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Spatial variability in resting functional MRI (fMRI) brain 
networks has not been well studied in schizophrenia, a dis-
ease known for both neurodevelopmental and widespread 
anatomic changes. Motivated by abundant evidence of neu-
roanatomical variability from previous studies of schizo-
phrenia, we draw upon a relatively new approach called 
independent vector analysis (IVA) to assess this variability 
in resting fMRI networks. IVA is a blind-source separa-
tion algorithm, which segregates fMRI data into tempo-
rally coherent but spatially independent networks and has 
been shown to be especially good at capturing spatial vari-
ability among subjects in the extracted networks. We intro-
duce several new ways to quantify differences in variability 
of IVA-derived networks between schizophrenia patients 
(SZs  =  82) and healthy controls (HCs  =  89). Voxelwise 
amplitude analyses showed significant group differences 
in the spatial maps of auditory cortex, the basal ganglia, 
the sensorimotor network, and visual cortex. Tests for dif-
ferences (HC-SZ) in the spatial variability maps suggest, 
that at rest, SZs exhibit more activity within externally 
focused sensory and integrative network and less activity 
in the default mode network thought to be related to inter-
nal reflection. Additionally, tests for difference of variance 
between groups further emphasize that SZs exhibit greater 
network variability. These results, consistent with our pre-
diction of increased spatial variability within SZs, enhance 
our understanding of the disease and suggest that it is not 
just the amplitude of connectivity that is different in schizo-
phrenia, but also the consistency in spatial connectivity 
patterns across subjects.
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Introduction

Schizophrenia has been widely viewed as a neurodevel-
opmental disorder substantially affecting the brain struc-
ture and function during tasks and at rest.1 Despite being 
extensively studied, its etiology remains unknown.2,[a] 
Existing studies support the notion that schizophrenia is 
a heterogeneous disorder arising from a myriad of causes 
any of which can lead to similar brain disturbance. There 
exist many known causes for schizophrenia including 
environmental, genetic factors, as well as trauma, each 
possibly having different neuropsychiatric effects with 
no clear common pathology. Bleuler’s earliest concept 
of schizophrenia was also based on an assumption that 
the manifold external clinical manifestation masked an 
underlying unique neural pathology.[b] Each case accord-
ing to Bleuler revealed some significant residual symp-
toms that were common to all which lead to a similar 
diagnosis. This complex nature of the disease makes it 
challenging to characterize using a single model. This 
leads to variability within the population characterized 
as schizophrenia based not only on the etiology but also 
on, several neuropsychiatric factors.

Structural studies of schizophrenia evince a reduced 
cortical gray matter, amygdala-hippocampal and tha-
lamic volume, and enlarged lateral ventricles.3,4 These 
studies suggest that there exists a neural basis for behav-
ioral or cognitive differences within the population.5,[c] 
Additionally, functionally defined regions are inconsistent 
relative to anatomical landmarks on the cerebral cortex, 
thereby amplifying this heterogeneity issue. Literature 
strongly supports this functional variability with respect 
to anatomical landmarks in healthy population, as well as 
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in schizophrenia with equal conviction.6,[d] Many studies 
have also focused on improving spatial coregistration and 
thus functional localization or vice versa.7–9 These struc-
tural and functional variations are clearly widespread 
and likely have a complex impact on the resulting func-
tional patterns, motivating a multivariate whole-brain 
approach.

Multivariate analysis techniques such as independent 
component analysis (ICA), of functional MRI (fMRI) 
data, have been widely established as an approach to 
study the functional changes across the whole brain 
for both task and resting fMRI data. The goal of these 
models is to estimate sources (ie, networks) so that each 
source can be compared across subjects while maintain-
ing independence between the different sources.10 To our 
knowledge, there have been few studies focused on the 
spatial variability of resting networks11 and none among 
schizophrenia subjects. Given that we do expect consider-
able spatial variability, there is a need for approaches that 
can effectively incorporate this variability in conjunction 
with studies assessing this variability.

Independent vector analysis (IVA) is one such 
approach12,13,[e] that, like Group ICA (GICA), extends 
ICA to multiple datasets while retaining subject variabil-
ity. IVA, however, minimizes mutual information jointly 
across multiple datasets and hence takes the statistical 
dependence across multiple datasets (multisubject data 
in our case) into account. This dependence across sub-
jects with the statistical properties of the ICA model 
helps with the decomposition into spatially independent 
components. IVA furthermore keeps each subject dataset 
separate instead of defining a common group subspace 
as in GICA, allowing for preservation of individually 
distinctive features in the estimated sources persuading 
us to its use. The dependence across multisubject data 
also enables the matching of sources across the datasets, 
hence eliminating the permutation ambiguity if  ICA were 
performed separately on each subject’s data.

Anderson and colleagues14 presented IVA-GL where 
IVA using the Gaussian density model (IVA-G) is com-
bined with IVA using the Laplace density model (IVA-
L) to take both second-order and higher-order statistical 
dependence among multiple data sets (subjects) into 
account, denoted as IVA-GL. This model assumes super-
Gaussian distribution for the sources providing a good 
match for fMRI spatial components. IVA-GL has been 
incorporated into the GIFT toolbox (http://mialab.mrn.
org/software/gift), and this version of IVA was used in 
this study. The performance of IVA has been evaluated in 
simulations15–17 and for a small number of fMRI data sets 
in healthy individuals and those who suffered a stroke18 
to provide initial evidence that IVA captures individual 
subject variability in spatial patterns. A  recent study17 
compared the performance of GICA and IVA-GL spa-
tial maps and timecourses in the presence of spatial vari-
ability on simulated data revealing that IVA-GL performs 

better at higher levels of spatial variability. These initial 
results and studies show that IVA is an effective approach 
for source separation and especially promising for pre-
serving spatial variability across subjects.

This study focuses on evaluating spatial variation in 
IVA-based resting networks across subjects and changes 
in spatial patterns that occurred in schizophrenia patients 
(SZs) vs healthy controls (HCs). We predicted that mul-
tiple intrinsic brain networks would show increased spa-
tial variance in the schizophrenia patients. To test this 
hypothesis, we utilized a multifold analyses approach 
presenting many ways to quantify and compare this vari-
ability between groups while also identifying amplitude 
differences between groups. This includes computing the 
differences between groups in the global mean of cross-
subject variance over the brain voxels and measuring 
variance across subjects in the amplitude of each voxel.

Methods

Subject Characteristics

We analyzed anonymized data collected on 171 individu-
als (89 HCs and 82 SZs) who underwent rest fMRI acqui-
sition as part of a center of biomedical research excellence 
project (https://cobre.mrn.org). Informed consent was 
obtained according to the University of New Mexico 
Human Research Protections Office. Patient selection 
was based on diagnosis of schizophrenia or schizoaffec-
tive disorder between 18 and 65 years of age. Diagnostic 
confirmation and evaluation of comorbidities was done 
with the Structured Clinical Interview for Diagnostic and 
Statistical Manual of Mental Disorders, Fourth Edition 
(DSM-IV) axis I disorders.19 Exclusion criteria included 
a history of mental retardation, neurological disorders 
including head trauma, or of active substance dependence 
or abuse within the past year (except nicotine). A nega-
tive toxicology screen was a prerequisite for scanning. 
HCs were required to complete the Structured Clinical 
Interview for DSM-IV axis I disorders—nonpatient edi-
tion20 to rule out axis I conditions and were recruited from 
the same geographical location. The 82 SZs had an aver-
age age of 38.07 ± 14.03; 65 males and 17 females. The 89 
HCs had an average age of 37.51 ± 11.47, with 63 males 
and 26 females. There were no significant differences 
between groups in age (P = .2038) and gender (P = .7761). 
Additional information regarding demographics, patient 
recruitement, and summary of symptom and cognitive 
scores is provided in the supplementary material.

MR Data Acquisition

All participants were scanned at a single site at rest and 
instructed to keep their eyes open during the scan and 
stare passively at a central fixation cross. Resting state 
scans with 151 volumes were collected on a single 3-Tesla 
Siemens Trio scanner with a 12-channel radio frequency 
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coil for each participant. Each volume consisted of T2
* 

weighted functional images acquired using a gradient-
echo EPI sequence with TR/TE = 2000/29 ms, flip angle 
of 75 degree, 3.5 mm slice thickness and 1.05 mm slice 
gap, a field of view 240 mm, a matrix size of 64 × 64, and 
a voxel size of 3.75 × 3.75 × 4.55mm.

Preprocessing

Data were preprocessed using an automated statistical 
parametric mapping (SPM)-based preprocessing pipeline 
within a neuroinformatics system developed at The Mind 
Research Network21,[f] (https://coins.mrn.org). Images 
were realigned using INRIalign which is an extension to 
SPM’s realignment toolbox. Slice-time correction was 
applied using the middle slice as the reference frame. 
Data were then spatially normalized to standard MNI 
space and resampled to 3 × 3  × 3mm voxels using the 
nonlinear registration implemented in the SPM toolbox. 
Finally, data were smoothed using 10 mm full width half  
maximum Gaussian kernel.

Data Analysis

The IVA models the measured BOLD fMRI signal as a 
linear combination of mixing matrix Ai and the indepen-
dent activation sources Si similar to that in GICA.22,[g]

			   X A Si i i= * � (1)

The main difference between the 2 algorithms lies in the 
fact that the mixing matrix A is shared by all the subjects 
in GICA while each subject i has an individual mixing 

matrix Ai in IVA. IVA starts with the same assumption 
that the individual sources Si are spatially independent 
within each data set (each subject’s data) and additionally 
considers statistical dependence of the corresponding 
sources across other subjects. The demixing matrices Wi 
are estimated by minimizing mutual information among 
source component vectors.13,[h] We can then form the 
source estimates Ui of  the original sources Si as

		  U W Xi i i= * � (2)

The GIFT toolbox (http://mialab.mrn.org/software/gift/) 
was used to perform IVA-GL and GICA on the pre-
processed fMRI data that are of the form (T [time] × V 
[voxels]; figure 1). A relatively high model order (C = 75) 
was used for analysis since this order has previously been 
shown23 to yield a preferable decomposition into func-
tional components.

Nonartifactual group components were identified using 
the ratio of the integral of spectral power below 0.10 Hz 
to the integral of power between 0.15 and 0.25 Hz as a 
factor for component selection23 (higher the ratio larger 
the noise in the component) along with visual inspection 
and were the only components used for all other analy-
ses. The presence of meaningful components in IVA-GL 
sources was done through correlation. Vectorized voxel 
values of the z-scored t-test-based statistical maps of 
IVA-GL and GICA were used for this. This post hoc com-
parison was done since GICA of fMRI data for evalua-
tion of clinical populations has been extensively applied 
by our group and many others.10,24–27 Further statistical 
analyses were done using individual subject spatial maps 

Fig. 1.  Flowchart representing the main steps in the independent vector analysis (IVA)-GL algorithm implementation and an illustration 
of the statistical tests performed.
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(which were normalized via z-scoring for each subject).22 
Each subject’s component map was masked using a union 
mask between the IVA-GL and GICA t-test-based statis-
tical maps at a z-threshold of 2. Additional description 
of the masking process is presented in the supplementary 
material.

Statistical Tests

A detailed description of all the statistical tests for evalu-
ating spatial variability is as follows (figure 1).

(1)	 Test for voxelwise difference in group mean (cluster 
level t test): Voxelwise cluster-level 2 sample t tests 
were performed on IVA-GL components to evaluate, 
between group, weighted amplitude differences in the 
z-scaled maps (HCs–SZs) which were corrected for 
multiple comparisons across voxels using family wise 
error (FWE) correction. We speculate that there will 
be functional networks with significant differences 
in the mean of the weighted amplitudes between 
HCs and SZs. At the voxel of maximum difference, 
a histogram of the amplitude values across subjects 
(separate for each group SZs and HCs) was plotted 
for each component with statistically significant dif-
ferences with at least one cluster surviving correction. 
This was done predominantly to exhibit variance dif-
ferences in a case where there are meaningful mean 
differences.

(2)	 Voxelwise difference in variance of groups (no test): 
Voxelwise variance maps were calculated for each 
group (HCs and SZs) for each component maps for 
both IVA-GL and GICA to visually estimate the 
variance captured at each voxel across each group. 
Further ANOVA measures was computed only on 
IVA-GL components.

(3)	 Test for difference in mean of variance maps (non-
parametric t test between variance map voxels of 
each group): A nonparametric test to identify global 
differences between the variance maps of SZs and 
HCs (calculated in B) was done for each component. 
A  nonparametric test was performed since the dis-
tribution of variance among subjects was found to 
be nonnormal across voxels. We predict that the SZs 
variance maps will have a significantly greater mean 
as compared with that of the HCs variance map. 
This would strengthen our premise that there exists 
a greater intersubject variability spatially in SZs than 
in HCs.

(4)	 Test for voxelwise difference of variance between 
groups (voxelwise F test): We performed the differ-
ence of variance F test (voxelwise) on each component 
to distinctly identify the group encompassing greater 
variability across subjects. The F test assumes a nor-
mal distribution of the 2 sample population being 
compared. The sample populations submitted to 
the F test here are the weighted (z-scored) amplitude 

values at a given voxel across all subjects specific to 
either schizophrenia group or healthy controls. The 
amplitude of a random sample of voxels should thus 
have a normal distribution, and the voxels identified 
in statistical test A are also random. These F-test P 
values were corrected for multiple comparisons using 
false discovery rate (FDR) correction. Based on our 
theories put forward henceforth, we expect that the 
variance of the weighted (z-scored) amplitudes at any 
given voxel would favor the SZs.

(5)	 Simulations: A  simple simulation was implemented 
to test the effect of smoothing 2 groups of data (one 
with small and one with large variability in the x-axis 
translation of the sources) with different kernel sizes. 
Post hoc analysis on the IVA component sources 
to check for across subject variability was done. 
A detailed description of the simulated data is pre-
sented in the supplementary material.

Results

Based on the correlation between vectorized group-level 
GICA components and group-averaged IVA components 
(|r| ≥ 0.6), our results showed that source separation in 
IVA was similar to GICA and mostly consistent across 
subjects, which was visually corroborated.28 Twenty-seven 
component spatial maps were ascertained to be nonarti-
factual. A few IVA-GL components had multiple GICA 
component correlations of which only the first instance 
of correlations was accepted. A detailed description of 
the component selection process through correlations is 
presented in the supplementary material along with spa-
tial maps of the 27 components.

(1)	 Test for voxelwise difference in group mean (cluster 
level t test): Four of the IVA-GL components showed 
statistically significant cluster-level group differ-
ences (P < .01 significance, corrected for multiple 
comparisons using FWE, HCs > SZs) after mask-
ing. The t-scored maps for 2 sample t test of these 4 
components, shown in figure 2A, included networks 
in bilateral temporal (auditory; component number 
[CN] 19), sensorimotor regions (CN 69), basal gan-
glia (CN 15), and visual regions (CN 26). Table  1 
shows the P values of 2 sample t test on these 4 com-
ponents for IVA-GL after FWE correction along 
with the Brodmann areas encompassed by each com-
ponent. The differences in weighted amplitudes of 
these components substantiate findings from previ-
ous studies and further strengthen an implication of 
these neuroanatomical areas in schizophrenia.29–31 We 
also plotted the amplitude at the voxel of maximum 
difference for each group for each of these 4 com-
ponents to ascertain that there existed differences in 
the observed variance of the groups at these voxels. 
Figure 2B shows histograms of voxel amplitudes for 
each group (SZs and HCs) and clearly shows that 
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there exist variance differences even at voxels with 
mean differences.

(2)	 Test for voxelwise difference in variance (no test): 
Figure  3 presents the voxelwise variance maps for 
one representative component, the bilateral tempo-
ral component for HCs and SZs along with the dif-
ference map between HCs and SZs for IVA-GL and 
GICA. Simple visual inspection of figure  3 points 
to evidently larger cross-subject voxelwise variance 
in component maps estimated by IVA-GL vs. those 
estimated by GICA. Also, for this component (as it is 
in most the other components), the SZs have greater 
variance than the HCs. As expected, IVA-GL cap-
tured more variability in the spatial maps than did 
GICA.

(3)	 Test for difference in mean of variance maps of 
groups (nonparametric t test): Nonparametric tests 
for difference in the mean of the variance maps for 
HCs and SZs showed that most of the 27 IVA-GL 
components show a significant global difference in 
the mean of variance maps of HCs and SZs. Figure 4 
shows negative logarithm of P values for components 
with a significant difference. Components with HCs 
> SZs are represented as blue dots and those with 
SZs > HCs as red dots. A  greater variability exists 
in SZs in sensory networks, whereas there is greater 
variability in HCs primarily in default mode network 
(DMN) specifically including the precuneus, poste-
rior cingulate and parts of the parietal cortex and 
the medial temporal lobe along with some parts of 

Fig. 2.  (A) t maps of IVA components with statistically significant difference and corresponding mask used. (B) Histogram of amplitude 
values at the voxel of maximum difference (between groups) for each group both IVA-GL and group independent-component analysis 
(GICA) for each of the 4 components with significant difference between groups as featured in figure 2A and table 1. In the histograms, 
the red-colored plots represent histograms for healthy controls (HCs), and the blue-colored plots represent histograms for schizophrenia 
patients (SZs). The 2 sample t-test P values and the F-test P values for each of the 4 components at the voxel of maximum difference, 
respectively, are as follows: Bilateral temporal: t-test P value = .00022 (HC > SZ), F-test P value = .00009 (SZ > HC); Sensorimotor: 
t-test P value = 3.85 × 10−6 (HC > SZ), F-test P value = .457; Basal Ganglia: t-test P value = .00059 (HC > SZ), F-test P value = .3015; 
and Visual: t-test P value = 1.105 × 10−5 (HC > SZ), F-test P value = .1322.
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the frontal lobe. However, it is interesting to note that 
the results also illustrate that different parts of the 
same network behave somewhat differently from one 
another. For example, components 8 and 26 represent 
part of DMN in the medial prefrontal cortex, but the 
directionality of difference in both is different.

(4)	 Test for voxelwise difference of variance between 
groups (voxelwise F test): Our results validate the 
hypothesis that SZs have significantly greater vari-
ability than HCs in 19 components with at least 30 
of the within-mask voxels surviving FDR correction. 
The direction was found to be SZs > HCs by looking 
at the variance values for each group in these vox-
els. These results however provide us with a different 
facet of understanding variance differences between 
groups compared with the results presented in C 
above. In conjunction with other results presented, 
the interaction of groups in measures of spatial 
variance seems to provide significant insight into a 
unique dimension of understanding the disorder.

(5)	 Simulations: It was observed through simulations 
that a basic translation can result in variability in 
the spatial maps of groups. The group differences in 

intersubject variability were relatively well preserved 
in the range of smoothing parameters tested for dif-
ferent types of sources. We also confirmed expecta-
tions that a smaller smoothing kernel increases in the 
variance captured in the dataset.

Discussion

Networks extracted from resting fMRI data by blind-
source separation techniques such as GICA present spa-
tial and temporal sources representing brain areas that are 
shown to correlate with the presence of schizophrenia and 
other brain disorders.32 In this study, we used the IVA-GL 
as an approach to estimate subject-level functional network 
spatial maps (similar to the ones from GICA) that enable 
us to focus on predictions regarding subject-level spatial 
variability. We were able to examine differences in identi-
fied functional networks in SZs compared to HCs and our 
detection of significant voxelwise differences in weighted 
amplitude (see figure 2, table 1, and test A) in components 
representing basal ganglia, bilateral temporal, sensorimo-
tor, and visual networks provides a new perspective on the 
implication of these regions in schizophrenia from earlier 

Fig. 3.  Variance maps for patients and controls as well as the difference in the variance maps (HCs − SZs) for the bilateral temporal 
component for both IVA-GL and GICA.

Table 1.  FWE-Corrected P values for IVA-GL Voxelwise Group Differences in the Mean

Component Brodmann Areas
P values (FWE- 
Corrected) IVA-GL

Coordinates of 
Peak Foci

Size of Cluster 
(No. of Voxels)

Bilateral Temporal 
Component 19

Superior temporal gyrus (BA: 13, 22, 41) .042 (63, −6, −6) 542
Transverse temporal gyrus (BA: 41, 42)
Insula (BA: 13, 40)

Sensorimotor Network 
Component 69

Postcentral gyrus (BA: 1, 2, 3, 5, 40) .016 (−36, −24, 48) 724
Inferior parietal lobule (BA: 40)
Precentral gyrus (BA: 4, 6)

Basal Ganglia 
Component 15

Lentiform nucleus .000 (−24, −18, −6) 1329
Caudate
Claustrum

Visual Network 
Component 26

Cuneus (BA: 17, 18, 23, 30) .004 (0, −84, 6) 936
Lingual gyrus (BA: 17, 18, 19)

Note: FEW, family wise error; IVA-GL, independent vector analysis Gaussian/Laplace density model.
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studies.29–31,33 It is noteworthy that no significant voxelwise 
weighting differences were found in the highly implicated 
DMN, which is potentially related to the subtle spatial but 
significant temporal/spectral changes reported in previ-
ous work.34 The histograms in figure 2B corroborate our 
intuitive supposition that SZ functional network maps 
would be more internally variable than those of HCs spa-
tial maps, contributing to differences between groups. We 
were also able to identify significant group differences in 
spatial variability of SZs and HCs in most of the nonarti-
factual components (test B, C, and D). It is interesting that 
using a test for difference in the mean of the across-subject 
variance values; test C exhibits that the components rep-
resenting the DMN with a few frontal areas show greater 
variance in HCs whereas the sensory components includ-
ing auditory, sensorimotor, basal ganglia, and the visual 
network show greater variance in SZs based on a global 
measure of variance difference between the groups (fig-
ure 4; test C). Concurrently, it has been shown that dif-
ferent parts of the same network may behave differently 
while considering mean differences in the variance maps 
between groups. This highlights that variance measures 
present us with previously unidentified differences within 
a given network. On the other hand, test D presents that 
at a voxel level, the SZs encompass a greater variability at 
the group level than the HCs. These tests quantify differ-
ent measures of variance differences between groups and 
thus present results that are diverse but complementary to 
one another.

Schizophrenia is known to be a complex disorder that 
is expressed heterogeneously within the population.35,36 
Although many theories exist on the pathological and 
molecular processes underlying the disease, no single 
theory has yet emerged as the consensus explanation. 
Based on empirical evidence from previous fMRI studies, 
some have proposed a disruption in cognitive circuitry 
between the prefrontal regions, the thalamic nuclei, and 
the cerebellum.35,37 It is essential to acknowledge that this 

disruption in brain circuitry however does not manifest 
consistently in the diseased population, which may be 
a factor introducing variability within the population. 
Furthermore, one might expect that the reported variabil-
ity in disease etiology, when combined with spatial vari-
ability in the functional activation patterns in the brain, 
results in increased variability in networks. This extensive 
symptomatic and behavioral variability among schizo-
phrenic patients makes identifying loci of variability in 
brain imaging data both interesting and important.5,38,39

The results obtained using different measures of spa-
tial variance are consistent with the above described the-
ories, which predict cognitive dysregulation that might 
be expressed variably within the population. The results 
motivate us to look deeper into these divergent effects. 
Nevertheless, we would be remiss to not consider the 
limitations the field is dealing with while presenting such 
analyses that include but are not limited to the smoothing 
kernel size. A change in the size of the smoothing kernel 
will affect the variance captured in the data and in turn the 
statistical significance of the differences observed, which 
was verified through the simulations presented. Given 
that a larger smoothing kernel results in less resolution, 
decreasing the smoothing kernel would in general tend to 
increase the variance captured in the data. The particular 
smoothing kernel size used for this study had been used 
previously in GICA-based analysis of this data40 where 
it provided robust results,41,[i–k] and this consistency with 
previous studies allowed us to make reasonable compari-
sons with the GICA spatial maps.

It is also noteworthy that, until now, the established 
multivariate analysis techniques (including IVA) have not 
been extensively applied to evaluating the group effects 
on spatial variability in network spatial maps. It is also 
important to consider that the factors permitting greater 
variance retention in IVA-GL compared with GICA are 
methodological. IVA-GL requires a single PCA reduction 
compared with 2 PCA steps in GICA. Combined with 

Fig. 4.  P values for nonparametric test for difference in variance maps of HCs and SZs for all components that have a significant 
difference P < .05 which is the same as −log10 (P) > 1.301.
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the fact that IVA-GL computes components separately 
for each subject, the retained variability is compounded. 
In spite of the evident advantages of spatial variability to 
bringing out differences between groups, it is also impor-
tant to continue to study the relationship between the 
amount of spatial and temporal variability captured, as 
well as the implications of the algorithm use on the spe-
cific questions of interest. Currently, it appears that IVA 
has strength in capturing spatial variability in a group 
model, whereas it is known that GICA has strength in 
capturing temporal variability.28 It is possible that addi-
tional approaches will be developed, which combine 
these strengths (eg, the use of spatially constrained ICA 
as a back-reconstruction step for GICA is quite promis-
ing in this regard42,[l]). In this work, our primary focus was 
the spatial variability of these networks. The temporal 
aspects are of obvious interest and will be investigated in 
the future work.

In summary, our analyses focused on the within- and 
across-population spatial stability of estimated func-
tional networks in SZs and HCs, shedding new light on 
how schizophrenia, a disease with widespread effects 
on cognitive and emotional functioning, maps onto the 
spatial features of brain function. The networks exhibit-
ing the greatest differences in spatial variability, such as 
the sensorimotor network, bilateral temporal network, 
and so on, interestingly, have been previously impli-
cated in other ways in schizophrenia, though not spe-
cifically with respect to spatial variation in resting fMRI 
spatial maps.29,[m,n] These results are consistent with but 
at the same time significantly extend results of previ-
ous studies of schizophrenia using multivariate analyses 
techniques.33,[o] In this case, the retention of individu-
ally distinctive features appears to sharpen our ability to 
detect group differences in most of the implicated net-
works. When pooled with our observation of a division 
between the DMN and the rest of the networks involved 
in the subject-level variance as presented in test C and 
figure 4, this is a novel finding. It points us to additional 
studies of these specific networks in order to better under-
stand the underlying neurobiological cause of the spatial 
variability in the patients.

Moreover, in terms of patient selection, this study only 
incorporated a small subset of the population with schizo-
phrenia diagnoses. This points us to further and more 
rigorous evaluations of the effect of heterogeneous mani-
festations of the condition on network spatial variability. 
Quantifying the spatial distribution of intersubject vari-
ability offers potentially novel insights into functional loci 
of influencing differential symptomatic presentations of 
schizophrenia. A more detailed understanding of spatial 
differences in patient functional networks may ultimately 
lead to a better understanding of schizophrenia itself  by 
means of pointing us to an improved model of the dis-
ease, as well as likely identifying areas possibly related to 
variability in behavior.
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