injury,8 CD,47 and UC.52 Reorganization of occludin
and sealing claudins was mediated by cytokines (tumor necrosis
factor-a [TNFa], interferon-g [IFNg], lymphotoxin-like induc-
ible protein that competes with glycoprotein D for herpes virus
entry on T cells [LIGHT], and IL-1b). These pro-inflammatory
cytokines promote transcription of myosin light chain kinase
(MLCK), which when activated, phosphorylates myosin II,
inducing caveolae-mediated endocytosis of tight junction pro-
teins via contraction of the perijunctional actinomyosin ring
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(Fig. 1).53-61 However, intestinal mucosal barrier dysfunction
can also be caused by epithelial damage regardless of tight junc-
tion function, including apoptosis, erosion, and ulceration.62

ClC-2 Chloride Channels

The ClC-0 chloride channel was originally discovered by
expression cloning of the Torpedo marmorata electric organ.63 To
date, 9 mammalian CLC family members have been discovered,
and they can be divided into 3 homology groups: 1) ClC-1, -2,
-Ka/K1, and –Kb/K2; 2) ClC-3, -4, and -5; and 3) ClC-6 and
-7.64,65 The ClC-2 chloride channel has 18 helices that partially
span the membrane. The two halves of the double-barreled struc-
ture form 2 identical, largely independent pores that have a bind-
ing site for chloride.66-68 ClC-2 is expressed in the plasma
membranes of epithelial cells from many mammalian tissues,
including the brain, pancreas, lung, intestine, kidney, liver, and
heart.69 Activation of ClC-2 occurs under various physiological
conditions including hypo-osmotic shock, membrane hyperpo-
larization, acidic extracellular pH, and cellular stress.70-77 ClC-2
is physiologically involved in several mammalian cell types,
including Sertoli cells,78 sympathetic79 and hippocampal neu-
rons,80,81 ocular rod bipolar cells,82 hepatocytes,83 erythro-
cytes,84 trabecular meshwork cells,85 colon epithelial cells,86

pancreatic acinar cells,87 as well as salivary acinar,88 and duct89

cells. Pathophysiologically, testicular and retinal degeneration,78

as well as leukodystrophy90 have been observed in ClC2¡/¡

mice, suggesting a crucial role for the ClC-2 chloride channel in
the control of the ionic environment in the germinal and retinal
epithelia as well as central nervous system.

Role of ClC-2 in Intestinal Mucosal Homeostasis

Although ClC-2 is capable of secreting chloride in cultured
intestinal cells as well as murine and pig intestinal epithe-
lium,4,91,92 the physiological contribution of ClC-2 to chloride
secretion remains unclear. There is some evidence suggesting that
ClC-2 does not contribute to fluid secretion. In particular, ClC-
2 is predominantly located in intestinal villus epithelia rather
than in the epithelia of secretory crypts.93-95 Secondly, ClC-2¡/¡

mice do not show any secretory functional change in gastric acid
secretion96 and intestinal chloride secretion72 Finally, ClC-2-
CFTR (cystic fibrosis transmembrane conductance regulator)
double-knockout mice do not exhibit more severe pathogenic
effects as compared to CFTR disruption alone.72 ClC-2 chloride
channels are located in proximity to tight junctions on the lateral
membrane of the murine villus enterocyte.91,97 Furthermore, our
previous studies have shown that ClC-2 is located in close prox-
imity to the tight junction region in porcine4 and murine.8 intes-
tine. However, there is debate concerning the cellular and
membrane location of ClC-2. The location of ClC-2 varies
depending on species, tissue, methodology employed for localiza-
tion, and ClC-2 antibodies used. Researchers have shown that
ClC-2 may be located in the basolateral membrane, apical mem-
brane, tight junction region, or cytosol of intestinal epithelia,
although most studies indicate localization to the intercellular
membranes (Table 1).4,5,7,8,91,97-102 For example, use of the
anti-ClC-2 antibodies ACL¡002, pAB-218, H-90, and YY9 has
typically shown lateral membrane distribution in several tis-
sues,97,99,100,102 whereas other antibodies such as ClC21-A,
chicken anti-ClC-2 (in house, Dr. Blaisdell)92 and Rabbit anti-
ClC-2 (in house, Dr. Bear)99 have shown apical membrane and
tight junction distribution in several studies.4,8,91,98 The distribu-
tion of ClC-2 has also been shown to be species-dependent using
the same antibody. For instance, the ACL¡002 antibody showed
basolateral distribution of ClC-2 in mouse colon, whereas ClC-2
was distributed in the cytosol in human colon.5 Thus, data on
the localization of ClC-2 have to be interpreted cautiously
depending upon the species being studied as well as the antibody
being used. However, it is likely that different cellular fractions
of ClC-2 exist within the membrane and cytosol, and when con-
sidering the membrane, a number of studies point to expression
adjacent to or within the tight junction region.

The expression of ClC-2 within the tight junction region pre-
sented questions regarding its role in the regulation of these struc-
tures. Recent studies have shown that other ion channels and
transporters (e.g. NaC-KC-ATPase, SGLT-1, NHE3, and
CFTR) are also involved in the regulation of tight junction struc-
ture and functions.3 One common theme among these studies is

Figure 1. The role of tight junction proteins in signaling mechanisms
affecting the intestinal mucosal barrier. Tight junctions consist of trans-
membrane proteins (e.g., claudins and occludin), cytoplasmic plaque
proteins (e.g. ZO-1, -2, and -3), and signaling proteins (e.g., actin and
myosin II). These proteins are dynamically regulated to maintain tight
junction integrity. In intestinal disorders, proinflammatory cytokines
(TNFa, INFg, LIGHT, and IL-1b) stimulate MLCK expression and activity
and induce caveolae-dependent endocytosis of tight junction proteins
via contraction of perijunctional actinomyosin ring. Alternatively, IL-13
increases paracellular permeability via increased expression of pore
forming claudin-2.
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that transport proteins are linked indirectly to the tight junction
complex by the cytoskeleton, which provides a functional link to
increase paracellular permeability during active transport. Our
lab has examined the role of ClC-2 chloride channels in regulat-
ing intestinal barrier function using a ClC-2¡/¡ mouse model.6

and ClC-2 knockdown in human intestinal Caco-2BBe epithelial
cells.7 For instance, functional and morphological alterations of
the tight junction barrier were observed in the intestinal mucosa
of ClC-2¡/¡ mice. Our lab group has shown that the ClC-2¡/¡

mice have tapering, rounded apical villus tips and dilated lateral
paracellular spaces. The reason the lateral paracellular spaces are
dilated in ClC-2¡/¡ mice is unknown, but may relate to break-
down of alternate junctional structures such as the adherens junc-
tion (unpublished observations). Interestingly, the ClC-2¡/¡

mouse jejunal mucosa also has increased baseline TER, reduced
paracellular permeability, and altered tight junction morphology
in terms of a less well-defined, poorly apposed, and narrowed
tight junction structure on electron microscopy.6 The ClC-2¡/¡

mouse colon also has increased baseline TER and reduced para-
cellular permeability.5,99 Additionally, the ClC-2¡/¡ intestinal
mucosa had reduced expression of phospho-myosin light chain
(MLC) and displayed comparatively small increases in TER and
reductions in mannitol fluxes in response to MLCK inhibition.
MLCK-mediated phosphorylation of MLC is known to increase
tight junction permeability via contraction of the perijunctional
actinomyosin ring.6 Although the relationship between ClC-2
and phosphorylation of MLC is not clear, the reduction of phos-
pho-MLC may be associated with increased baseline barrier func-
tion in ClC-2¡/¡ intestinal mucosa. The increase in baseline
barrier function in ClC-2¡/¡ mice was in direct contrast to stud-
ies on damaged epithelia in mice with experimental ischemic
injury and DSS-induced colitis, in which ClC-2 played a role in
repair or re-sealing of tight junctions.5,8 Taken together, these
findings suggest that ClC-2 reduces barrier function of the tight
junction in normal epithelium, possibly by virtue of forming a
pore as a Cl¡ channel within the tight junction, whereas ClC-2 is
involved in recovery of injured epithelia, apparently by contribut-
ing to re-structuring of the tight junction. Additional studies on
ClC-2 knockdown human intestinal epithelial Caco-2BBe cells
provide further support for this apparent dual role of ClC-2. Spe-
cifically, cells with ClC-2 knockdown cells showed a significant
delay in the development of TER and disruption of occludin dis-
tribution during early monolayer formation similar to the
absence of ClC-2 causing a delay in epithelial repair in ClC-2¡/¡

mice.7 Alternatively, fully differentiated ClC-2 knockdown
Caco-2BBe cells showed increased TER and reduced paracellular
permeability of FITC-dextran compared to control shRNA cells,
similar to normal intestinal mucosa in ClC-2¡/¡ mice.5 Using
proteomic LC/MS/MS studies in Caco-2BBe cells we demon-
strated that ClC-2 was closely associated with caveolin-1 and the
small GTPase Rab5, both crucial molecules in caveolar transport
(Fig. 2). The association of ClC-2 with caveolin-1 and Rab5 was
confirmed by co-immunoprecipitation and confocal immunoflu-
orescence. These results suggest that the role of ClC-2 in regula-
tion of tight junction permeability is associated with endocytic
recycling of tight junction proteins.

ClC-2 as a Key Factor in Restoring the Intestinal
Barrier

Ischemia-injured intestinal disease model
We first reported that barrier function recovery in ischemia-

injured porcine ileum was associated with chloride secretion via
ClC-2 chloride channels. Application of prostaglandin E2
(PGE2) to ischemic-injured ileal mucosa stimulated increases in
short-circuit current (Isc, an indicator of Cl¡ secretion) that was
followed by marked increases in TER, an indicator of barrier
function recovery. Ex vivo studies revealed that recovery of barrier
function was initiated by ClC-2 chloride channels co-expressed
with occludin and localized to tight junctions within restituting
epithelium.4 The requirement for chloride secretion is difficult to
understand in the context of barrier repair, but has been proven
in 2 ways: removal of chloride from tissue bathing solutions
prevents epithelial repair in response to ClC-2 agonists, and pre-
treatment of tissues with the loop diuretic bumetanide has a
similar effect as a result of blocking entry of chloride into epithe-
lium.103 In further experiments, ClC-2¡/¡ mice had increased
paracellular permeability in jejunal mucosa following ischemic
injury compared to wild type mice. Electronmicroscopic exami-
nation of recovering tissue revealed tight junction dilation in
ClC-2¡/¡ mice, whereas wild type epithelium had tightly
opposed tight junctions. Using western analyses of cell fractions,
occludin and claudin-1 showed increased expression in the cyto-
sol fractions and reduced expression in the membrane fractions
of ClC-2¡/¡ mice following ischemia as compared to wild type
mice. In a confocal immunofluorescence study, the tight junction
protein, occludin, was co-localized with ClC-2 in the tight junc-
tion region. Occludin was internalized during post-ischemic
recovery, but regained its membrane localization after 3-hours

Figure 2. ClC-2 has a key role in re-formation of the tight junction. ClC-2
regulates endocytosis and recycling of tight junction proteins associated
with caveolin-1 and the small GTPase Rab5, both crucial molecules in
caveolar transport.
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post-ischemic recovery. In ClC-2 deficient mouse intestine, how-
ever, the occludin remained diffusely present within the subapical
region even after 3-hours post-ischemic recovery.8 Collectively,
these findings indicated that ClC-2 plays a key role in restoration
of the intestinal epithelium barrier by anchoring assembly of
tight junctions following ischemic injury. The interaction
between chloride secretion and the apparent ability of ClC-2 to
orchestrate re-structuring of tight junctions is not fully under-
stood. We speculate that ClC-2 undergoes a conformational
change during active secretion that may initiate its ability to
recruit select tight junction proteins to the apical-lateral mem-
brane of cells.

Inflammatory bowel disease
A defect in intestinal barrier function is known to contribute

to the progression of inflammatory bowel disease (IBD).47,48,50

Thus, we hypothesized that the ClC-2 chloride channel also has
a critical role in the regulation of colonic barrier function under
inflammatory conditions. Our recent study found that the sever-
ity of experimental colitis was significantly increased in the ClC-
2¡/¡ mice as compared with WT mice.5 This was in contrast to
previous studies on unaffected ClC-2¡/¡ mice in which knock-
out animals had heightened barrier function,6 suggesting that the
role of ClC-2 in tight junction re-organization becomes more
critical under injurious conditions. ClC-2¡/¡ mice had a higher
disease activity index, higher histological scores, and increased
paracellular permeability compared with wild-type mice when
treated with DSS, associated with marked disruption of tight
junctions. More specifically, DSS-treated ClC-2 deficient mice
had increased claudin-2 (pore-forming claudin) expression, and
greater loss of occludin in the apical membrane of colonic
mucosa. Thus, the absence of ClC-2 appears to make tissues sus-
ceptible to destabilization of tight junction proteins when sub-
jected to injurious conditions. Similarly, ClC-2 knockdown in
Caco-2BBe cells resulted in a significant loss of TER in the pres-
ence of DSS compared to wild type cells. In addition, the protein
and mRNA expression of ClC-2 was dramatically reduced in
colonic biopsies from UC patients.5 We concluded that ClC-2
plays a key role in regulation of tight junction barrier function in
the development of DSS-induced murine colitis.5 Thus, we con-
sidered the possibility that ClC-2 could be a molecular target for
enhanced therapeutic efforts in intestinal diseases characterized
by a defect in barrier function, including CD, UC, and ischemic
injury.

Pharmaceutical Targeting of ClC-2

Prostones
Lubiprostone (Amitiza

�
, RU-0211), a purported ClC-2 ago-

nist, is a bicyclic fatty acid compound derived from a prostone
metabolite of prostaglandin E1 (PGE1).

104 Lubiprostone results
in efflux of chloride into the lumen of the gastrointestinal tract
and promotes intestinal fluid secretion.105,106 The drug is used as
a treatment for chronic idiopathic constipation (CIC) and irrita-
ble bowel syndrome (IBS) with constipation.107-109 The

originally proposed mechanism of action of lubiprostone in the
intestine was that it directly activates ClC-2 chloride channels
without affecting the CFTR on the apical membrane of human
colonic T84 cells.98,110 However, mechanisms of lubiprostone-
induced ClC-2-mediated chloride secretion remain controversial.
Several recently published papers suggest that lubiprostone results
in opening of the CFTR chloride channel via prostaglandin E
receptor 4 (EP4) initiated cAMP signaling, without affecting
ClC-2.111-113 These studies typically used CFTRihn172 as a selec-
tive CFTR inhibitor in order to differentiate the role of CFTR
and ClC-2.111-113 However, a recent study has shown that
CFTRihn172 also inhibits ClC-2 Cl¡ currents.114 Other labora-
tories have detected dual activation of CFTR and ClC-2 in a
dose-dependent manner. However, this may relate to dose-
dependent effects of lubiprostone, which when used at dosages
~10-fold higher that those required to activate ClC-2 can stimulate
CFTR Cl¡ currents.115 In further studies, use of the CFTR
inhibitor N-(4-methylphenylsulfonyl)-N’-(4-trifluoromethyl-
phenyl) urea (DASU-02), which does not inhibit ClC-2, had
no effect on lubiprostone-stimulated ΔIsc in T84 cells. In
addition, ClC-2 knockdown T84 cells did not respond to
lubiprostone whereas CFTR knockdown T84 cells had signifi-
cantly increased Cl¡ current in response to lubiprostone
(Table 2).9,98,102,111,112,114-126 Collectively, these findings indi-
cate that lubiprostone selectively stimulates ClC-2 Cl¡ currents
in intestinal epithelial cells at low doses. However, there are sev-
eral alternate mechanisms of action of lubiprostone revealed by
recent studies including ion transporter trafficking, mucus
release, and smooth muscle contraction.9,11,98,102,106,110-
113,116,117,119-131

Cobiprostone, another synthetic member of the prostone fam-
ily, also serves as a ClC-2 agonist and is an investigational pro-
stone as a potential treatment for gastrointestinal, liver and
respiratory diseases. In previous research, cobiprostone dose-
dependently activated ClC-2 in a protein kinase A-independent
manner in vitro and protected against formation of gastric ulcers
induced by NSAIDs and stress in in vivo.132,133,134

Prostones in intestinal barrier dysfunction
Previous studies showed that lubiprostone promoted repair of

barrier properties in a ClC-2-dependent manner in ischemic-
injured intestine.9-11 Treatment of ischemia-injured mucosa with
lubiprostone increased TER and significantly reduced mucosal-
to-serosal fluxes of 3H-labeled mannitol. During peak recovery of
TER in ischemic tissue, occludin was localized exclusively to the
tight junction in lubiprostone-treated tissues, as compared to dif-
fuse occludin staining in untreated tissues.9 Lubiprostone also
showed protective and reparative properties in T84 cells injured
by exposure to IFN-g and TNF-a. The barrier protective and
reparative properties were diminished by a ClC-2 inhibitor
(methadone), indicating that the barrier protective effect of lubi-
prostone was dependent on ClC-2.11 In recent experimental
work in our laboratory, lubiprostone was shown to protect
against colonic injury in DSS- and 2,4,6-Trinitrobenzenesulfonic
acid (TNBS)-induced murine colitis models, as well as to
therapeutically enhance repair of damaged colonic mucosa.12
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Application of lubiprostone in these chemically-induced IBD
models ameliorated body weight loss, disease activity index,
colon shortening, histological score, and intestinal permeability.
Using immunofluorescence confocal microscopy analysis of the
tight junction proteins, application of lubiprostone resulted in
recovery of tight junction distribution of occludin, claudin-1,
and claudin-2 in the apical membrane of DSS colitis mice colon.
However, this drug showed very limited protective effects in the
ClC-2¡/¡ mouse subjected to DSS administration.12 These
results indicated that the protective effect of the lubiprostone was
attributable to reconstitution of tight junction structure and
maintenance of intestinal barrier function in a ClC-2-dependent
manner.135 In our previous paper, pretreatment of porcine gastric
mucosa with cobiprostone protected against acid-induced injury
by protecting the tight junction barrier.134 However, additional
investigation is required in order to determine the detailed

mechanisms of action of pro-
stones in diseases characterized
by intestinal barrier dysfunction
such as ischemia/reperfusion
injury and IBD.

Conclusions

The intestinal tight junction
barrier is dynamically regulated
by physiological and pathologi-
cal factors, including growth fac-
tors, cytokines, drugs, hormones,
and ion channels.1-3 Recent
studies have shown that although
ClC-2 is known to be involved
in chloride secretion, the impor-
tance of this secretion to homeo-
stasis is uncertain. However, we
have shown that absence of
ClC-2 in genetically modified
mice results in altered tight junc-
tions, dilated lateral paracellular
space, and changes of the shape
of the villi in small intestine.
Furthermore, ClC-2 appears to
play a role in development of
barrier function in immature
intestinal epithelial cells. Addi-
tionally, ClC-2 is intimately
associated with re-structuring of
tight junctions within injured
epithelium. In ClC-2¡/¡ mice,
ischemic injury and chemically
induced colitis models have
shown a greater level of tight
junction protein disruption as
compared to WT mice (Fig. 3).
We have also found that the

ClC-2 chloride channel has a critical role in regulation of tight
junctions during recovery of the tight junction barrier, and we
have also shown that prostones capable of activating ClC-2
enhance barrier recovery as well as having a barrier protective role
in porcine and murine models of intestinal dysfunction. We con-
tinue to have questions as to precisely how ClC-2 regulates the
tight junction barrier. For instance, does ClC-2 activation
orchestrate tight junction assembly, or is it mechanistically associ-
ated with fundamental mechanisms of tight junction formation?
These findings may lead to the full realization of ClC-2 pharma-
cological agonists for the treatment of intestinal diseases associ-
ated with intestinal barrier dysfunctions.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Figure 3. Model summary for the role of ClC-2 in repair of the intestinal epithelial barrier. In normal intestinal
mucosa, ClC-2 is associated with dynamic trafficking of tight junction proteins to maintain tight junction integ-
rity. In the absence of ClC-2, intestinal epithelial cells show altered tight junction morphology and dilated lat-
eral paracellular spaces. In injured intestinal mucosa, ClC-2 has a critical role in reconstitution of tight junction
proteins. Intestinal mucosa without ClC-2 has greater loss of barrier functions than epithelia with
ClC-2 and resulting in development of digestive disease.
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