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Abstract

Lack of a general matrix formula hampers implementation of the semi-partial correlation, also 

known as part correlation, to the higher-order coefficient. This is because the higher-order semi-

partial correlation calculation using a recursive formula requires an enormous number of recursive 

calculations to obtain the correlation coefficients. To resolve this difficulty, we derive a general 

matrix formula of the semi-partial correlation for fast computation. The semi-partial correlations 

are then implemented on an R package ppcor along with the partial correlation. Owing to the 

general matrix formulas, users can readily calculate the coefficients of both partial and semi-

partial correlations without computational burden. The package ppcor further provides users with 

the level of the statistical significance with its test statistic.
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1. Introduction

The partial and semi-partial (also known as part) correlations are used to express the specific 

portion of variance explained by eliminating the effect of other variables when assessing the 

correlation between two variables (James, 2002; Johnson and Wichern, 2002; Whittaker, 

1990). The great number of studies have been published using either partial or semi-partial 

correlations in many areas including cognitive psychology (e.g., Baum and Rude, 2013), 

genomics (e.g., Kim and Yi, 2007; Fang et al., 2009; Zhu and Zhang, 2009), medicine (e.g., 

Vanderlinden et al., 2013), and metabolomics (e.g., Kim et al., 2012; Kim and Zhang, 

2013).

The partial correlation can be explained as the association between two random variables 

after eliminating the effect of all other random variables, while the semi-partial correlation 

eliminates the effect of a fraction of other random variables, for instance, removing the 

effect of all other random variables from just one of two interesting random variables. The 

rationale for the partial and semi-partial correlations is to estimate a direct relationship or 

association between two random variables. The brief explanation follows to describe the 

main difference among the correlation, the partial correlation and the semi-partial 
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correlation. Suppose there are three random variables (or vectors), X, Y and Z, and we are 

interested in the relationship (or association) between X and Y, for illustration purposes. 

Three situations are taken into consideration as shown in Figure 1. The figure describes 

three cases that (a) Z is correlated with none of X and Y, (b) only the random variable Y is 

correlated with Z and (c) Z is correlated with both X and Y. Because Z is independent of both 

X and Y in Figure 1(a), the correlation, partial correlation and semi-partial correlation all 

should theoretically have the identical value. When only Y is correlated with Z as shown in 

Figure 1(b), the partial correlation is exactly same as the semi-partial correlation, but is 

different from the correlation. However, in case of Figure 1(c), all three correlations are 

different from each other. For more details on the partial and semi-partial correlations, refer 

to James (2002) and Whittaker (1990).

Several R packages have been developed only for the partial correlation. The R package 

corpcor (Schafer and Strimmer, 2005) provides the function cor2pcor() for computing 

partial correlation from correlation matrix and vice versa. The function 

ggm.estimate.pcor(), which is built in the package GeneNet (Schafer and Strimmer, 

2005), allows users to estimate the partial correlation for graphical Gaussian models. The 

package PCIT (Watson-Haigh et al., 2010) provides an algorithm for calculating the partial 

correlation coefficient with information theory. The function partial.cor() is included 

in Rcmdr (Fox, 2005) package for computing partial correlations. The package parcor 
(Kramer et al., 2009) can be used for regularized estimation of partial correlation matrices. 

The qp (Castelo and Roverato, 2006) package provides users with q-order partial correlation 

graph search algorithm. The R package space (Peng et al., 2009) can be used for sparse 

partial correlation estimation. However, none of these packages provide the level of 

significance for the partial correlation coefficient such as p-value and statistic. 

Furthermore, to our knowledge, there exists no R package for semi-partial correlation 

calculation.

On the other hand, there is no attempt to reduce the computational burden of the higher-

order semi-partial correlation coefficients, while the higher-order partial correlation 

coefficients can be easily calculated using the inverse variance-covariance matrix. This 

means that a recursive formula (e.g., see Equation (2.2)) should be used for the higher-order 

semi-partial correlation calculation, hampering the use of the semi-partial correlation for 

high-dimensional data, such as ‘omics’ data, due to its expensive computation.

For these reasons, we derive a general matrix formula for the semi-partial correlation 

calculation (see Equation (2.6)). Using this general matrix formula, the semi-partial 

correlation coefficient can be simple but fast calculated. In order for the partial and the semi-

partial correlations to be used practically, an R package ppcor is further developed in the R 

system for statistical computing (R Development Core Team, 2015). It provides a means for 

fast computing partial and semi-partial correlation as well as the level of statistical 

significance. The package ppcor is publicly available from CRAN at http://CRAN.r-

project.org/package=ppcor and it is also available in the Supplementary Material at CSAM 

homepage (http://csam.or.kr).
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2. Partial and Semi-partial Correlations

Consider the random vector X = (x1, x2, …, xi, …, xn)′ where |X| = n. We denote the variance 

of a variable random xi and the covariance between two random variables xi and xj as vi (= 

var(xi)) and cij (= cov(xi, xj)), respectively. The variance-covariance matrices of random 

vectors X and XS (S ⊂ {1, 2, …, n} and |S| < n) are denoted by CX and CS, respectively, 

where XS is a random sub-vector of the random vector X. The correlation between two 

random variables xi and xj is denoted by .

Definition 1

The partial correlation of xi and xj given xk is

(2.1)

and the semi-partial correlation of xi with xj given xk is

(2.2)

Whittaker (1990) defined the partial correlation using the correlation between two residuals. 

In fact, we can easily see that the definition in Whittaker (1990) is equivalent to the 

definition in Equation (2.1). Using the above definition, we can readily obtain another 

version of the definitions of the partial and the semi-partial correlation coefficients as 

follows.

Corollary 1

The partial correlation of xi and xj given xk, , is equal to

(2.3)

and the semi-partial correlation of xi with xj given xk, , is equal to

(2.4)

where .

Note that the proof of Corollary 1 is omitted since it is straightforward. Corollary 1 can be 

further generalized to the case that there are two or more given variables. In other words, it 

can be extended to the higher-order partial and the higher-order semi-partial correlations. To 
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do this, we need to consider the inverse variance-covariance matrix of X, . For the 

simplicity’s sake, we denote DX as [dij] and CX as [cij], where dij and cij are the (i, j)-th cell 

of the matrices DX and CX, respectively, and 1 ≤ i, j ≤ n. Then the partial correlation between 

two variables given a set of variables can be calculated by the following lemma.

Lemma 1. (Whittaker, 1990)

The partial correlation of xi and xj given a random vector XS (= X(i,j)), rij|S, is equal to

(2.5)

where XS (= X(i,j)) is the random sub-vector of X after removing the random variables xi and 

xj and its size is |S| (= |X| −2).

Most R packages for calculation of the partial correlation use the matrix-based calculation 

which is based on Equation (2.5), since this method is much less computationally expensive 

than the method based on Equation (2.1). In this case, we have to calculate the inverse 

variance-covariance matrix DX in order to obtain the partial correlations for all pairs of the 

random variables of X. Fortunately, it can be easily obtained with a simple code in R. For 

example, the partial correlation of xi and xj given X(i,j) of X is the (i, j)-th cell of the 

following matrix:

R> -cov2cor(solve(cov(X)))

However, there is no matrix-based mathematical formula for the semi-partial correlation. 

Without a general matrix formula, users have to calculate the higher-order semi-partial 

correlation through a recursive formula in Equation (2.2), which is time-consuming for high-

dimensional data. Therefore, it is highly desirable to have a general matrix formula for the 

fast higher-order semi-partial correlation calculation. In the next theorem, we drive a matrix-

based mathematical formula for the semi-partial correlation calculation.

Theorem 1

The semi-partial correlation of xi with xj given a random vector XS (= X(i,j)), ri(j|S), is equal 

to

(2.6)

Proof

By Equation (2.4), we have the following equation
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(2.7)

Then, using Equation (2.7) and Lemma 1, we have

Using Theorem 1, we can readily calculate the semi-partial correlation using several lines of 

an R code. For example, the semi-partial correlation of xi with xj given X(i,j) is the (i, j)-th 

cell of the matrix obtained in the last line of the following code.

R> cx <- cov(X)

R> dx <- solve(cx)

R> pc <- -cov2cor(dx)

R> diag(pc) <- 1

R> pc/sqrt(diag(cx))/sqrt(abs(diag(dx)-t(t(dxˆ2)/diag(dx))))

It first calculates the variance-covariance matrix of X, which is cx, and its inverse variance-

covariance matrix, which is dx. Then the semi-partial correlations are obtained using the 

partial correlations, which is pc, in the R code above. Note that when the determinant of 

variance-covariance matrix is numerically zero, the R package ppcor computes its pseudo-

inverse using the Moore-Penrose generalized matrix inverse (Penrose, 1995). However, in 

this case, no statistics and p-values are provided if the number of variables is greater 

than or equal to the sample size.

While, to our knowledge, no R packages provide the level of statistical significance for 

partial correlation coefficient, the R package ppcor includes the calculation of statistics 

and p-values of each correlation coefficient for both partial and semi-partial correlations. 

Moreover, ppcor provides users with nonparametric partial and semi-partial correlation 

coefficients based on Kendall’s and Spearman’s rank correlations.

The statistics tij|S and ti(j|S) of the partial and semi-partial correlation of xi and (with) xj given 

xS (= X(i,j)) are calculated, based on the works in Weatherburn (1968) and Sheskin (2003), 

by
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(2.8)

where N is the sample size and g is the total number of given (or controlled) variables. Using 

Equation (2.8), their p-values are calculated by

(2.9)

where Φt(·) is the cumulative density function of a Student’s t distribution with the degree of 

freedom N − 2 − g. It is known that the standard error is  (Olkin and Finn, 

1995; Stanley and Doucouliagos, 2012; Sharma, 2012).

In case of Kendall’s rank correlation, the statistics pare computed by (Abdi, 2007)

(2.10)

Using Equations (2.10), their p-values are calculated by

(2.11)

where Φ(·) is the cumulative density function of a standard normal distribution. The standard 

error is  (Abdi, 2007).

3. Examples

The R package ppcor provides users with four functions which are pcor(), 

pcor.test(), spcor(), and spcor.test(). The function pcor() (spcor()) 

calculates the partial (semi-partial) correlations of all pairs of two random variables of a 

matrix or a data frame and provides the matrices of statistics and p-values of each 

pairwise partial (semi-partial) correlation. In order to compute the pairwise partial (semi-

partial) correlation coefficient of a pair of two random variables given one or more random 

variables, pcor.test() ( spcor.test()) can be also used instead. We can see how to use 

these functions through the following examples. First the test data, y.data, need to be 

created after loading the package with the following R codes.

R> library(ppcor)

R> y.data <- data.frame(

+ hl = c(7,15,19,15,21,22,57,15,20,18),
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+ disp = c(0,0.964,0,0,0.921,0,0,1.006,0,1.011),

+ deg = c(9,2,3,4,1,3,1,3,6,1),

+ BC = c(1.78e-02,1.05e-06,1.37e-05,7.18e-03,0,0,0,4.48e-03,2.10e-06,0)

+)

This test data, y.data, consists of 10 samples from four variables, hl, disp, deg, and 

BC. This data set is available from Drummond et al. (2006) and Kim and Yi (2007). The 

original data cover the relationship between sequence and functional evolutions in yeast 

proteins. Here we look at only part of the large data for the illustrative purpose. Note that 

hl, disp, deg, and BC stand for half life, dispensability, degree, and betweenness-

centrality, respectively. Please refer to Drummond et al. (2006) and Kim and Yi (2007) for 

more details.

We can then calculate all pairwise partial correlations of each pair of two variables given 

other variables with

R> pcor(x=y.data,method=“spearman”)

Then we obtain the following output:

$estimate

Hl disp deg BC

hl 1.0000000 −0.7647345 −0.1367596 −0.7860646

disp −0.7647345 1.0000000 −0.4845966 −0.4506273

deg −0.1367596 −0.4845966 1.0000000 0.4010940

BC −0.7860646 −0.4506273 0.4010940 1.0000000

$p.value

Hl disp deg BC

hl 0.00000000 0.02708081 0.7467551 0.02071908

disp 0.02708081 0.00000000 0.2236095 0.26248897

deg 0.74675508 0.22360945 0.0000000 0.32471409

BC 0.02071908 0.26248897 0.3247141 0.00000000

$statistic

hl disp deg BC

hl 0.0000000 −2.907150 −0.3381686 −3.114899

disp −2.9071501 0.000000 −1.3569947 −1.236464

deg −0.3381686 −1.356995 0.0000000 1.072529

BC −3.1148991 −1.236464 1.0725286 0.000000

$n

[1] 10

$gp

[1] 2

Kim Page 7

Commun Stat Appl Methods. Author manuscript; available in PMC 2015 December 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



$method

[1] “spearman”

The output has six values, estimate, which is the partial correlation coefficient, p-value, 

which is the level of statistical significance, statistic, which is the test statistic for p-

value, n, which is the total number of samples, gp, which is the number of given or 

controlled variables, and method, which is the used correlation method among Pearson’s, 

Kendall’s, and Spearman’s correlation methods. In case that the users are interested in the 

partial correlation between hl and disp given deg and BC, we can compute the partial 

correlation with

R> pcor.test(x=y.data$hl,y=y.data$disp,z=y.data[,c(“deg”,“BC”)]

+, method=“spearman”)

Then we obtain the following output:

$estimate p.value statistic n gp Method

1 −0.7647345 0.02708081 −2.90715 10 2 spearman

Similarly, the semi-partial correlations can be calculated with

R> spcor(x=y.data,method=“spearman”)

Then we obtain the following output:

$estimate

hl disp deg BC

hl 1.00000000 −0.4254609 −0.04949092 −0.4558649

disp −0.59319449 1.0000000 −0.27689034 −0.2522965

deg −0.06380762 −0.2560457 1.00000000 0.2023709

BC −0.42262366 −0.1677612 0.14551866 1.0000000

$p.value

hl Disp deg BC

hl 0.0000000 0.2933025 0.9073559 0.2562889

disp 0.1211334 0.0000000 0.5067562 0.5466351

deg 0.8806850 0.5404845 0.0000000 0.6307871

BC 0.2968811 0.6912998 0.7309799 0.0000000

$statistic

hl disp deg BC

hl 0.0000000 −1.1515898 −0.1213762 −1.2545787

disp −1.8048658 0.0000000 −0.7058372 −0.6386584

deg −0.1566153 −0.6488095 0.0000000 0.5061789

BC −1.1422336 −0.4168368 0.3602815 0.0000000
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$n

[1] 10

$gp

[1] 2

$method

[1] “spearman”

The semi-partial correlation of hl with disp given deg and BC is calculated with

R> spcor.test(x=y.data$hl,y=y.data$disp,z=y.data[,c(“deg”,“BC”)]

+, method=“spearman”)

Then we obtain the following output:

estimate p.value statistic n Gp Method

1 −0.4254609 0.2933025 −1.15159 10 2 spearman

It should be noted that, if a general matrix formula for the semi-partial correlation is not 

available, users have to calculate all pairs of each variable with the function spcor.test using 

two loops. To see how fast the general matrix formula can compute the semi-partial 

correlation, we compared the computational time by generating a data matrix with the size 

of 500 × 100 (i.e., the number of variables is 100 and the number of samples 500). When the 

function spcor() used, the total amount of computation time was 0.02 second, while it took 

135.33 second when the function spcor.test() used with two loops. It demonstrates that 

the general matrix formula dramatically reduce the computational burden of the higher-order 

semi-partial correlation calculation. Note that this simulation was implemented on a desktop 

with Intel Core 2 Duo CPU 3.00 GHz.

4. Conclusions

A general matrix formula for the semi-partial correlation is derived. Lack of this general 

matrix formula has hampered implantation of the higher-order semi-partial correlation for 

high-dimensional ‘omics’ data analysis because it requires an enormous number of recursive 

calculations to obtain the correlation coefficient when using a recursive formula in Equation 

(2.2). However, using the derived matrix formula in Theorem 1, we can clearly see that the 

higher-order semi-partial correlation coefficient is calculated as simple but fast as the partial 

correlation does. The developed R package ppcor further provides users not only with a 

function to readily calculate the higher-order both partial and semi-partial correlations but 

also with statistics and p-values of the correlation coefficients.

5. Computational Details

The results in this paper were obtained using R 3.2.2 with the package ppcor. R and the 

ppcor package are available from CRAN at “http://CRAN.R-Project.org/ and in the 

Supplementary Material at CSAM homepage (http://csam.or.kr). Note that, in this latest 

version of the package R, the p-values for Pearsons and Spearmans correlations are 
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calculated based on the t-distribution and the Moore-Penrose generalized inverse matrix will 

be used when variance-covariance matrix is singular.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Graphical illustration of partial and semi-partial correlations among the three random 

variables X, Y, and Z
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