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Abstract
The resemblance of lipid membrane models to physiological membranes determines how

well molecular dynamics (MD) simulations imitate the dynamic behavior of cell membranes

and membrane proteins. Physiological lipid membranes are composed of multiple types of

phospholipids, and the leaflet compositions are generally asymmetric. Here we describe an

approach for self-assembly of a Coarse-Grained (CG) membrane model with physiological

composition and leaflet asymmetry using the MARTINI force field. An initial set-up of two

boxes with different types of lipids according to the leaflet asymmetry of mammalian cell

membranes stacked with 0.5 nm overlap, reliably resulted in the self-assembly of bilayer

membranes with leaflet asymmetry resembling that of physiological mammalian cell mem-

branes. Self-assembly in the presence of a fragment of the plasma membrane protein syn-

taxin 1A led to spontaneous specific positioning of phosphatidylionositol(4,5)bisphosphate

at a positively charged stretch of syntaxin consistent with experimental data. An analogous

approach choosing an initial set-up with two concentric shells filled with different lipid types

results in successful assembly of a spherical vesicle with asymmetric leaflet composition.

Self-assembly of the vesicle in the presence of the synaptic vesicle protein synaptobrevin 2

revealed the correct position of the synaptobrevin transmembrane domain. This is the first

CG MDmethod to form a membrane with physiological lipid composition as well as leaflet

asymmetry by self-assembly and will enable unbiased studies of the incorporation and

dynamics of membrane proteins in more realistic CG membrane models.
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Introduction
Coarse-Grained (CG) molecular dynamics (MD) simulations have become an important tool to
study the insertion and dynamic behavior of membrane proteins in lipid membranes. Generally,
the membrane models used in MD simulations to study membrane properties [1, 2], lipid rafts
[3], membrane fusion [4], protein insertions and lipid-protein interactions [5] consist of only
one- or two-types of lipids. The lipid composition should be considered carefully because it
determines the physical properties, such as thickness, area per lipid (APL), bending modulus,
and curvature of the membrane [1, 2]. In addition, lipid-protein interactions that are important
determinants of the dynamic behavior of membrane proteins within the membrane critically
depend on the lipid types and their localization in the membrane. Thus, it is important to choose
an accurate membrane model in membrane-proteins simulations to derive relevant conclusions.

Leaflet asymmetry of synaptic vesicle membrane
Synaptic vesicles (SV), that play a key role in synaptic transmission, incorporate numerous dif-
ferent proteins in their membrane, including fusion-mediating SNARE proteins, transporters
and channels [6]. A realistic CG model of SV membranes would provide opportunities to
study SV membrane proteins in MD simulations that provide sub-nm and femto-sec resolution
over extended periods of time, towards a better understanding of the function of trafficking
proteins, transporters and channels. Such a model should, first of all, be composed of the types
of lipid as determined experimentally in SV membranes [6], which are from most to least
abundant: phosphatidylethanolamine (PE), phosphatidycholine (PC), phosphatidylserine (PS),
sphingomyelin (SM), and other lipids (< 4%) including phosphatidylinositol and hexosylcera-
mide. In addition to phospholipids, cholesterol is highly abundant in SV membranes and
affects membrane permeability, stiffness, and thickness [1, 2].

Even though lipids in membranes are in a fluid-like state and exhibit rapid lateral diffusion,
the lipid flipping between the opposite leaflets is mediated in a controlled fashion [7, 8], giving
cells control over the lipid compositions of each leaflet separately. The asymmetric composi-
tion of plasma membrane was determined experimentally [9, 10], and its importance in many
cellular functions was studied [11–13]. Since the SV is a recycling organelle, its leaflet asymme-
try is expected to reflect that of plasma membranes with the cytoplasmic (CP) leaflet mainly
composed of PE and PS and the extracellular (or intravesicular) leaflet mainly composed of PC
and SM [10, 14]. Interestingly, cholesterol was also reported to maintain a somewhat asymmet-
ric distribution, preferably located in the CP leaflet [15–17] of plasma membranes, despite of
its rapid flipping rate [18]. We chose a mixture of Palmitoyl-Oleoyl-PC (POPC), -PE (POPE),
-PS (POPS), palmitoyl-SM (PSM) and cholesterol [3, 19, 20] in ratios to approximate the
major components of SV lipid membranes in a CG-MD model.

Self-assembly of membrane and membrane-protein
Recently, to imitate the complexity and asymmetry of membranes, several CGmembrane mod-
els have been developed. These include, for example, a model of a generalized plasma membrane
[21], models of thylakoid membranes from cyanobacteria and higher plants [22], models of stra-
tum corneum [23, 24] and red blood cell (RBC) plasma membrane [25]. The building of an
asymmetric membrane model is a challenge due to the difficulty in assigning the number of lip-
ids in each leaflet of the asymmetric bilayer. In these previous studies the initial configurations
of membranes were built either by simply replacing a fraction of the lipids in a single component
membrane by the lipids of choice, either keeping the number of lipids in each leaflet of the mem-
brane constant or choosing the number of different lipid types in each leaflet based on a prior
estimation of APL for the different lipid types. Nearly all of the procedures currently available in
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literature, such as CHARMM-GUI [26], MemGen [27], INSANE (INSert membrANE) CG
building tool [28]-to list a few; depend upon a priori assumption of the APL to choose the num-
ber of lipids in each leaflet. It is well known that the APL varies considerably in lipid mixtures,
and thus symmetric bilayer simulations with various lipid mixtures are usually performed to
determine the number of lipids required for the asymmetric bilayer leaflets. Therefore, there is a
need for a method to generate asymmetric bilayers by self-assembly, which has the advantage of
rapid, unbiased membrane formation independent of a priori APL assumptions.

Spontaneous formation or self-assembly of membranes is one of the preferred methods to
generate lipid bilayers in MD simulations [29], because it is largely unbiased and allows the sys-
tem to find its free energy minimum. Such self-assembly simulations typically start from a sim-
ulation box of lipids randomly positioned and mixed with water. During the simulation, a
spontaneous formation of a membrane occurs driven by hydrophobic effects of lipids in an
aqueous environment [30], resulting in a symmetric membrane (Fig 1A). The self-assembly of
membranes can be applied to membrane-protein simulations by inserting the protein in the
initial set-up of the simulation box (before self-assembly), allowing the molecular dynamics
simulation to reveal the position of the protein in the self-assembled proteolipid membrane.
This method accurately predicts the protein position in the membrane [29, 31], but has so far
only been applicable for membranes with symmetric leaflets. In contrast, protein insertion into
a pre-assembled membrane requires an ad-hoc guess for its position that may not be near the
energy minimum. The simulation may correct the position but this could take a long time if
the protein is trapped in an undesired local energy minimum. Here we describe a simulation
method to form a membrane with asymmetric lipid distributions in the two leaflets by self-
assembly from an asymmetric initial set-up where the lipid mixtures desired for the two differ-
ent leaflets are separated (Fig 1B). This method extends the study of protein insertion by self-
assembly simulations to membranes with asymmetric leaflets.

Results
To determine if any leaflet asymmetry is naturally produced in a mixture of different types of
lipids as a result of their properties and their interactions with each other and the surrounding
water molecules, initial simulations were performed using a conventional set-up with ran-
domly mixed lipids (symmetric composition). As shown in Fig 1A, a bilayer formed during the
simulation (200 ns) by self-assembly. However, as expected, the lipid composition in the two
leaflets did not exhibit any significant asymmetry.

Self-assembly of asymmetric membranes
In order to generate an asymmetric membrane, we focused on the initial arrangement of lipids
in the simulation box, prior to the simulation so that the self-assembly may result in an

Fig 1. Methodology of membrane self-assembly. (A) The self-assembly of evenly mixed lipids result in a
membrane with symmetric leaflet. (B) two stacked boxes filled with different lipids for each intravesicular (IV)
and cytoplasmic (CP) leaflet self-assembles in an asymmetric membrane. (C) The same method can be used
in simulations of membrane-protein insertion by including the membrane protein in the initial set-up the self-
assembly. The transmembrane domain (in purple) of the protein aligns itself with the hydrophobic core of the
membrane.

doi:10.1371/journal.pone.0144814.g001
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asymmetric membrane. To this effect, two layers of randomly distributed lipids were placed on
top of each other. The compositions of the top, cytoplasmic (CP), and the bottom, intravesicu-
lar (IV) leaflets were based on the published lipid composition of synaptic vesicles [6] and leaf-
let asymmetry of neuronal membranes [10]. The ratio of different lipids inserted into the
simulation box resembled the physiological ratio to the best approximation possible (Table 1).

When these two lipid boxes were stacked directly on top of each other in a larger simulation
box (Fig 1B, blue and red boxes) followed by addition of water and cations as required to com-
pensate the negative net charge introduced by PS lipids, the self-assembly of a single bilayer fre-
quently failed. Instead, the simulations could result in formation of two separate membranes
(Fig 2A) or trapped water bubbles inside the membrane. These outcomes were due to the
reduced density of lipids and increased density of water in the contact zone between the CP lip-
ids and the IV lipids at the beginning of the simulation, which is caused by the way the lipid
insertion of GROMACS worked. Since the procedure does not allow any molecules to extend
beyond the edges of their box, it limits the orientation of lipids at the edges, thus reducing the
density of lipids at the boundary of two boxes. During the water insertion, this boundary with
fewer lipids was filled with increased density of water molecules compared to the center of
either CP or IV boxes. To avoid the separation of CP and IV lipids during self-assembly, the
CP and IV lipid boxes were stacked into the larger simulation box with a 0.5 nm overlap (Fig
2B). With this method, the lipid density in the contact zone was increased and self-assembly of
asymmetric membrane was routinely successful.

Table 1. Lipid composition of synaptic vesicle.

Lipids % Physiological from [6] % Membrane model Number of molecules

PSM(PPCS) 7.4 7.4 36

PC(POPC) 36.1 36.8 180

PS(POPS) 12.3 12.9 63

PE(POPE) 41.9 42.9 210

CHOL 81.0 81.8 400

Numbers are in percentage of each phospholipid over the total number of phospholipids.

doi:10.1371/journal.pone.0144814.t001

Fig 2. Overlapping of IV and CP lipids that self-assemble to an asymmetric membrane. IV lipids are
mainly consisted of POPC and PPCS, and CP lipids are consisted of POPE and POPS. (A) The self-
assembly with 0 nm overlap, in between IV and CP lipid boxes, separates into two membranes. The water
molecules inserted (invisible) in between the gap of IV and CP prevents two boxes of lipids aggregating into a
single membrane. But (B) in 0.5 nm overlapping, the center of IV + CP boxes is dense in lipids which prevents
excessive water insertion leading to an asymmetric membrane with IV and CP leaflet. In both type of
simulations the spontaneous formation occurred in 5 ns.

doi:10.1371/journal.pone.0144814.g002
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Starting from two different random distributions of lipids, five self-assembly simulations
were carried out for each initial configuration. All simulations resulted in successful formation
of a planar bilayer, with asymmetric lipid distribution that was sustained during the remainder
of the simulation time. During self-assembly, some lipids from the IV box ended up in the CP
leaflet and some from the CP box in the IV leaflet. This limited mixing is advantageous because
in a physiological membrane the lipid leaflet asymmetry is not 100%, rather there exists a
strong preference for certain lipids to locate to a particular leaflet. For example, in neuronal
membranes 90% of sphingomyelin is located in the extracellular leaflet and 10% on the cyto-
plasmic leaflet) [10]. When all PPCS molecules were initially placed in the IV box, 82% of these
ended up in the IV leaflet after self-assembly. The asymmetry of the self-assembled membranes
closely resembles the physiological values (Table 2).

In addition to the major phospholipids PC, PS, PE, and sphingomyelin, synaptic vesicle
membranes have a high cholesterol content. Cholesterol was therefore also included in the sim-
ulations in a cholesterol:lipid ratio taken from [6]. Inspired by previous reports on asymmetric
cholesterol distribution in plasma membranes [15–17], cholesterol was distributed asymmetri-
cally in the CP and IV boxes at the start of the simulation. However, the asymmetry of choles-
terol was not preserved but equilibrated quickly during self-assembly to similar numbers in the
two leaflets of the bilayer, with some cholesterol molecules found in the membrane center, as
expected from previous reports on rapid flipping rates for cholesterol [18]. It therefore appears
that asymmetric cholesterol distributions between the leaflets of a cell membrane must be gen-
erated and maintained by an active cellular mechanism.

Physical properties of asymmetric membrane
To ascertain that the self-assembly simulations indeed led to proper bilayer structures, we first
analyzed self-assembly simulations without cholesterol. The stability analysis was done based
on visual inspection, and evolution of the system’s potential energy (Fig 3A) and of
box dimension along x-direction (Fig 3B), which showed that the system is well equilibrated
within 50 ns. The density profiles of different lipid moieties and water relative to membrane
center along the membrane normal show the expected distributions (Fig 3C).

For independent comparison, two symmetric bilayers were also generated based on the
upper (IV symmetric) or lower leaflet (CP symmetric) compositions as resulting from self-
assembly of the asymmetric membrane using the INSANE method (INSert membrANE) CG
building tool [28] and equilibrated for 500 ns. The calculated APL values for the self-assembled
bilayer are 0.66 nm2 (IV) and 0.64 nm2 (CP), considering number of lipids in either leaflets
separately. The IV symmetric bilayer has an APL of 0.66 nm2 while the CP symmetric bilayer,
highly enriched in PE and PS lipids, shows an APL of 0.64 nm2. For further comparison, the
second-rank lipid order parameter was also calculated for the different systems according to

Table 2. Lipid ratios of leaflet asymmetry in bilayer.

Lipids Physiological from [12] Asymmetric (0 ns) Asymmetric (200ns) Without Cholesterol (200 ns) Symmetric (200 ns)

PSM(PPCS) 90 100 81.7 ± 3.7 75.9 ± 8.5 50.9 ± 5.8

PC(POPC) 89 100 78.7 ± 2.1 72.4 ± 3.6 49.1 ± 2.6

PS(POPS) 4 0 38.4 ± 4.4 32.3 ± 10.2 60.8 ± 5.1

PE(POPE) 15 0 32.2 ± 2.0 28.7 ± 4.8 43.7 ± 2.0

CHOL 36 46.2 ± 1.9 - 52.2 ± 1.1

Numbers are in percentage of each lipid in IV over its total number in the bilayer (IV+CP).

doi:10.1371/journal.pone.0144814.t002
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, where θ is angle between the bond vector of two consecutive beads and the

bilayer normal. Fig 3D shows the lipid order parameters of phospholipids in the asymmetric
and the IV symmetric bilayers. The lipid order parameter for the phospholipids in the CP sym-
metric membrane (not shown) was identical to that in IV symmetric bilayer. The good agree-
ment between the properties of asymmetric (Table 3) and symmetric bilayers indicates that the
self-assembly simulations lead to correct bilayer structures.

Next, we analyzed the properties of asymmetric membranes in the presence of cholesterol
and compared them to those of self-assembled symmetric bilayers. Fig 4 shows a comparison
of lipid compositions in the two leaflets of membranes formed by self-assembly starting from
either symmetric (Fig 4A) or asymmetric (Fig 4B) lipid distributions at the end of 200 ns simu-
lations. Starting from symmetric lipid distributions, the lipid head group count revealed a sym-
metric distribution of all types of lipids and cholesterol between the two leaflets (Table 2, under

Fig 3. Structural characteristics of the cholesterol free membranes. (A) Potential energy profile over the simulation length for the asymmetric bilayer. (B)
Box dimension, along x-axis, over time for asymmetric membrane (black) and symmetric membranes (see text) (IV-green, CP-red). (C) Partial density
profiles of water (black) and various lipid moieties (HG—head group in red, PO4 in green, GL—glycerol backbone in blue, hydrophobic lipid tails in pink and
terminal tail bead in brown) of the asymmetric bilayer along its normal (z-axis). The bilayer center is located at 0 nm. (D) Second-rank lipid order parameter for
consecutive bonds of various lipids with respect to the bilayer normal. Data is plotted for all bonds involving headgroup (HG), phosphate (PO4), glycerol
moieties (GL1, GL2) and the palmitoyl tail of the lipids for the asymmetric (upper panel) and IV symmetric (lower panel) bilayers.

doi:10.1371/journal.pone.0144814.g003
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“Symmetric at 200ns”), as expected. For asymmetric starting conditions, PPCS and POPC were
mostly found in the IV leaflet and POPS and POPE were mostly found in the CP leaflet
(Table 2, Under “Asymmetric at 200ns”). Cholesterol was evenly distributed between CP and
IV leaflets as described previously. The leaflet asymmetry is also evident from analysis of the
lipid head group densities averaged over the last 50 ns of simulation time in the asymmetric
membrane (Fig 4C). The leaflet asymmetry of the different lipids, was unchanged when choles-
terol was omitted in the simulation (Table 2, “Without cholesterol at 200ns”).

The bilayer thickness and APL were not significantly different between symmetric and
asymmetric membranes of the same overall composition, with a thickness of 4.5 nm and APL
of 0.8 nm2. However, these values were markedly different from those of DPPC membranes,
which had 4.0 nm thickness and 0.64 nm2 APL. The difference in APL is entirely due to the
presence of cholesterol as is evident from results obtained with SV lipids in the absence of cho-
lesterol, with an APL of 0.65 nm2. In contrast, the bilayer thickness without cholesterol (4.3
nm) was intermediate between that of the DPPC membrane (4.0 nm) and that of the SV lipid
membrane including cholesterol (4.5 nm) (Table 3), indicating that cholesterol produces a
moderate increase in membrane thickness. Further, the ordering effect induced by the presence
of cholesterol in membranes is also evident from a higher value of the lipid order parameter
compared to cholesterol free membrane (Table 3). Next, we calculated the lateral diffusion
coefficient of phospholipids from last 500 ns of one of the representative simulations that was
extended to 1μs. Lipid diffusion was calculated using the built-in g_msd utility of GROMACS.
The lateral diffusion coefficient in the asymmetric membrane with cholesterol was ~2.5 x 10−7

cm2 s-1. This is in excellent agreement with a previous observation of 2.6 x 10−7 cm2 s-1 [32].
The lipid diffusion coefficient in absence of cholesterol is roughly 3-fold higher.

Self-assembly of asymmetric vesicle membrane
Synaptic vesicles are highly curved with a typical mean diameter of 35–40 nm [33]. For self-
assembly of such a vesicle, simulations were started from a configuration with two concentric
shells (Fig 5A, left). The inner shell containing 720 PPCS, 3600 POPC and 2880 CHOL mole-
cules (IV lipids) had inner and outer diameters of 15 nm and 20 nm, respectively. The outer
shell containing 1260 POPS, 4300 POPE and 5120 CHOL molecules (CP lipids) had an inner
diameter of 19.5 nm, overlapping 0.5 nm with the inner shell, and an outer diameter of 24.5
nm, like that of the SVs found near the low end of SV size distributions [33]. From this starting
configuration an approximately spherical bilayer vesicle was formed (Fig 5A, right). Fig 4B
shows snapshots at various time points during the simulation. Within a few nanoseconds, the
lipids in the two shells self-assembled into a bilayer with several water pores. These pores

Table 3. Characteristics of asymmetric membrane systems.

Asymmetric Membrane Membrane Thickness (nm) APL (nm2) Lipid order parameter a Lateral diffusion
coefficient (cm2 s-1)b

IV CP IV CP

Planar without cholesterol 4.27 ± 0.02 0.66 ± 0.00 0.64 ± 0.00 0.354 6.81 ± 0.0 6.24 ± 0.3

Planar 4.46 ± 0.02 0.44 ± 0.01c 0.44 ± 0.01 c 0.512 2.50 ± 0.0 2.49 ± 0.3

Vesicle 4.38 ± 0.03 0.38 ± 0.01 c 0.51 ± 0.01 c 0.510 1.80 ± 0.7 2.96 ± 0.7

a Average second-rank lipid order parameter for PC, PE and PS lipids.
b Calculated for phospholipids using g_msd utility included in GROMACS.
c Calculated using Voronoi tessellation method.

doi:10.1371/journal.pone.0144814.t003

Self-Assembly Simulation of Asymmetric Membrane

PLOS ONE | DOI:10.1371/journal.pone.0144814 December 14, 2015 7 / 21



facilitate lipid exchange between the inner and outer shells. As illustrated in Fig 5B, the pores
coalesced quickly to form a larger pore, allowing further equilibration of water across the form-
ing vesicle. Within 60 ns, the pore was sealed and a spherical vesicle was formed with no visu-
ally detectable pores. The transient formation of such water pores during the initial stages of
vesicle formation has also been observed in previous studies on self-assembly of vesicles with
symmetric leaflet composition in both atomistic and coarse-grained models [34, 35].

To determine if the densities of lipids in the inner and outer leaflets are at equilibrium, arti-
ficial ”water-lined pores” were introduced into the vesicle membrane. A vesicle with four such
“water-lined pores” is shown in Fig 6A and a detailed view of one such pore in Fig 6B. These
pores were generated in the vesicle bilayer by removing all the lipids within a transmembrane
cylinder of 1.5nm radius, with axis of the cylinder lying along +x, -x, +y and–y directions from
the center of mass of the vesicle. Then, for each pore the particle types of all the lipids that lay
within a shell of 1.7 nm from the pore surface were changed to a water particle (P4). All the
bonded interactions of these modified lipids (referred herein as “wlipids”) were kept
unchanged. To prevent the collapse of the pores due to diffusion of wlipids into bulk water, all
the particles corresponding to the phosphate headgroups (or hydroxyl group of cholesterol) in
the wlipid molecule were position restrained using a force constant of 300 kJ mol-1 nm-1. The

Fig 4. Lipid compositions in symmetric and asymmetric membrane. (A) The membrane resulting from
self-assembly of randomly mixed lipids exhibited a symmetric distribution for every type of phospholipid and
cholesterol. (B) In membrane membranes resulting from asymmetric initial configuration, all lipid types were
asymmetrically distributed. As in physiological membranes, PPCS and POPC were most abundant in the IV
leaflet and POPS and POPEmost abundant in the CP leaflet. Cholesterol was symmetrically distributed. (C)
Frequency histograms of the distance of lipids’ center of mass to membrane’s center of mass (z = 0) shows
the asymmetric lipid composition and also shows the presence of a small fraction of cholesterol located at the
membrane center.

doi:10.1371/journal.pone.0144814.g004
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vesicle was then subjected to a 200 ns equilibration simulation. During the equilibration run,
the wlipid tails moved away from the interior of the bilayer, pointing into the surrounding
water region, as expected (compare left and right panels of Fig 6B). The pores remained open
throughout the equilibration by using position restraints on one single particle per wlipid.
Introducing such pores provides a hydrophilic surface across the membrane that allows rapid
equilibration of lipid densities across the vesicle bilayer. The extent of lipid exchange between
the two monolayers was assessed by following the change in number of the individual lipid
types in the inner monolayer (IV). Fig 5C shows rather low rates of lipid flip-flop between the
two monolayers during the course of 200 ns long simulations. To determine if the lipid densi-
ties in the inner and outer leaflet were at equilibrium, we calculated the molecular APL in IV
and CP leaflets using the Voronoi tessellation method [36] on patches of lipid bilayer excised
from the vesicle membrane. The time-dependent APL evolution during the equilibration in the

Fig 5. Self-assembly of an asymmetric vesicle. (A) A cut-away view of the vesicle at the start (0 ns) and at the end (135 ns) of the self-assembly
simulation. The representation and coloring scheme is also shown. The head groups of different lipids are shown as spheres, the tails as sticks. (B)
Snapshots of the entire vesicle illustrating the dynamics of the pores at different simulation times. Several pores formed within a few nanoseconds (2 ns).
These pores coalesce to form a larger pore (25 ns) and finally the vesicle is sealed (60 ns).

doi:10.1371/journal.pone.0144814.g005
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presence of the”water-lined pores” (Fig 6D) shows no net change, indicating that the two leaf-
lets were well equilibrated with an APL of 37.5 ± 1.1 Å2 for IV leaflet and 50.7 ± 1.4 Å2 for CP
leaflet. For comparison, we also calculated the APL for the self-assembled asymmetric planar
bilayer (see previous section) using same procedure, giving 44.4 ± 1.3 Å2 and 44.1 ± 1.1 Å2 for
IV and CP leaflets, respectively. It is interesting to note that, compared to the APL for the pla-
nar bilayer, the APL for the inner leaflet is much smaller while that for the outer leaflet is much
larger but the mean is identical with the planar bilayer APL.

Fig 6. Equilibration in presence of “water-lined” pores. (A) Vesicle showing the four “water-lined” pores (front, back, left, right) that were introduced into
the self-assembled vesicle membrane to allow equilibration of lipid densities. The representation of vesicle lipids is same as in Fig 4, except for the wlipids
(lipids with water particle type, yellow). (B) Cross section of one of the pores at the start (left) and the end (right) of a 200 ns equilibration. Note the tails of the
wlipids (yellow) occupy the interior of the membrane at the start whereas they point away from the bilayer into the bulk solvent at the end. Also note the head
groups of lipids that can be seen in the membrane interior, absent in left panel, showing the lipid exchange between the two leaflets. (C) The percent change
in lipid composition of the IV leaflet of the vesicle during the equilibration. (D) Time evolution of APL of the CP and IV leaflets measured using Voronoi
analysis on a patch of bilayer taken from the equilibrating vesicle.

doi:10.1371/journal.pone.0144814.g006

Self-Assembly Simulation of Asymmetric Membrane

PLOS ONE | DOI:10.1371/journal.pone.0144814 December 14, 2015 10 / 21



Characteristics of asymmetric vesicle membrane
After the 200 ns equilibration of vesicle in the presence of “water-lined pores”, and ascertaining
the convergence of lipid densities and APL values, the vesicle was subjected to another round of
free equilibration. For the free equilibration, the wlipids were reverted back to the corresponding
original lipid types and no position restraints were applied. The composition of the vesicle
membrane leaflets is listed in Table 4. The vesicle showed an appreciable degree of asymmetry
in its lipid composition. As can be deduced from the table, the CP leaflet is enriched in POPS
(0.73) and POPE (0.75) lipids, with lesser amounts of PPCS (0.32) and POPC (0.34). Similar to
the asymmetric bilayer, we find a near equal distribution of cholesterol in the two leaflets. The
radial distribution functions g(r) (Fig 7) of phospholipid and cholesterol head groups (PO4 and
ROH particles) were determined from last 50 ns of the free equilibration trajectory, using a bin
width of 0.1 nm. The distributions show PO4 head group peaks at 15.6 nm and 20.0 nm, indi-
cating a vesicle bilayer thickness of 4.3 nm with inner and outer radii of 15.6 nm and 20 nm.
Considering these radii, the inner and outer surface area amounts to 3058 nm2 and 5027 nm2.
The total number of lipids in the inner (IV) and outer (CP) leaflets are 8231 and 9361, as calcu-
lated from Table 4. From these, the calculated inner and outer APL are 37.2 Å2 and 53.7 Å2,
which are in close agreement with the APL calculated above using the Voronoi procedure.

Table 4. Comparison of lipid number and ratios in vesicle and bilayer.

Lipids Vesicle Planar Bilayer

Total number
(fraction) a

IV leaflet number
(fraction) b

CP leaflet number
(fraction) b

Total number
(fraction) a

IV leaflet number
(fraction) b

CP leaflet number
(fraction) b

PSM(PPCS) 712 (4.0) 487 (5.9) 225 (2.4) 36 (4.0) 3 (6.8) 6 (1.3)

PC(POPC) 3561 (20.2) 2368 (28.8) 1193 (12.7) 180 (20.2) 145 (32.7) 35 (7.8)

PS(POPS) 1244 (7.1) 336 (4.1) 908 (9.7) 63 (7.1) 23 (5.2) 40 (9.0)

PE(POPE) 4163 (23.7) 1034 (12.6) 3129 (33.4) 210 (23.6) 70 (15.8) 140 (31.4)

CHOL 7912 (45.0) 4006 (48.7) 3906 (41.7) 400 (45.0) 175 (39.5) 225 (50.4)

a,b Fractions are in percentage of each lipid type over the total number of lipids in the membrane a or in the respective leaflets b.

doi:10.1371/journal.pone.0144814.t004

Fig 7. Lipid distribution in an equilibrated vesicle.Radial distribution function (RDF) g(r) for the phosphate
beads of different lipid types as a function of distance from the center of mass of the entire vesicle. The
vesicle size is calculated by following the inner and outer peaks in g(r) for the phosphate beads for all the
phospholipids taken together (dashed line).

doi:10.1371/journal.pone.0144814.g007
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The structural and dynamical characteristics of the lipids in the asymmetric vesicle are sum-
marized in Table 3 (last row). The lipid order parameters were calculated from the membrane
patches used for the Voronoi tessellation, as described above (also see Materials and Methods).
To be statistically rigorous the equilibration was extended to 500 ns and the lipid order param-
eters were calculated from the (approximately planar) membrane patches normal to x-, y- and
z- axis and were then averaged. The lipid order parameters was found to be very similar to that
observed for the planar asymmetric bilayer (Table 3). Further, we also calculated the lipid diffu-
sion coefficient of the lipids in these membrane patches over 20 ns intervals extending over 300
ns. The diffusion of lipids in CP leaflet (2.96 x 10−7 cm2 s-1) is higher than that of lipids in the
inner IV leaflet (1.80 x 10−7 cm2 s-1), presumably due to denser packing of lipids in the IV
monolayer, Similar difference of lipid diffusion between the two leaflets has previously been
reported before for a DPPC vesicle [37].

Membrane protein insertion during self-assembly of asymmetric
membranes
Self-assembly of membranes is particularly useful to determine the positioning of proteins in
the membrane. Here we investigated two examples, the insertion of the plasma membrane pro-
tein syntaxin-1A (Stx1A) during self-assembly of a planar membrane and the insertion of the
most abundant synaptic vesicle protein synaptobrevin 2 (Syb2, also known as VAMP2) [6].
The CG structures of the protein models were based on the crystal structure of the SNARE
complex 3HD7 [38]. For the simulations of Stx1A insertion, a C terminal fragment consisting
of the transmembrane domain and the juxtamembrane domain with a total length of 48 resi-
dues was used, while Syb2 insertion was simulated using the full structure of residues 26 to 116.

Insertion of syntaxin in planar asymmetric membrane. Stx1A is a plasma membrane
protein that shows strong interactions with the plasma membrane lipid phosphatidylinositol-
bisphosphate (PIP2) [39–41]. Therefore, PIP2 was included in the CP lipid box at 3% concen-
tration replacing the same number of POPCmolecules. The extracellular (EC) lipids were iden-
tical to the IV lipids as described above. After self-assembly the CP leaflet composition was 7
PPCS 28 POPC 16 PIP2 41 POPS 108 POPE and 172 CHOL. Fig 7A shows the final snapshot
of the self-assembled membrane with the transmembrane domain completely embedded in the
membrane. The C-terminal end of Stx1A was found to be anchored to the EC leaflet and the
linker and the SNARE motif interacting with the CP leaflet. We also see a few PIP2 molecules
(Fig 8A, orange) interacting with basic residues present in the Stx1A linker domain, as
observed previously in atomistic simulations of Stx1B [41].

To visualize the specific localization of PIP2, all simulations were aligned relative to the
Stx1A peptide (Fig 8Bi) and the PIP2 densities averaged over the last 100 ns of three indepen-
dent simulation trajectories. Fig 8Bii reveals a marked concentration in the PIP2 density in the
CP leaflet around the Stx1A transmembrane domain. The positively charged stretch K260/
A261/R262/R263/K264/K265 (5RK) is required for binding of acidic lipids since it was shown
that the K260A/R262A/R263A/K264A/K265A (5RK/A) mutant does not bind acidic lipids
[40]. To show the specificity of interactions between PIP2 and Stx1A in the simulations, we
compared the PIP2 clustering around wild type Stx1A with that around the Stx1A 5RK/A
mutant, which showed markedly reduced PIP2 densities near the transmembrane domain (Fig
8Biii). For a more quantitative analysis we determined the relative frequencies of PIP2 interac-
tions with the individual residues 245 to 270 (Fig 8C). Stx1A wt (Fig 8C, filled bars) shows
strong PIP2 interactions with the positively charged 5RK region, but these interactions extend
to K256, in excellent agreement with a recent all atom simulation study [41]. We also see fre-
quent PIP2 interactions with K252/K253 as well as S249, which were not previously reported.
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In the 5RK/A mutant (Fig 8C, open bars) the PIP2 interactions with residues 258–265 are
completely lost, demonstrating the specificity of the observed PIP2 interactions with these
basic residues. Fig 8D illustrates the time course of the interactions of individual PIP2 mole-
cules with the individual Stx1A residues. In this example PIP2 “mol1” interacts mainly with
the 5RK stretch while “mol 2” interacts mostly with K260 but also K256 and R263/K264. PIP2
“mol3” interacts with K252/K253/K256 and this interaction extends somewhat to S249.

Insertion of synaptobrevin in asymmetric vesicle membrane. To demonstrate insertion
of a membrane protein during self-assembly a vesicle with asymmetric lipid composition we
chose the ~13.5 nm long fragment of the N terminal residues 26 to 116 of Syb2 as available in
the crystal structure 3HD7. The SNARE motifs of Syb2 are located on the cytoplasmic side of
the synaptic vesicle membrane [42] and were thus oriented toward the CP lipids in the initial

Fig 8. Self-assembly of stx1A in an asymmetric bilayer. (A) Snapshot of the insertion of stx1A in in the self- assembled bilayer (200 ns). The protein is
shown in vdw representation and colored according to residue type. The lipids are shown in grey with phosphate group of phospholipids colored in tan and
headgroup of cholesterol in purple. The PIP2 molecules are shown in orange. (B) Alignment of Stx1A (i) and surrounding PIP2 densities for Stx1A wt (ii) and
5RK/A mutant (iii) calculated from last 100 ns of three independent simulations. (C) Relative frequency of PIP2 interactions with residues 245 to 270 from the
last 100 ns of 3 independent 200 ns simulations of Stx1A wt (filled bars) and 5RK/A mutant (open bars) (D) Trajectories of interaction of 3 individual PIP2
molecules (mol1 to mol3) with residues 245–270 of stx1A from one of the simulations.

doi:10.1371/journal.pone.0144814.g008
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set-up while the C-terminus was oriented toward the IV lipids. To facilitate natural positioning
of Syb2 in the self-assembling membrane, the entire transmembrane domain (W90 to T116)
was completely embedded in the inner shell of lipids (Fig 9A, left panel). The final state after a
197 ns self-assembly simulation including 20 Syb2 copies is shown in Fig 9A (right panel).
Analysis of the radial distribution functions of the phospholipid headgroups over the last 50 ns
of the simulation (Fig 9B, black) indicates formation of a vesicle with an outer radius of 13.1
nm and a membrane thickness of 4.4 nm, indistinguishable from that of the protein-free vesi-
cle. The C terminal residues of Syb2 (T116, Fig 9B, green) localized to the inner leaflet head
groups except for one copy of Syb2 that failed to insert and ended up on the cytoplasmic sur-
face of the vesicle, (Fig 9A, red). The movement of T116 of this Syb2 copy to the outside
occurred during the first 10 ns of the simulation (Fig 9C, red traces) Residue W90 was localized
just inside the outer leaflet head group region (Fig 9B, blue) as expected [43] except for two
copies of Syb2 which inserted incorrectly with the transmembrane domain lying on the intra-
vesicular membrane surface and residues 60–90 (SELDDRADAL QAGASQFETS AAKLKR-
KYWW) in transmembrane position. The time course of ~50 ns to achieve this position (Fg.
9C, blue traces) corresponds to the time needed to form the final bilayer membrane. The
remaining 17 copies of Syb2 (Fig 9C, green traces) had the transmembrane domain correctly
positioned and oriented.

Discussion
We present, to our knowledge, the first CGMDmethod to generate membrane model by self-
assembly that closely resembles cellular membranes by adapting not only the lipid composition
but also leaflet asymmetry. For self-assembly of a planar membrane two simulation boxes filled
with different lipids were created for CP and IV leaflets, respectively, and stacked on top of
each other with 0.5 nm overlap to eliminate excess water insertion in between CP and IV
boxes. The 0.5 nm overlap prevented formation of two separate membranes and reproducibly
led to self-assembly of a membrane with asymmetric lipid composition. The self-assembled
membranes showed a leaflet asymmetry very close to that of mammalian cell membranes. It
was reported that cholesterol may also be asymmetrically distributed in cell membranes. Simu-
lations starting with asymmetric distribution of cholesterol in CP and IV lipid boxes did, how-
ever, not result in a cholesterol asymmetry, due to the rapid flip-flop rate of cholesterol. The
asymmetric cholesterol distribution in cell membranes must therefore be maintained by an
active mechanism. The asymmetric membrane was 0.5 nm (12.5%) thicker than the, widely
used, 4.0 nm DPPC membrane, which was caused by both presence of cholesterol and the
nature of the various phospholipids used here. The APL in the asymmetric membrane was 0.16
nm2 (25%) larger than the 0.64 nm2 APL in a DPPC membrane, which was almost entirely
caused by the presence of cholesterol.

A similar approach was developed to achieve self-assembly of a vesicle membrane. To form
a vesicle with asymmetric lipid distribution between inner and outer leaflets, the different lipids
were arranged in two different concentric shells, which were then also placed with 0.5 nm over-
lap. The self-assembly from this starting configuration produced a spherical vesicle. We also
demonstrate here the use of a novel approach of “water lined pores” for equilibration of water
and lipid densities across the vesicles. The equilibrated vesicle was found to be asymmetric
with higher densities of PE and PS lipids in the outer leaflet (CP leaflet) as compared to their
densities in the inner leaflet. On the other hand, the inner leaflet showed a higher density distri-
bution of PC and PSM lipids, similar to the self-assembled planar bilayer. The APL estimation
showed that the APL of inner layer of the vesicle was smaller and APL of the outer layer was
larger than the mean APL for the whole vesicle (44.0 A2), which was equal to the mean APL
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Fig 9. Self-assembly of the vesicle-protein system. (A) Snapshot of vesicle at the start (left) and at the end (right) of self-assembly done along with twenty
copies of syb2 molecules. To aid visualization, only the phosphate headgroups of the lipids and the backbone beads of the protein are shown. The phosphate
headgroups of the outer leaflet are shown in yellow and the inner leaflet in magenta. The backbone beads of Syb2 copies that positioned themselves
correctly are shown in green; three syb2 molecules that failed to position themselves correctly are colored red and blue. To illustrate the initial positioning of
syb2, the left panel also shows theTrp90 in vdw representation and colored orange. The N- and C-term is also labeled for one of the syb2 molecule. (B)
Comparison of the RDF g(r) of the lipid phosphate groups (black), cholesterol (red), Thr116 (green) and Trp90 (blue) at the start of the simulation (dotted) and
during the last 50 ns of the self-assembly (solid). Note the small RDF peak of Thr116 (green solid) near the outer leaflet phosphate headgroup (red molecule
in A) and the appearance of a Trp90 peak (blue solid) near inner leaflet phosphates (blue molecules in A), originating frommisoriented syb2 molecules. (C)
Evolution of the distance of backbone beads of Thr116 (top) and Trp90 (bottom) residues of all twenty protein molecules from the center of mass of the
forming vesicle. The traces are colored following the coloring scheme of the molecules as shown in A.

doi:10.1371/journal.pone.0144814.g009
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for the planar bilayer. The lipid densities of inner and outer leaflet are thus equal in the mem-
brane center but decrease from the inner headgroup shell to the outer head group shell due to
the radial area expansion.

Routinely used methods to study protein interactions with specific lipids such as PIP2 in
MD simulations involve use of a pre-formed lipid bilayer into which the protein is embedded
and where specific lipids are randomly distributed in both leaflets [44] or placed at ad-hoc cho-
sen positions [41, 45]. In the approach described here, the simulation starts from an asymmet-
rically distributed otherwise randommixture of lipids and during self-assembly both the
protein and lipids are free to localize to regions of an energy minimum. The self-assembly of
membranes in CGMD simulations is particularly useful as an unbiased method to characterize
insertion and positioning of membrane proteins and as shown here reveals the interactions of
PIP2 with syntaxin-1A consistent with experimental data and atomistic simulations.

In the example presented here, we illustrate the method to characterize insertion of Stx1A
in the membrane and its interactions with PIP2. The simulation was started from a random
mixture of CP and IV leaflet lipids containing 3 mol% of PIP2 in the CP lipid mixture. It is
noteworthy that the CG self-assembly method, reproduces the PIP2 interactions with a charged
stretch including K256/K260/R262/R263/K264/K265 previously observed in all atom simula-
tions [41] in spite of the limited handling of electrostatic interactions in the MARTINI force
field. The interactions are abolished in the 5RK mutant that lacks the charged stretch and con-
siderably reduces PIP2 interactions [39, 46]. In addition, we observed PIP2 interactions with
S249/K252/K253/K256, which were not observed in the previous study of full length Stx1B
[41]. The reason for this difference is that in [41] the linker region was pointing away from the
membrane, whereas in our simulations the linker and the included part of the SNARE domain
were attaching to the membrane surface. This attachment of the Stx1A SNARE domain to the
membrane surface was also observed when a larger Stx1A fragment was used including the
whole SNARE domain starting at residue 189 (data not shown) and is presumably facilitated
by interactions of the hydrophobic face of the SNARE domain with the membrane surface. In
the closed state stricter used in [41], this hydrophobic face is shielded by the Habc domain,
which points to a possible significance of the Habc domain to prevent binding of the Stx
SNARE domain to the membrane.

We also demonstrate the feasibility of this approach to insert proteins in a vesicle mem-
brane. We successfully inserted multiple copies of a flexible synaptic vesicle protein syb2, in an
asymmetric vesicle using the self-assembly method. Starting from asymmetrically placed lipids
in two overlapping concentric shells of randomly distributed IV and CP lipids, respectively,
along with twenty copies of syb2, the self-assembly resulted in an asymmetric vesicle with 17 of
the 20 copies of syb2 positioned such that the TM domain spanned the vesicle bilayer. In these
17 molecules, Thr116 was anchored to the head groups of IV leaflet and Trp90 was positioned
below the head group region of CP leaflet. The method thus properly reveals the energetically
preferred physiological positioning of the TM domain in the membrane.

In summary, we have demonstrated the formation of bilayer membranes in CGMD simula-
tions employing the Martini force field, which have physiological lipid composition and leaflet
asymmetry. In contrast to existing methods of asymmetric membrane simulations [26–28], the
approach presented here does not depend upon a priori assumptions such as the APL or num-
ber of lipids in the different leaflets and leads to rapid asymmetric bilayer formation by self-
assembly. CGMD self-assembly simulations are an important tool to study membrane protein
insertion [29] but were restricted to bilayers with symmetric lipid composition. Here we
extended this approach to study membrane protein insertion as well as specific lipid-protein
interactions in bilayers with asymmetric lipid composition. The approach will enable more
realistic simulations of membrane proteins in membranes with physiological properties. The
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nature and properties of multicomponent asymmetric bilayers can also be studied in atomistic
detail [24, 47–53]. To generate atomistic models for such studies, the CG self-assembly of
asymmetric bilayers including membrane proteins as described here can provide models that
can be converted into atomistic representations for refined atomistic simulations [44, 54].

Materials and Methods
All the simulations were conducted using ver. 4.5.4 GROMACS (GROningen Machine for
Chemical Simulations) [55]. Lipid models used in the simulations, POPS, POPE, POPC, PPCS,
and DPPC, and the cholesterol model were CGMartini models and simulated using Martini
force field ver. 2.0 [56]. Structures of Syb2 (residues 26–115) and Stx1A (residues 241–286)
including the transmembrane domains were obtained from the X-ray crystallography structure
[38] as a PDB (Protein Data Bank) file. The missing C-terminal residues of Syb2 (residue 116)
and Stx1A (residues 287–288) were added using Modeller [57]. The atomistic structures were
then coarse-grained using a PerlScript file adapting Martini coarse-graining method [56].

The starting configurations for the bilayer was constructed by combining two separately
generated CP and IV lipids box of 16 nm × 16 nm × 5 nm each. The CP lipids box was gener-
ated by randomly placing 63 POPS, 210 POPE and 256 CHOL molecules. The IV lipids
box was generated by randomly placing 36 PPCS, 180 POPC and 144 CHOL molecules. The
two boxes were then merged into one box of dimension 16 nm × 16 nm × 13 nm after shifting
the center of mass of the CP lipids box by 5 nm (no overlap) or by 4.5 nm (0.5 nm overlap).
The resulting lipids box was then filled with CG water and appropriate number of Na+ ions
were added to preserve electro-neutrality. This was followed by 1000 steps of energy minimiza-
tion using steepest descent algorithm after which a production run was carried out for 200 ns.
For membrane-protein simulations, CP and IV boxes were generated the same way as above,
except that a 3% mol of PIP2 was added by removing same number of POPC lipids. Addition-
ally, Stx1A protein was inserted. Prior to its insertion, the protein was positioned at the center
of a box. The protein was oriented so that C-terminus would be surrounded by IV lipids when
they are combined, and was combined with CP and IV boxes to produce SV lipids box with
Stx1A protein inserted. The resulted SV lipids box with Stx1A was filled with water and Na
+ ions and energy minimized with the same method described above.

The vesicle self-assembly was carried out in three successive steps:

1. Spontaneous aggregation—The starting system for the vesicle simulation was assembled
from two spherical shells of CP and IV lipids, with lipids randomly seeded in each shell
using Packmol software [58]. The CP lipids shell consisted of 1260 POPS, 4300 POPE and
5120 CHOL molecules. The IV lipids shell consisted of 720 PPCS, 3600 POPC and 2880
CHOL molecules. The inner and outer diameters of IV lipids shell were 15 nm and 20 nm.
The inner and outer diameters of CP lipids shell were 19.5 nm and 24.5 nm, allowing an
overlap of 0.5 nm. The resulting system was then placed in a cubic box, 53.0 nm on each
side. The box was then filled with CG water particles and appropriate number of Na+ ions
were added to preserve electro-neutrality. The system was then subjected to three rounds of
1000 steps of steepest descent energy minimization, 200 ps of equilibration using a time step
of 2 fs and 100 ps of equilibration using a time step of 10 fs. Following this, a 135 ns long
simulation was carried out with an integrating time step of 20 fs.

2. Equilibration with”water-lined pores”—To ensure the equilibration of lipids between the
inner and outer monolayers and of water in the interior of vesicle, four”water-lined pores”
were formed. Each pore was generated by removing all the lipids in a cylindrical shell of
radius of 1.5 nm along the ±x- and ±y-axis. Further, the atom types of all the lipids within a
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shell of 1.7 nm around each pore surface were changed to that of water (P4). The modified
lipids are referred to as “wlipids”. To prevent the collapse of the pores, the atoms corre-
sponding to PO4 or ROH of the wlipids in the shell were position restrained using a force
constant of 300 kJ mol-1 nm-1. The system was subjected to equilibration for 200 ns.

3. Free equilibration: After equilibration in presence of “water-lined pores”, the atom types of
modified lipids were reverted and the equilibration was continued for another 100 ns.
Finally, the system was further equilibrated for another 125 ns without any position
restraints.

The APL for vesicles is determined using a small patch of bilayer (14 nm × 14 nm) from the
vesicle, assuming it to be flat. As the vesicle is large enough, we ignored the effects due to curva-
ture. This bilayer patch was split into two individual monolayers and Voronoi tessellation was
applied on each monolayer to obtain the APL for the monolayer [36]. The coordinates of PO4
(ROH) were used to define the position of each phospholipid (cholesterol) moiety.

For vesicle-protein system, a similar spontaneous aggregation procedure was followed as
described above, for the vesicle. The CP lipids shell consisted of 525 POPS, 1659 POPE and
17976 CHOL molecules. The IV lipids shell consisted of 253 PPCS, 1230 POPC and 1010
CHOL molecules. The inner and outer diameters of IV lipids shell were 7 nm and 12 nm. The
inner and outer diameters of CP lipids shell were 11.5 nm and 26.5 nm. In addition, twenty
copies of Syb2 protein were randomly placed such that for each Syb2, the C-terminus (Thr116)
lied in the IV shell, the Trp90 lied in the CP lipids shell and the SNARE motif lied at the exte-
rior of the vesicle. The system was placed in a cubic box of ~48 nm, solvated with water and
NA+ ions and energy minimized as above. The total production run was carried out for 197 ns.
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