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Summary

Meta-analysis is widely used to compare and combine the results of multiple independent studies. 

To account for between-study heterogeneity, investigators often employ random-effects models, 

under which the effect sizes of interest are assumed to follow a normal distribution. It is common 

to estimate the mean effect size by a weighted linear combination of study-specific estimators, 

with the weight for each study being inversely proportional to the sum of the variance of the 

effect-size estimator and the estimated variance component of the random-effects distribution. 

Because the estimator of the variance component involved in the weights is random and correlated 

with study-specific effect-size estimators, the commonly adopted asymptotic normal 

approximation to the meta-analysis estimator is grossly inaccurate unless the number of studies is 

large. When individual participant data are available, one can also estimate the mean effect size by 

maximizing the joint likelihood. We establish the asymptotic properties of the meta-analysis 

estimator and the joint maximum likelihood estimator when the number of studies is either fixed 

or increases at a slower rate than the study sizes and we discover a surprising result: the former 

estimator is always at least as efficient as the latter. We also develop a novel resampling technique 

that improves the accuracy of statistical inference. We demonstrate the benefits of the proposed 

inference procedures using simulated and empirical data.
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1. Introduction

Meta-analysis compares and combines results from multiple independent studies, with the 

hope of identifying consistent patterns and sources of disagreement. It has been routinely 

used in all areas of statistical applications, from astronomy to zoology. The meta-analysis 

literature has grown exponentially over the past three decades, owing to the need for reliable 

summarization of the vast and expanding volume of scientific research. According to the 

Web of Science, there were 2006 meta-analysis publications during the years 1985–1994, 13 
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154 during 1995–2004, and more than 55 000 during 2005–2014. The impact of meta-

analysis on medical research and clinical practice has been enormous (see, e.g., Whitehead, 

2002; Sutton & Higgins, 2008). Most of the recent discoveries about genetic variants 

associated with complex human diseases and traits have been made through meta-analysis 

(e.g., McCarthy et al., 2008; Evangelou & Ioannidis, 2013). Meta-analysis is likely to play 

an even greater role in the current big-data era.

Conventional meta-analysis relies on summary statistics, such as estimated effect sizes and 

standard errors, from relevant studies. Advances in technology and communications have 

made it increasingly feasible to access data on individual participants (e.g., Sutton et al., 

2000). Indeed, joint analysis of individual patient data is considered the gold standard in 

systematic reviews of randomized clinical trials (e.g., Chalmers et al., 1993). Recently, a 

number of consortia have been formed to share individual participant data from genetic 

association studies (e.g., Psychiatric GWAS Consortium Steering Committee, 2009; 

Evangelou & Ioannidis, 2013; Lin et al., 2013).

Suppose that there are K independent studies, with nk participants for the kth study. The data 

consist of { ki : k =1,…, K; i =1,…, nk}, where ki represents the observation, including the 

response variable and explanatory variables, on the ith participant of the kth study. Assume 

that the density function of ki is proportional to fk(·; βk, ηk), where βk is the parameter of 

interest, namely the effect size for a new treatment or genetic mutation, and ηk is a set of 

nuisance parameters, such as the error variance and the regression effects of demographic 

variables. Let β̂
k be the maximum likelihood estimator of βk based on the likelihood 

, and let V̂
k be the estimated variance of β̂

k. We assume that 

standard regularity conditions (Cox & Hinkley, 1974, p. 281) hold and that the nk are large 

enough that β̂
k is approximately normal with mean βk and variance V̂

k.

Under the fixed-effects model, βk =β for all k =1,…, K. The familiar inverse-variance 

estimator of β is

which is approximately normal with mean β and variance . Let β̂† be the 

maximum likelihood estimator of β found by maximizing the joint likelihood 

. Olkin & Sampson (1998) and Mathew & Nordstrom (1999) showed that, in 

the case of comparing multiple treatments and a control for a continuous outcome with 

known error variances, β̂ is the same as β̂†. Recently, Lin & Zeng (2010) proved that the two 

estimators are asymptotically equivalent for all commonly used parametric and 

semiparametric models.

We focus on the random-effects model
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where ξk ~ N(0, τ2). Because β̂
k is approximately normal with mean β and variance V̂

k + τ2, 

it is natural to estimate β by

(1)

where , with (DerSimonian & Laird, 1986)

(2)

Inference on β is typically based on the normal approximation

(3)

For finite K, the estimator  involved in the ŵk is random and correlated with the β̂
k, so 

the normal approximation given in (3) can be very crude. Indeed, it is well documented that 

confidence intervals based on (3) have very poor coverage for small and moderate K (see, 

e.g., Biggerstaff & Tweedie, 1997; Brockwell & Gordon, 2001). Various methods have been 

proposed to improve the confidence intervals (e.g., Hardy & Thompson, 1996; Biggerstaff 

& Tweedie, 1997; Brockwell & Gordon, 2001; Sidik & Jonkman, 2002; Henmi & Copas, 

2010); however, none of these methods has been rigorously justified or widely accepted.

When individual participant data are available, one can maximize the loglikelihood

(4)

Denote the resulting estimators of β, τ2 and (η1,…, ηK) by β̂
ML,  and (η̂

1,…, η̂
K). It is 

challenging to establish the theoretical properties of the maximum likelihood estimators, 

because the nk are typically larger than K. This problem is similar to that encountered in the 

analysis of large clusters. The existing theory for random-effects models with large clusters 

requires that the variance component be known (Bellamy et al., 2005). The fact that the 

variance component needs to be estimated from the data poses major theoretical challenges.

In the present paper, we establish the asymptotic properties of the meta-analysis estimators 

β̂
MA and  and the maximum likelihood estimators β̂

ML and  for the situations of a 

fixed K and diverging K. We then investigate the asymptotic relative efficiency of β̂
MA to 
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β̂
ML and reveal that the former is at least as efficient as the latter. In addition, we develop a 

novel resampling technique that yields substantially more accurate inference than the normal 

approximation given in (3). Finally, we demonstrate the advantages of the new inference 

procedures by applying them to data from clinical trials on the treatment of cancer-

associated anaemia.

2. Asymptotic theory

We assume that the nk (k =1,…, K) are comparable and denote their median by n. We write 

τ2 =σ2/n, where σ2 is a constant, such that the between-study variability is of the order n−1 

and thus comparable to the within-study variability V̂
k. We estimate σ2 by  and 

 in the meta-analysis and maximum likelihood estimation, respectively. Note that 

 is a consistent method-of-moments estimator.

We assume the following regularity conditions.

Condition 1. The parameters (β, ηk, σ2) lie in the interior of a compact set 1 × 2k × 3 

within the parameter domain.

Condition 2. For (βk, ηk) ∈ 1 × 2k, the function log fk( ; βk, ηk) is thrice continuously 

differentiable.

Condition 3. For k =1,…, K, nk = pkn for some constant pk within a compact interval in 

(0,∞).

Condition 4. The information matrix of fk( ; β, ηk) is continuous in a neighbourhood of 

the true parameter value (β0, ηk0), and its eigenvalues have positive lower and upper 

bounds uniformly for k =1,…, K.

In practice, K is small relative to n. Therefore, we investigate the asymptotic properties of 

the meta-analysis estimators and maximum likelihood estimators in the cases where K is 

fixed or diverges to ∞ at a slower rate than n. The results for the first case are stated below.

Theorem 1

Under Conditions 1–4,

in distribution, where , 1,…, K are independent zero-

mean normal random variables with variances , vk is the limit of nkV̂
k, and  is the 

true value of σ2. In addition,
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in distribution. Furthermore,

in distribution, where ṽk =vk/pk, and

in distribution.

This theorem indicates that neither the maximum likelihood estimator β̂
ML nor the 

metaanalysis estimator β̂
MA is asymptotically normal. Their asymptotic distributions are 

mixtures of normal random variables, the mixing probabilities being random and correlated 

with the normal random variables. This phenomenon is different from the usual asymptotic 

theory (Cox & Hinkley, 1974, § 9.2) and is caused by the fact that K is fixed.

Before stating the asymptotic results for divergent K, we make two additional assumptions.

Condition 5. We have n→∞, K → ∞, and Kn−1/2→0.

Condition 6. For any σ2 ∈ 3, the following limit exists:

where g(σ2) has a unique maximum at  in 3.

Remark 1

Condition 5 implies that the number of studies increases to infinity but not as fast as the 

study sizes. The function g(·) is the limit of the profile likelihood function for σ2, so 

Condition 6 guarantees the convergence of  to some unique value as K → ∞.

Theorem 2

Under Conditions 1–6,  and β̂
ML→β0 in probability. In addition,
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in distribution, where

which is assumed to exist for any  and  in 3. Under Conditions 1–5,  and 

β̂MA → β0 in probability, and  in distribution. 

Furthermore, var(β̂
ML) ≥ var(β̂

MA) asymptotically, with equality if and only if  or ṽ1 

=···=ṽK.

Theorem 2 provides some intriguing results. First, the maximum likelihood estimator for σ2 

may not even be consistent; it converges to  as defined in Condition 6. Second, the 

metaanalysis estimator β̂
MA is at least as efficient as the maximum likelihood estimator β̂

ML. 

Both results contradict standard likelihood theory, which is applicable only to a large 

number of small clusters with fixed parameters. In our case, K is relatively small compared 

to n, and the variance component τ2 changes with n.

3. A special case

To gain some insights into the asymptotic properties of the maximum likelihood estimators 

described in Theorems 1 and 2, we consider the special case of simple linear regression:

where ξk ~ N(0, σ2/n), εki ~ N(0, 1), and ξk is independent of εki. Define

The loglikelihood function is, up to some constant,

After maximization over the αk and β, we obtain the profile loglikelihood function for σ2,
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Note that  with variance vk/nk, where 

. We can rewrite the profile loglikelihood function as

If K is fixed while n goes to ∞, then , where Z1,…, ZK are 

independent standard normal. It follows that

which is the result for  given in Theorem 1. When K diverges, Theorem 2 implies that 

the argument maximizing K−1ln(σ2), i.e., , converges to , which maximizes the 

function

(5)

Suppose that pk =1 for k =1,…, K and that the Xki all have the same distribution with mean 

mx and variance vx. Then (5) becomes

Let  and  denote, respectively, the minimum and maximum of σ2 in 3. It can be 

shown that if , then ; otherwise,  can be  or a 

value that maximizes the above limit, and the maximizer has to be
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which is  if mx =0. In particular, if Xki ~ 2 × Ber(0·5) − 1 + mx,  and 

, then the above derivation implies that  under mx =21/2 and 

 under mx =0·5. In both cases, ; however, the 

asymptotic variances of β̂
ML and β̂

MA are the same since the ṽk (k =1,…, K) are equal.

To induce unequal variances, we let nk =50, 100, 400 and 800 for every four studies, and let 

Xki take the value 0 with probability a Un(0·05, 0·5) random variable in each study and the 

value 2 otherwise. We set αk =0 (k =1,…, K), β0 =0·5,  and n =200. 

Then the asymptotic relative efficiency of β̂
MA to β̂

ML is approximately 1·2 according to 

Theorem 2. Using Monte Carlo simulation, we found the empirical relative efficiencies to be 

approximately 1·037, 1·083, 1·125, 1·171 and 1·218 for K =100, 200, 300, 400 and 500, 

respectively. The distributions of βM̂L, β̂
MA,  and  for K =300 are displayed in Fig. 1. 

The empirical means of β̂
ML, β̂

MA,  and  are 0·50, 0·50, 0·00076 and 1·00, 

respectively, and the corresponding standard errors are 0·0073, 0·0069, 0·0263 and 0·169.

4. Inference procedures

When K is large, we make inference about β0 by using the asymptotic normality of β̂
ML and 

β̂
MA described in Theorem 2. The asymptotic variance of (nK)1/2(β̂

ML − β0) can be 

consistently estimated by , where

The asymptotic variance of (nK)1/2(β̂
MA − β0) can be consistently estimated by 

. The normal approximation based on this variance estimator is equivalent 

to the normal approximation given in (3), which is the DerSimonian–Laird method.

When K is small, the normal approximations to the distributions of β̂
ML and β̂

MA are no 

longer accurate, so we appeal to Theorem 1. Without knowledge of , however, it is not 

possible to estimate the asymptotic distributions given in Theorem 1. To deal with this 

problem, we propose a double resampling approach to meta-analysis. Theorem 1 shows that, 

for fixed K, the asymptotic distribution of n1/2(β̂
MA − β0) depends on the asymptotic 

distribution of . Thus, we first simulate σ2 from the distribution of MA, in which 

. For each sampled σ2, say , we then generate β as
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where . Operationally, this resampling procedure is equivalent to 

the following: simulate τ2 from equation (2), in which ; for each 

sampled τ2, say , simulate β from equation (1), in which  and 

. We repeat this process B times to obtain B2 values of β. The empirical 

distribution of those values is used to make inference about β.

5. Simulation studies

We used simulation to evaluate the proposed inference procedures. To facilitate 

comparisons with existing methods, we adopted the simulation set-up of Brockwell & 

Gordon (2001), which corresponds to a typical scenario of estimating a log odds ratio. 

Specifically, we generated the parameter estimates as

where β = 0·5 and the V̂
k (k = 1, …, K) are realizations from a  distribution multiplied by 

0·25 and then restricted to lie within the interval (0·009, 0·6). We varied τ2 from 0 to 0·1 and 

K from 5 to 50. The corresponding values of I2 (Higgins et al., 2003) are displayed in the 

Supplementary Material. For each simulated dataset, we obtained the 95% confidence 

intervals for β using the new resampling approach with B = 1000, the DerSimonian–Laird 

method, the profile likelihood method of Hardy & Thompson (1996), and the resampling 

method of Jackson & Bowden (2009). The coverage probabilities based on 10 000 replicates 

are shown in Fig. 2 and the Supplementary Material; the corresponding mean widths are 

shown in the Supplementary Material.

The new method has reasonable coverage probabilities, especially when τ2 is small or K is 

large. Its coverage probabilities are always higher than those of the DerSimonian–Laird 

method. The differences between the two methods become smaller as K increases. Indeed, 

both methods have correct coverage probabilities when K is 50. The Jackson–Bowden 

method is very conservative. The new method has better coverage than the profile likelihood 

method when K is small and τ2 is not too small. By comparing our Fig. 1 with Fig. 4 of 

Brockwell & Gordon (2001), Fig. 1 of Sidik & Jonkman (2002), and Fig. 1 of Henmi & 

Copas (2010), we see that the new method outperforms the other methods. The widths of the 

confidence intervals are similar for the new and profile likelihood methods, which are bigger 

than those of the DerSimonian–Laird method.

6. Real-data example

The erythropoiesis-stimulating agents erythropoietin and darbepoetin are approved to treat 

chemotherapy-associated anaemia in patients with nonmyeloid malignancies. To evaluate 

mortality rates associated with the administration of these agents for the treatment of 

anaemia in cancer patients, Bennett et al. (2008) conducted a systematic review of 52 phase 

III clinical trials with 13 611 patients that compared the erythropoiesis-stimulating agents 

with placebo or standard care with respect to mortality. The estimated hazard ratios and 95% 
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confidence intervals are shown in Fig. 2 of Bennett et al. (2008). Using the DerSimonian–

Laird method, Bennett et al. (2008) obtained a hazard ratio estimate of 1·10 with a 95% 

confidence interval of (1·01, 1·20), which raised concerns about the safety of administering 

these agents to patients with cancer. Our resampling method yields a 95% confidence 

interval of (1·006, 1·201), which is very close to the DerSimonian–Laird counterpart. The 

corresponding intervals are (0·973, 1·242) and (0·986, 1·230) for the Jackson–Bowden and 

Hardy–Thompson methods, respectively.

Bennett et al. (2008) also applied the DerSimonian–Laird method to a subset of six trials 

consisting of 2089 patients who did not receive chemotherapy or radiation therapy and 

obtained a hazard ratio estimate of 1·29 with a 95% confidence interval of (1·00, 1·67). Our 

resampling method yields a 95% confidence interval of (0·851, 1·963), which is 

considerably wider. In this case, , so the DerSimonian–Laird method is actually the 

same as the fixed-effects method. By contrast, our resampling approach accounts for the 

variation in the estimation of τ2 and thus will not reduce to the fixed-effects method even 

when the point estimate of τ2 is zero. The Jackson–Bowden and Hardy–Thompson methods 

yield intervals of (0·798, 2·094) and (0·703, 1·792), respectively.

7. Remarks

Effect sizes tend to vary among study populations because of differences in demographic 

and environmental factors. Furthermore, the treatments or outcomes may not be identical 

across clinical trials, so the treatment effects may differ even for similar patient populations. 

In genetic association studies, different definitions and measurements of phenotypes, as well 

as different collections and manipulations of genotype data, also contribute to between-study 

heterogeneity. Thus, it is important to allow for heterogeneity through the use of random-

effects models, especially when one is interested in parameter estimation rather than 

hypothesis testing. The confidence intervals under fixed-effects models have extremely poor 

coverage under even mild heterogeneity (e.g., Brockwell & Gordon, 2001; Henmi & Copas, 

2010).

The prevailing approach to random-effects meta-analysis is the DerSimonian–Laird method. 

Indeed, DerSimonian & Laird’s 1986 paper has been cited more than 10 000 times in the 

Web of Science database. Our paper provides a rigorous asymptotic theory for the 

DerSimonian–Laird estimator in cases where the number of studies is fixed or divergent. In 

addition, we propose a resampling technique that yields more accurate inference than the 

commonly adopted normal approximation.

In most applications, the number of studies is much smaller than the study sizes, so that 

Condition 5 holds. It would be interesting to consider situations in which K diverges at the 

same rate as n or nr for some r ≥ 1/2. Such an extension would require careful examination 

of the higher-order expansion in the quadratic approximation to the profile loglikelihood of 

each study.

The random-effects model proposed by DerSimonian & Laird (1986) and considered in this 

paper assumes that the random effect is normally distributed. Additional simulation studies 
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have revealed that our resampling procedure performs satisfactorily under other random-

effects distributions; see Fig. 3. Recently, Wang et al. (2010) proposed a nonparametric 

inference procedure for the percentiles of the random-effects distribution. Their method 

works well for small K but may not be statistically efficient.

For ethical and logistical reasons, individual participant data are not as easily accessible as 

summary statistics. Our work shows that it is not necessary to collect individual participant 

data. In fact, maximum likelihood analysis of individual participant data can give worse 

results than meta-analysis of summary statistics: the maximum likelihood estimator of σ2 

may not be consistent as K → ∞, and the maximum likelihood estimator of β is always less 

efficient than the meta-analysis estimator.

We have assumed that β is a scalar; however, all our results can be extended to multivariate 

random-effects models (e.g., Jackson et al., 2010; Chen et al., 2012). Specifically, the meta-

analysis estimator of β still takes the form of (1), whereas expression (2) is replaced by an 

estimator of the covariance matrix of the random effects (e.g., Chen et al., 2012). The basic 

conclusions of Theorems 1 and 2 continue to hold; a key change in the proofs is to 

approximate the profile likelihood function by a quadratic function based on the multivariate 

version of the Laplace approximation. Our resampling procedure remains the same except 

that multivariate versions of the estimators are used.

Our work can be applied to the analysis of large clusters in other contexts. The most 

rigorous theory for the analysis of large clusters was provided by Bellamy et al. (2005), who 

quantified the bias of the penalized quasilikelihood estimator of the cluster-level covariate 

effect in generalized linear mixed models for group-randomized trials under the assumption 

of a known variance component. Our framework covers this case with an unknown variance 

component upon setting βk = Xkγ + ξk (k = 1, …, K), where Xk is a group-level treatment 

indicator. More generally, we may assume that βk = Xkγk (k = 1, …, K), where γk = γ + ξk 

and Xk is a cluster-level covariate. Our theory suggests that meta-analysis of summary 

statistics is preferable to maximum likelihood analysis of individual participant data in such 

situations.

Supplementary Material
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Appendix. Proofs of Theorems 1 and 2

The proofs of both theorems rely on a local expansion of the loglikelihood function around 

the maximum likelihood estimators. By Condition 2 and Theorem 2.83 of van der Vaart & 

Wellner (1996), the class of functions {log fk ( ; βk, ηk) : (βk, ηk) ∈ 1 × 2k } and the 

corresponding classes of first and second derivatives are uniformly Donsker and Glivenko–

Cantelli with respect to any probability measure. We will use this fact repeatedly. Let ℘nk 

denote the empirical measure for ( k1, …, k, nk)conditional on ξk, and let ℘k be the 

conditional expectation under the density fk (· ; βk0, ηk0), where βk0 is the true value of βk. 

Then the kth summand in (4) can be written as

Consider an open set  for (β, η1, …, ηK, σ2) with |β −β0| ≤ M(nK)−1/2, ||ηk − ηk0|| ≤ Mn−1/2 

(k = 1, …, K) for some large M to be chosen later, and σ2 ∈ 3. We will show that with 

probability tending to 1, there exists a local maximizer of  in this 

neighbourhood. The proof of existence consists of four main steps. First, we obtain a 

Laplace approximation to the integral in lk (β, σ2, ηk). Second, we show that for each (β, σ2) 

there exist estimators ηk̂ (β, σ2) (k = 1, …, K) which maximize , and we 

obtain the profile loglikelihood function , where plk (β, σ2) = lk{β, σ2, η̂
k (β, 

σ2)}. Third, we show that there exists an estimator βM̂L(σ2) which maximizes 

 for each σ2. Finally, we show that there exists an estimator for σ2, denoted 

by , which maximizes , so we obtain  and 

. These four steps are detailed in the Supplementary Material.

Proof of Theorem 1

When K is fixed,  does not converge to any constant. It follows from equation (S5) in the 

Supplementary Material and the arg max continuous mapping theorem (van der Vaart & 

Wellner, 1996, Theorem 3.2.2) that

in distribution. It then follows from equation (S4) in the Supplementary Material that
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in distribution. Likewise, the asymptotic distribution for ( , β̂
MA) can be obtained from 

the arg max continuous mapping theorem.

Proof of Theorem 2

We examine the random process Qn(σ2) given in (S5) of the Supplementary Material. Let

Then

Consider the random process  ndexed by σ2. We verify the conditions 

in Theorem 2.11.1 of van der Vaart & Wellner (1996). First, we verify the Lindeberg 

condition,

By the Markov inequality, the left-hand side is bounded by . In 

addition,
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for some constant c3. Thus, , where c4 is a constant. 

For the second condition in Theorem 2.11.1 of van der Vaart & Wellner (1996), we note 

that, by the mean value theorem,

as . Since 3 is one-dimensional, it is easy to see that the random entropy 

condition in Theorem 2.11.1 holds. In light of Condition 6, Theorem 2.11.1 implies that 

 converges weakly to a zero-mean Gaussian process with covariance 

function  between  and . Thus, the third term of Qn(σ2) is op(K) uniformly in 

σ2. Similarly, for the second term of Qn(σ2),

in probability. Combining the above results, we conclude that, in probability,

which has a unique maximum at  according to Condition 6.

We are ready to show that  in probability. Since  is bounded, we can always 

choose a further subsequence from any subsequence, still denoted by , such that 

. Because , it follows from 

equation (S5) in the Supplementary Material that

Taking the limit on both sides yields . Therefore .

In light of (S4) in the Supplementary Material, for the local maximum likelihood estimator 

, we have
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By Theorem 2.11.1 of van der Vaart & Wellner (1996) and the convergence of  to ,

in distribution.

We now derive the asymptotic distribution of β̂
MA. Because  in probability as K 

→ ∞, we have supk |ŵk/ n −wk | = op(1), where . Thus,

Since maxk wk /Σk wk → 0 by Condition 4, the Lindeberg–Feller central limit theorem yields 

that, in distribution,

By the Cauchy–Schwarz inequality, 

, and equality holds if and only if 

( ) is proportional to ( ) for k = 1, …, K. This condition is met if  or the 

ṽk (k = 1, …, K) are all equal. The lower bound is the asymptotic variance of β̂
MA. Thus 

β̂
MA has a smaller asymptotic variance than βML, unless  or the ṽk are all the same.
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Fig. 1. 

Estimated density functions of: (a) β̂
ML and β̂

MA; (b)  and  in simple linear 

regression. In each panel, the solid curve corresponds to the maximum likelihood estimator 

and the dashed curve to the meta-analysis estimator.
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Fig. 2. 
Empirical coverage probabilities of nominal 95% confidence intervals plotted against τ2 for 

(a) K = 10 and (b) K = 20, and plotted against K for (c) τ2 = 0·03 and (d) τ2 = 0·07. In each 

panel, the different curves correspond to the new resampling method (solid), the 

DerSimonian–Laird method (dashed), the Jackson–Bowden method (dotted), and the 

Hardy–Thompson method (dot-dash).
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Fig. 3. 
Empirical coverage probabilities of nominal 95% confidence intervals when the random 

effects are from the τ × Ga(1, 1) distribution centred at its mean, plotted against τ2 for (a) K 

= 10 and (b) K = 20, and plotted against K for (c) τ2 = 0·03 and (d) τ2 = 0·07. In each panel, 

the different curves correspond to the new resampling method (solid), the DerSimonian–

Laird method (dashed), the Jackson–Bowden method (dotted), and the Hardy–Thompson 

method (dot-dash).

ZENG and LIN Page 19

Biometrika. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


