
ORIGINAL ARTICLE

Shifts in bacterial community composition
associated with increased carbon cycling in a mosaic
of phytoplankton blooms
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Marine microbes have a pivotal role in the marine biogeochemical cycle of carbon, because they
regulate the turnover of dissolved organic matter (DOM), one of the largest carbon reservoirs on
Earth. Microbial communities and DOM are both highly diverse components of the ocean system, yet
the role of microbial diversity for carbon processing remains thus far poorly understood. We report
here results from an exploration of a mosaic of phytoplankton blooms induced by large-scale natural
iron fertilization in the Southern Ocean. We show that in this unique ecosystem where concentrations
of DOM are lowest in the global ocean, a patchwork of blooms is associated with diverse and distinct
bacterial communities. By using on-board continuous cultures, we identify preferences in the
degradation of DOM of different reactivity for taxa associated with contrasting blooms. We used the
spatial and temporal variability provided by this natural laboratory to demonstrate that the magnitude
of bacterial production is linked to the extent of compositional changes. Our results suggest that
partitioning of the DOM resource could be a mechanism that structures bacterial communities with a
positive feedback on carbon cycling. Our study, focused on bacterial carbon processing, highlights
the potential role of diversity as a driving force for the cycling of biogeochemical elements.
The ISME Journal (2016) 10, 39–50; doi:10.1038/ismej.2015.105; published online 21 July 2015

Introduction

Marine microbial communities contain an immense
taxonomic and functional diversity (Pedrós-Alió,
2006; Sogin et al., 2006; Moran, 2008). The explora-
tion of microbial diversity provided insight into
distinct temporal dynamics (Fuhrman et al., 2006;
Gilbert et al., 2012; Vergin et al., 2013) and spatial
distributions of dominant and rare taxa across ocean
regimes (Martiny et al., 2006; Pommier et al., 2007;
Fuhrman et al., 2008; Ghiglione et al., 2012). Patterns
in diversity are paralleled by changes in the
repertoire and expression of genes of microbial
communities (Rusch et al., 2007; Frias-Lopez et al.,
2008; Poretsky et al., 2009) or individual taxa (Moran
et al., 2004; Bauer et al., 2006; Grzymski et al., 2006;
Gifford et al., 2011). How the ensemble of phylogenetic

and functional diversity in a given ecosystem affect
bacterial processes and thereby energy and nutrient
cycling remains, however, poorly understood. This is a
fundamental issue for a better comprehension of the
ocean system and its response to perturbations that are
predicted to increase with global change.

The role of species diversity in sustaining
ecosystem processes was demonstrated by positive
productivity–diversity relationships in terrestrial
plant and soil communities (Hooper and Vitousek,
1997; Naeem and Li, 1997; Hector et al., 1999;
Cadotte et al., 2008). The presence of more func-
tional traits at higher richness allowing a larger range
of resources to be exploited due to niche differentia-
tion or positive interactions are mechanisms to
explain this relationship (Loreau et al., 2001).
To test the validity of this relationship for microbes
in aquatic systems, experimental studies with
assembled multi-level food webs (McGrady-Steed
et al., 1997), reconstituted or manipulated bacterial
communities (Bell et al., 2005; Gravel et al., 2011;
Peter et al., 2011) were performed. These experimental
results revealed positive relationships between
microbial diversity, productivity and predictability
of ecosystem function. However, these experimental
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observations could thus far not be confirmed in the
ocean (Reinthaler et al., 2005; Obernosterer et al., 2010).

A present major challenge is to decipher how the
identity and diversity of marine microbes affect the
turnover of the globally important pool of marine
dissolved organic matter (DOM). DOM is composed
of a multitude of organic substrates, with distinct
chemical structures and bioavailability to microbes
(Benner, 2002; Hertkorn et al., 2006). The coupling
between community composition and DOM cycling
differs largely among studies, pointing to varying
degrees of functional redundancy with respect to the
degradation of different organic matter (Langenheder
et al., 2006; Teira et al., 2008; Sjöstedt et al., 2013). The
recent finding that a single bacterial strain can degrade
labile marine DOM as rapidly as a natural bacterial
community (Pedler et al., 2014) further challenges the
question on the importance of diversity for bacterially
mediated carbon processing in the ocean.

The Southern Ocean combines unique features
that strongly affect bacterial heterotrophic meta-
bolism, and likely also diversity. The permanent
upwelling around Antarctica transports old and
highly refractory DOM to the surface. Concurrent
low primary production, due to iron limitation, leads
to concentrations of dissolved organic carbon (DOC)
in surface waters that are the lowest of the world
oceans (~50 μM; Hansell, 2013). As a consequence,
the availability of organic carbon strongly constrains
bacterial heterotrophic metabolism (Church et al.,
2000). To date, however, this remote open ocean
remains poorly studied (Selje et al., 2004; Giebel
et al., 2009; Manganelli et al., 2009).

Natural iron fertilization in the wake of
islands stimulates phytoplankton primary production
and the related release of DOM (Blain et al., 2007;

Pollard et al., 2009). Heterotrophic bacteria rapidly
respond to these blooms and process a substantial
fraction of primary production (Zubkov et al., 2007;
Obernosterer et al., 2008). The largest naturally iron-
fertilized region is located in the vicinity of the
Kerguelen Islands, where massive spring phyto-
plankton blooms occur annually (Blain et al.,
2007). This original environmental context allowed
us to address the questions on whether different
blooms harbor distinct bacterial communities and
whether changes in bacterial diversity affect the
processing of organic matter.

Materials and methods
Site description
We investigated the composition of the bacterial
communities associated with spring phytoplankton
blooms in the naturally iron-fertilized region east
of Kerguelen Islands and in high-nutrient low-
chlorophyll (HNLC) waters (Station R-2) west of
the islands during the KEOPS2 cruise (Kerguelen
Ocean and Plateau Compared Study, October–
November 2011; Figure 1). For the southeastern
bloom above the Kerguelen plateau (Station A3)
samples were also collected during its decline in
late summer (KEOPS1 cruise; January–February
2005; Stations A3-3 and A3-4; Table 1). The
hydrographic context of the study region is
described in detail in Park et al. (2014) and basic
parameters are provided in Table 1. The sites were
intensively sampled to characterize the nutrient
regime, the composition of plankton communities
and the associated fluxes (Supplementary Tables S1
and S2).

Figure 1 Composite satellite images provided by GlobColour illustrating the temporal and spatial evolution of the phytoplankton blooms
induced by natural iron fertilization in the region of Kerguelen Island. Surface ocean chlorophyll is derived from ocean color satellite
observations. Stations are indicated on the satellite images that were available for corresponding sampling dates. See Table 1 for the exact
dates of sampling of the stations.
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Sampling for bacterial diversity analysis
Seawater for bacterial diversity analysis was collected
at 20m depth with 12 l Niskin bottles (General
Oceanics, Miami, FL, USA) mounted on a CTD
Rosette. Seawater was pre-filtered with a Nylon screen
(25-μm pore size) and collected in 10 l polycarbonate
(PC) carboys (Nalgene, Thermo Fisher Scientific,
Waltham, MA, USA) rinsed three times with sample
water. The samples were immediately sequentially
filtered through 3 μm and 0.8 μm PC filters (47-mm
diameter, Nuclepore, Whatman, Sigma Aldrich, St
Louis, MO, USA) and cells were concentrated on a 0.2-
μm cartridge (Sterivex, Millipore, EMD, Billerica, MA,
USA). To each cartridge, 500 μl of lysis buffer (40mM

EDTA, 50mM Tris, 0.75 M sucrose) was added and the
samples were stored at −80 °C until analysis.

The on-board continuous-cultures experiment
To investigate the response of a winter-water
bacterial community to phytoplankton DOM, we
set up a continuous-culture experiment during our
first visit to Station A3 (A3-1). The set-up of the
continuous cultures followed the design previously
published with some modifications (Landa et al.,
2013). The experiment consisted of two treatments, a
control and a diatom-DOM treatment. Triplicate
cultures (2 l final volume) were run for each
treatment. In the control treatment, bacteria were
supplied with 0.2 μm-filtered seawater, and in the
diatom-DOM treatment, bacteria were supplied with
0.2 μm-filtered seawater mixed with phytoplankton-
derived DOM. To obtain phytoplankton-derived
DOM, the diatom Chaetoceros debilis isolated from
the Southern Ocean (strain L41-B1, Alfred Wegener
Institute, Germany) was cultivated in low DOC
(15 μM) artificial seawater amended with nutrients
according to Guillard’s F/2 medium in a light:dark
cycle of 16 h:8 h at 4 °C. This diatom species
accounted for 10–50% of the diatom biomass at 5

out of the 9 bloom stations (Lasbleiz, 2014).
The diatom exudate was collected by sequential
filtration as described previously (Landa et al., 2013).
The DOC concentration of the phytoplankton
exudate was identical to the DOC concentration in
0.2 μm-filtered seawater. Therefore, despite the con-
siderable contribution of diatom-DOM to the total
DOC (20%), the bulk DOC concentration in the
diatom-DOM cultures (51 ± 2 μM, n=8) were similar
to those in the control cultures (54 ± 2 μM, n=8). The
roughly 3-μM difference in DOC concentration
indicates the preferential uptake of diatom-DOM.
Previous experiments have shown that this approach
yields differences in the chemical composition
of DOM (Landa et al., 2014). Concentrations of
inorganic phosphate (2.1 ± 0.3 μM) and nitrate
(41.2 ± 1.7 μM) were identical in the cultures of both
treatments throughout the experiment. A natural
bacterial community collected at Station A3-1 was
used as inoculum for both treatments.

For the preparation of media for the entire
duration of the experiment, 60 l of seawater from
the upper 80m were sampled at the same station
(A3-1) with 10 l Teflon-lined Niskin-1010X bottles
(General Oceanics, Miami, FL, USA) mounted on a
1018 rosette system (General Oceanics) adapted for
trace-metal clean work. The 60 l of seawater were
collected in acid-washed (10% HCl), Milli-Q water-
rinsed 20 l PC carboys and they were immediately
sequentially filtered through 0.4-μm and 0.2-μm
filters using a Sartobran cartridge (150 cm2,
Sartorius, Goettingen, Germany). Seawater for the
bacterial inoculum was collected at 40m and 4 l
were filtered through a 0.8-μm PC filter (47-mm
diameter, Nuclepore). The 0.8 μm filtrate was stored
at 6 °C for a few hours until the beginning of the
experiment. Concurrently, 4.8 l of the o0.8 μm
filtrate were collected on a 0.2-μm cartridge
(Sterivex, Millipore) and treated, as described above,
for further diversity analyses.

Table 1 Brief description of the study sites

Station Date Depth (m) ML (m) Temp (°C) Chl a (μg l−1)a DOC (μM) BA (×108 cells l− 1) BHP (ng C l−1 h−1) μ (d−1)b

R-2 26 Oct 2450 105±15 2.1 0.3 ± 0.1 48±0 2.7±0.3 2.6 ± 0.1 0.02±0.00
A3-1 20 Oct 527 168±11 1.7 0.6 ± 0.2 52c 3.9 ± 0.1 5.0 ± 1.6 0.02±0.00
A3-2 16 Nov 527 153±15 2.2 2.0 ± 0.3 51±2 3.2±0.5 19.9 ± 3.8 0.12±0.01
A3-3 19 Jand 527 52±12 3.5 1.3 ± 0.3 NA 4.8±0.2 103±5 0.42±0.02
A3-4 12 Febd 527 84±19 3.9 1.0 ± 0.1 NA 5.7± 0.6 69±14 0.23±0.04
F-L 07 Nov 2690 38±7 4.2 4.0 ± 1.6 50±1 6.1c 65.7 ± 1.6 0.21c

E-1 30 Oct 2050 72±38 2.5 0.9 ± 0.1 48±1 4.3±0.1 15.2 ± 0.7 0.07±0.00
E-3 04 Nov 1923 38±9 2.8 0.6 ± 0.1 49±1 5.1c 24.9 ± 1.7 0.09c

E-4E 13 Nov 2210 74±8 3.2 1.1 ± 0.0 50±2 5.6c 41.5 ± 2.6 0.14c

E-4W 10 Nov 1398 61±11 2.5 1.3 ± 0.1 49±0 6.0±0.1 29.1 ± 3.9 0.09±0.01

Abbreviations: BA, bacterial abundance; BHP, bacterial heterotrophic production; Chla, chlorophyll a; DOC, dissolved organic carbon; NA, not
available; temp, temperature; μ, bacterial growth rate.
For all parameters mean values ± s.d. for the mixed layer (ML) are provided.
aFrom Lasbleiz et al. (2014).
bBacterial growth rate was determined by diving bacterial heterotrophic production by bacterial biomass. To convert bacterial abundance to
biomass, a conversion factor of 12.3 fg C per cell was used (Fukuda et al., 1998).
cOnly one data point was available for the ML.
dSamples were taken during the KEOPS1 cruise in January–February 2005 (Obernosterer et al., 2008).
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The cultures were conducted in a cold room (6 °C)
in the dark. Each culture was bubbled with filter-
sterilized air (Sartorious). A Milli-Q water purge was
placed between the source and the filters to
avoid potential DOC contamination by air. Cultures
were homogenized by stirring. The imposed flow
rate was 0.2 day−1 and resulted in a generation time
of 5.6 days. This flow rate was chosen based on the
in situ growth rates determined during the KEOPS1
cruise. The experiment was run for 19 days, during
which the cultures were sampled every 2 to 3 days.
The air purge was renewed every day and the input
media were prepared every 2 days. Samples for
bacterial diversity were collected in acid-washed,
Milli-Q water-rinsed PC flasks every 5 days from the
outflow of the cultures. The tubes were placed in the
flasks at night and between 135ml and 216ml of
collected culture were filtered the next morning on
0.2-μm PC filters (Nuclepore), placed in tubes
containing 500 μl of lysis buffer and stored at −80 °
C until further analysis. The last day of the experi-
ment, the volumes filtered for bacterial diversity
were ~ 500ml for each culture.

Chemical, biological and molecular analyses
For the samples collected in situ or in the continuous
cultures, bacterial abundance was determined by
flow cytometry and bacterial heterotrophic produc-
tion was measured by 3H-leucine incorporation
(Christaki et al., 2014). Concentrations of DOC and
inorganic nutrients were measured as described
previously (Landa et al., 2014). For DNA extraction
and pyrosequencing, samples collected at the differ-
ent bloom stations and from the continuous-culture
experiment were further analyzed together. Briefly,
the 0.2-μm fractions were lysed using lysis buffer
(40mM EDTA, 50mM Tris and 0.75 M sucrose) and
performing 3 freeze–thaw cycles with liquid nitrogen
and a water bath at 65 °C. After denaturation
and degradation of proteins using sodium dodecyl
sulfate (1%) and proteinase K (0.2 mgml− 1), DNA
was purified using a Qiagen AllPrep DNA/RNA
extraction kit (Qiagen, Hilden, Germany) according
to the manufacturer’s instructions. The molecular
size and purity of the DNA were analyzed using
agarose gel electrophoresis (1%). In total, 16 samples
of genomic DNA were sent to the Molecular
Research DNA laboratory (Shallowater, TX, USA)
for 454 pyrosequencing. The sequencing was per-
formed using an FLX-titanium platform (Roche,
Indianapolis, IN, USA; Wolcott et al., 2009). Uni-
versal bacterial primers 27 F (5′-AGRGTTTGATCMT
GGCTCAG-3′) and 530 R (5′-CCGCNGCNGCTGG
CAC-3′) were used, targeting hypervariable regions
V1 to V3 of the 16 S rRNA gene. The raw sequences
for this data set were deposited in the Sequence
Read Archive (SRA) database under accession
number SRP041580. Sequences from the continuous
cultures and from stations R-2, A3-2 and F-L can be
found on HUFUDAT01.sff, with the following

barcodes: ACTGGTGT (continuous culture, control,
replicate 1), ACTGTCAG (continuous culture, con-
trol, replicate 2), ACTGTCTC (continuous culture,
control, replicate 3), ACTGGACT (continuous cul-
ture, diatom-DOM treatment, replicate 1), ACTG-
GAGA (continuous culture, diatom-DOM treatment,
replicate 2), ACTGGTCA (continuous culture, dia-
tom-DOM treatment, replicate 3), ACTGTGAC (R-2),
AGACAGAC (A3-2) and AGACCTCA (F-L).
Sequences from stations A3-1, A3-3, A3-4, E-1, E-3,
E-4E and E-4W can be found on HUFUDAT02.sff,
with the following barcodes: ACCGCTAC (A3-1),
ACCGGCTT (A3-3), ACCGTAGA (A3-4), AGACG
TCT (E-1), AGACTGAG (E-3), ACAGTGAA (E-4E)
and AGAGAGAG (E-4W).

Bioinformatics
Analyses were conducted in QIIME (Caporaso et al.,
2010) as described previously (Landa et al., 2013)
with the following modifications. Raw data was
denoised with AmpliconNoise (Quince et al., 2011)
run through Mothur (Schloss et al., 2009). The
denoised reads were clustered into operational
taxonomic units (OTUs) with a 97% cutoff using
Usearch 5.2.326 (Edgar, 2010). At this stage potential
chimeras were removed using de novo and
reference-based chimera detection in Uchime. Tax-
onomy was assigned as described using the rdp
classifier against the Greengenes database released in
August 2013, and the Silva database (release 119).
For each identified phylogenetic group, we further
searched the literature for sequences found in
marine polar environments. On the basis of all these
sequences, we constructed phylogenetic trees using
Mr Bayes3, and kept the most relevant sequences to
build three final trees.

Data processing
In total, 748 OTUs were obtained for the 16 samples,
with a total number of sequences per sample
comprised between 3957 and 12 172. To enable
comparison between samples, the data set was
randomly subsampled to 3957 sequences per sam-
ple. Bacterial communities from the HNLC and the
various bloom sites and stages were compared
by calculating a weighted UNIFRAC dissimilarity
matrix (Lozupone and Knight, 2005) that considers
both the phylogeny and the relative abundances of
the OTUs to calculate the distance between each pair
of samples. This matrix was used to construct a
UPGMA dendrogram, whose nodes were further
tested using a bootstrap analysis.

To identify the OTUs most enhanced in the bloom
conditions compared with the reference HNLC site, the
relative abundances of each individual OTU was
divided by its relative abundance in the R-2 station
when detected at R-2. Only OTUs for which the
obtained ratio was ⩾3 and whose relative abundance
in the bloom site was ⩾1% were considered for further
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analysis. The same criteria were applied to identify the
OTUs enhanced by either condition in the continuous-
culture experiment after four bacterial-generation times.

Results and discussion

Natural iron fertilization induces a mosaic of
phytoplankton blooms
The region east of the Kerguelen Islands is
characterized by annually occurring spring
phytoplankton blooms (⩾0.6 μg l−1 chlorophyll-a
(Chl-a)) in response to large-scale iron fertilization of
the Southern Ocean (Figure 1). The southeastern
bloom above the plateau (overall depth 527m,
Station A3) is constrained by bathymetry and is
maintained over roughly 3 months by the continuous
supply of low quantities of iron and major nutrients
from below (Blain et al., 2007). During early
spring (October–November), station A3 had a deep
mixed layer (roughly 150m) and concentrations of
Chl-a increased by threefold between our first (A3-1;
0.6 μg l−1; Table 1) and second visit (A3-2; 28 days
apart; 2 μg l− 1). During the decline of the bloom
(Stations A3-3 and A3-4, January–February) Chl-a
concentrations were overall lower, whereas bacterial
abundances and growth rates were about twofold
higher. The offshore stations were located in a region
where, at the seasonal scale, horizontal transport is
the main mechanism of iron fertilization (d’Ovidio
et al., 2015). Stations F-L and E-4W, located,
respectively, north and south of the Polar Front
were characterized by intermediate (E-4W, 1.3
μg l− 1) and high (F-L, 4.0 μg l− 1) Chl-a concentrations
in overall shallow mixed layers (61–38m). Stations
E-1, E-3 and E-4E were sampled in a quasi-
Lagrangian manner within a meander south of the
Polar Front.

This environmental context provided access to
iron-fertilized sites that varied with respect to
hydrographic and biogeochemical conditions. Each
of the sampled sites harbored a distinct phyto-
plankton community (Supplementary Tables S3
and S4). Above the Kerguelen plateau, the dominant
phytoplankton species were Chaetoceros debilis
(A3-2), Chaetoceros hyalochaete (A3-3) and Eucam-
pia ant v. antarctica (A3-4), each accounting for
roughly 50% of total phytoplankton-carbon biomass
at the respective sites (Armand et al., 2008; Lasbleiz,
2014). At the off-plateau stations, small centrics
(Thalassiosira-like; F-L), Chaetoceros debilis (E-4W)
and Corethron pennatum (E-1 and E-3) accounted
each for roughly 50% of phytoplankton-carbon
biomass, and Eucampia antarctica and Chaetoceros
debilis were the dominant phytoplankton species
(each roughly 20%) at Station E-4E (Lasbleiz, 2014).
The dominance of varying diatom species reflects
the different biogeochemical features across
stations and it indicates that we investigated a
variety of phytoplankton blooms each with specific
characteristics.

Diverse bacterial responses to iron-induced
phytoplankton blooms
We sampled 1 reference site in HNLC waters and 9
bloom stations, and obtained 600 OTUs, defined at
97% identity of the 16 S rRNA gene. A clustering of
the samples indicated that the communities in the
various bloom stations were different from the
community at the reference Station R-2 (Figure 2).
The dissimilarity to the reference station varied from
7% to 22%, indicating the intensity and possibly the
nature of the community changes were different
among the bloom stations (Supplementary Figure S1).
The clustering of the bacterial communities could
not be explained based on the occurrence of different
water parcels characterized by their physical proper-
ties. This is clearly demonstrated using the temperature
and salinity diagram (Supplementary Figure S2)
where the stations clustered in a different way than
the bacterial communities, suggesting that factors
other than physical processes were the main drivers
of changes in community composition. To explore
which OTUs contributed most to the observed
dissimilarities, we identified the dominant OTUs
(⩾1% of total sequences) that were enhanced in each
of the bloom stations as compared with the reference
station. Dominant OTUs with relative abundances at
least three times higher in one of the bloom stations
than at the reference Station R-2 were considered
enhanced. OTUs that were dominant at a bloom
station, but not detectable at the reference station
were also considered enhanced.

Including all bloom stations, a total of 42 enhanced
OTUs were identified (Figure 2). Twenty-seven
OTUs had relative abundances at least three times
higher in one of the bloom stations than at the
reference Station R-2, and 15 OTUs were not
detected at the reference Station R-2, but had relative
abundances ⩾ 1% of total sequences at one of the
bloom stations. The number of enhanced OTUs at a
bloom station varied between 3 and 21 (mean 10±6,
n=9; Figures 2 and Supplementary Figure S3), and
their cumulative relative abundances accounted for
16–68% (mean 38±19%, n=9) of the total commu-
nities at the various bloom stations (Supplementary
Figure S3). Only few enhanced OTUs were identical
across all stations. Each pair of stations shared 0
to 12 enhanced OTUs (mean 2.33 ±2.31; n=36),
14 OTUs were enhanced in at least 3 stations, and
only 2, OTUs 1663 (SAR86) and OTU 17 (Ulvibacter),
were enhanced in at least 5 stations (Figure 2).

The increased abundance of these various OTUs in
the bloom stations resulted in changes in the overall
phylogenetic composition of the total communities
(Supplementary Figure S1). Though the 42 enhanced
OTUs belonged to all major phylogenetic groups
found in marine environments, 22 of them belonged
to the Roseobacter clade (7 OTUs) and the Flavo-
bacteriaceae (Figure 2; Supplementary Figure S4 and
Supplementary Table S5). These groups are known
for their ability to thrive in bloom conditions in polar
systems, as well as in temperate waters (see Buchan
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et al. (2014) for review). In the Roseobacter clade,
four OTUs were identified as members of the RCA
cluster, which has been found abundant in polar
systems and particularly the Southern Ocean (Selje

et al., 2004). The low abundance of these 4 OTUs
(OTU 7, 1714, 2048 and 2049 in Figure 2) at the
HNLC reference station (o1% of total sequences)
and their increased contribution to the bloom

Rel. Ab. <1% 

1%< Rel. Ab. <3% 

3%< Rel. Ab. <6% 

6%< Rel. Ab. <9% 

9%< Rel. Ab. 

OTUs not detected in R-2 

1%< Rel. Ab. <3% 

3%< Rel. Ab. <6% 

6%< Rel. Ab. <9% 

9%< Rel. Ab. 

OTUs detected in R-2 

Pr
ot

eo
ba

ct
er

ia
B

ac
te

ro
id

et
es

 
O

th
er

 g
ro

up
s 

Fl
av

ob
ac

te
ri

ac
ea

e

22.2 

17.8 

6 

12.4 

9.7 

11.5 
10.0 

7.4 
5.9 

OTU R-2 A3-1 E-4E E-4W A3-2 E-1 F-L A3-3 A3-4 E-3 Taxonomy

2048 0.0 0.1 0.0 0.3 0.0 0.1 0.0 1.3 0.1 0.0 RCA -clade 

7 0.9 -- 2.8 -- -- -- 4.0 -- 3.3 -- RCA -clade 

1714 0.0 0.2 0.5 0.2 1.2 0.1 0.4 6.8 3.9 0.0 RCA -clade 

2049 0.3 0.2 0.8 0.1 0.1 0.2 1.3 0.0 0.2 0.2 RCA -clade 

13* NAC11 -7 clade

2* 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 Sulfitobacter

71 0.0 0.0 0.3 0.0 0.0 0.0 10.8 2.8 0.3 0.0 Sulfitobacter

38 0.0 0.2 0.4 0.1 0.2 0.8 0.6 0.4 2.5 0.4 Roseobacter clade

0 0.2 0.6 1.2 0.5 0.3 0.4 0.3 0.4 0.2 0.3 SAR11 clade 1 

881 0.2 2.2 0.8 0.5 0.3 1.8 0.4 1.1 1.2 0.5 SAR11 clade 2 

30 0.7 2.0 0.3 0.2 0.5 0.6 0.1 0.1 0.0 0.1 OCS116 clade

1438 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Acidovorax

74 0.3 2.6 0.0 0.1 0.3 0.0 0.0 0.0 0.0 0.2 Acidovorax

1493 0.1 0.2 1.3 1.2 0.9 0.5 0.4 2.8 1.4 0.1 SAR 92 clade

9 0.0 1.1 1.8 0.0 0.1 0.8 0.5 0.4 0.5 0.0 SAR86 clade

1663 0.2 0.4 2.6 2.1 1.9 1.1 0.5 4.4 5.8 0.2 SAR86 clade

28 0.1 0.1 0.9 0.8 1.6 0.1 0.6 0.1 0.3 0.2 Ant3D4 clade

1566 0.0 0.2 2.4 0.0 0.2 0.2 1.0 2.0 2.6 0.0 Ant3D4 clade

1737 0.4 -- 2.4 1.3 0.9 0.9 0.2 2.1 2.4 0.2 Arctic96BD -19 clade

1990 0.9 2.7 4.6 4.1 3.3 -- -- -- -- 0.7 Arctic96BD -19 clade

72 0.1 0.1 0.0 0.4 1.3 0.0 0.1 0.0 0.0 0.7 Flavobacterium

6* 0.0 0.0 0.4 0.1 0.3 0.1 0.4 7.9 6.2 0.0 Polaribacter

47 0.0 0.0 1.0 0.8 1.0 0.1 0.1 5.0 2.9 0.1 Polaribacter

157 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.5 0.0 Polaribacter

1707 0.0 0.0 0.7 0.0 0.0 0.1 0.0 2.4 1.0 0.0 Ulvibacter

17 0.0 0.0 0.1 0.0 0.0 0.0 0.1 1.2 0.9 0.0 Ulvibacter

79 Ulvibacter

135 Ulvibacter

20 -- -- -- NS2b marine group

36 0.0 0.0 4.7 1.2 1.1 0.3 2.6 5.2 2.4 0.3 NS4 marine group

1595 0.3 0.0 1.3 0.5 0.9 0.1 0.2 0.6 0.1 0.1 NS4 marine group

123 1.3 6.0 9.4 1.0 0.5 4.8 0.7 NS5 marine group

151 0.0 0.0 0.3 0.0 0.1 0.0 0.4 9.8 1.6 0.0 NS5 marine group

52 -- -- NS5 marine group

60 0.1 0.3 0.5 0.2 0.1 0.3 0.2 0.4 1.0 0.0 Owenweeksia

113 0.1 0.0 0.1 0.2 0.0 0.1 0.1 0.1 1.1 0.0 Marinoscillum

120 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 4.5 0.0 Bact eroid es

5 0.1 0.7 0.1 0.1 1.0 9.6 2.6 0.1 0.1 3.9 Actinomycetales

1853 0.4 0.3 0.0 0.9 10.5 6.1 2.8 0.0 0.1 36.0 Actinomycetales

19 0.5 3.8 0.0 0.1 0.3 0.2 0.5 0.0 0.0 -- Synechococcus

12 0.1 0.4 0.1 0.9 0.3 11.5 3.7 0.1 0.0 15.9 Planctomycetaceae

15* 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 Lentimonas

Figure 2 Heatmap of the OTUs identified as enhanced in at least one bloom station compared with the reference Station R-2. Each of the
OTUs is identified by a number and the most detailed phylogenetic assignment obtained. Blue-colored OTUs were not detected at the
reference Station R-2, and red-colored OTUs were detected at station R-2. The different shades represent the relative abundance (Rel. Ab.)
of the OTUs. White indicates absence of detection. The dashes indicate the OTU was detected in the sample but did not meet the criteria to
be considered as enhanced (see Results and Discussion section). The stations are ordered according to a UPGMA clustering built from a
weighted UNIFRAC distance matrix. The numbers at each node of the cluster indicate the percent of dissimilarity. Blue nodes correspond
to a bootstrap support of 50% to 75% and red nodes correspond to a bootstrap support 475%. OTUs that were specifically associated to
one of the two treatments in the continuous-culture experiment are noted with an asterisk (*). See Figure 3 and Results and Discussion
section for details.
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stations F-L, A3-3 and A3-4 (range 1–10% of total
sequences) point to a key role of the RCA members in
the processing of organic matter during phyto-
plankton blooms as suggested by previous studies
(Giebel et al., 2009, 2011; Teeling et al., 2012; Voget
et al. 2015).

Flavobacteria and in particular Polaribacter are
frequently found in polar waters, especially during
phytoplankton blooms (Abell and Bowman, 2005;
Straza et al., 2010), including blooms resulting from
artificial iron-fertilization experiments (Agawin
et al., 2006; Kataoka et al., 2009). Flavobacteria were
described to be efficient polymer degraders (Cottrell
and Kirchman, 2000), an idea that is supported from
recent genomic and proteomic analyses (Williams
et al., 2013; Xing et al., 2014). Overall, our data
confirm the dominance of fast-growing, traditionally
bloom-associated bacterial groups in the pool of
enhanced OTUs. Interestingly, some SAR11 were
also detected as enhanced in bloom stations
(Figure 2), though as a whole this clade was not
competitive under bloom conditions (Supplementary
Figure S1). Our results also revealed OTUs enhanced
under bloom conditions belonging to other phyloge-
netic groups such as Gammaproteobacteria, Actino-
bacteria and Planctomycetes.

The number and the variability in the identity and
phylogeny of the enhanced OTUs among stations
suggest that naturally iron-induced phytoplankton
blooms in the Southern Ocean stimulate a large
diversity of bacterial groups. Our study extends
previous investigations of the southeastern bloom
above the Kerguelen plateau (Station A3) that have
demonstrated major differences in the bacterial
community composition during the late stage of the
bloom as compared with HNLC waters (West et al.,
2008; Obernosterer et al., 2011). Our results from the
Kerguelen region are, however, in contrast to the
artificial iron-enrichment experiments, EisenEx and
LOHAFEX, performed in the Southern Ocean where
minor or no changes in bacterial community compo-
sition were observed in the iron-fertilized patch
(Arrieta et al., 2004; Thiele et al., 2012). This
suggests that the bacterial response is in part driven
by the mode of fertilization that differs drastically
between these studies. In contrast to the Southern
Ocean, bacterial community composition associated
with phytoplankton blooms has been extensively
studied in other ocean regions, however, with focus
on a single bloom event (González et al., 2000;
Fandino et al., 2001; Riemann and Winding, 2001;
Larsen et al., 2004; Rink et al., 2007). Our
study brings novel perspectives on the subject,
through the concurrent exploration of a patchwork
of blooms provided by a large-scale natural labora-
tory in the Southern Ocean. The overall low overlap
of the enhanced OTUs between distinct stations or
bloom stages suggests that the conditions set by
each site or stage favored a given community,
dominated by OTUs adapted to the environmental
conditions.

Is DOM a driver of the changes in bacterial community
composition?
DOC in surface waters of the Southern Ocean is
present at ~ 50 μM and dominated by refractory
material originating from the deep ocean. As a
consequence, accessing carbon substrates is a
major constraint for bacterial growth. In that
context, the supply of phytoplankton DOM is key
in regulating bacterial heterotrophic metabolism
(Christaki et al., 2014). In our study, features that
are intimately linked to DOM production, such as
phytoplankton primary production and taxonomic
composition, revealed pronounced differences
among stations, most likely resulting from physical
setting, varying iron inputs and bloom age. Further-
more, multivariate analyses including parameters
that describe the nutrient regime, the composition of
the phytoplankton community and major fluxes did
not identify one or a set of parameters that
significantly explained the bacterial community
composition in the study region (Supplementary
Figure S5). This leads to the hypothesis that the
nature of DOM could be a major force driving
bacterial community composition at the different
bloom sites. To explore this question we used
continuous cultures run with an ambient bacterial
community aboard the research vessel during the
KEOPS2 cruise. Continuous cultures allow investi-
gation of the response of a microbial community to a
given limitation over the time scale of days to weeks,
because of the maintenance of the same growth-
limiting factor over several generation times (Landa
et al., 2013, 2014; Beier et al., 2014).

The composition of the bacterial communities
growing on seawater or on seawater mixed with
diatom DOM was strikingly different after four
bacterial-generation times. A comparative analysis
of the major OTUs (⩾1% of total sequences),
performed with the same criteria used to identify
in situ-enhanced OTUs, revealed that 6 and 8 OTUs
markedly responded to the seawater and to the
diatom-DOM treatment, respectively (Figure 3a).
These 14 OTUs accounted for a large fraction of the
respective treatments (58 ± 6% and 73±7% of total
sequences in the seawater and diatom-DOM tripli-
cate cultures, respectively). This experiment pro-
vides evidence that DOM properties were a strong
factor shaping bacterial community composition,
each tested condition sustaining diverse but com-
paratively distinct OTUs. We propose that the
OTUs responsive in the seawater treatment are
competitive when most of the carbon pool is
constituted of semi-labile and refractory com-
pounds. By contrast, the OTUs responsive to the
diatom-DOM treatment are probably competitive at
increased concentrations of labile compounds of
phytoplankton origin.

The majority of the OTUs responsive to either of
the two experimentally set DOM resource regimes
(13 out of 14) were also detected in the bloom
sites, and their cumulative abundances were
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particularly high at 3 sites (9–19% of total sequences;
Figure 3b). Common features of these 3 stations were
the slightly enhanced temperatures and the high
growth rates of the bulk community (about 0.2 d−1;
Table 1). This was the minimum growth rate to be
maintained in the continuous cultures. It was
particularly interesting to note that all OTUs respon-
sive to the diatom-DOM treatment were present at
Station F-L. This site represents the early phase
of a well-developed spring bloom, characterized
by highest concentrations of Chl-a constrained
in a shallow mixed layer, likely leading to a
pronounced quantitative and compositional signa-
ture of freshly produced, labile phytoplankton
DOM. More surprisingly, OTU 1 and 6 (Polaribacter)
responsive to the seawater treatment had high
relative abundances at Stations A3-3 and A3-4.
These stations are distinct from all other sites in
that they represent the declining phase of the
3-month bloom above the Kerguelen plateau with
much lower supply of recent phytoplankton
DOM and a predominance of more degraded
and background DOM. Thus, our experimental
approach defined by two DOM resource regimes
was able to identify part of the fast-growing
members of the bacterial community developing
in contrasting situations.

The combined experimental and in situ observa-
tions suggest that at least some of the abundant
bacterial taxa exhibit distinct metabolic preferences
with respect to degradation of DOM of variable
origin and reactivity. These preferences could
lead to partitioning of the available resource
between active members of the community at a
given site. The co-existence at Station F-L of OTUs

that are adapted to distinct DOM conditions
strongly supports this idea. Resource partitioning
through the existence of complementary traits
involved in carbon metabolism could decrease
competition for substrate and allow positive inter-
actions among bacterial taxa, which ultimately
could benefit the bacterial community by optimizing
the resource usage.

Linking composition changes to bacterially mediated
carbon cycling
We established positive relationships (P⩾ 0.01,
r2⩾0.60) between the changes observed in commu-
nity structure at the various bloom sites, and
bacterial heterotrophic production. First, the number
of enhanced OTUs in each station was positively
related with bacterial heterotrophic production in
the surface mixed layer (Figure 4a). This suggests
that an increase in bacterial production, driven by an
increased supply of phytoplankton DOM, was
associated with a higher number of responding taxa.
If, as suggested by our continuous-culture experi-
ment, DOM pools of different reactivities are
exploited by distinct and diverse taxa, the higher
number of responding taxa could reflect an increase
in niche availability, with a positive feedback on
bulk performance due to resource partitioning.

Second, we used the sum of the relative abun-
dances of the enhanced OTUs at each bloom site as
an estimate of the degree of change in community
composition (Supplementary Figure S3). This extent
of change in community composition revealed an
even stronger positive relation with bacterial hetero-
trophic production (Figure 4b). There is, however,

0

2

4

6

8

10

12

14

16

18

20

R-2 A3-1 A3-2 A3-3 A3-4 E-1 E-3 E-4E E-4W F-L
0

10

20

30

40

50

60

70

80

90

%
 o

f 
to

ta
l c

om
m

un
it

y

Seawater Diatom DOM

OTU 1 (Polaribacter) 

OTU 6* (Polaribacter) 

OTU 970 (Ulvibacter) 

OTU 41 (Marinobacter)

OTU 49 (Shewanella) 

OTU 15* (Lentimonas) 

OTU 31 (Roseobacter clade) 

OTU 202 (Methylophaga) 

OTU 8 (Colwellia) 

OTU 44 (Methylophaga) 

OTU 1348 (Sulfitobacter) 

OTU 24 (Colwellia)

OTU 2* (Sulfitobacter) 

OTU 13* (NAC11-7) 

Figure 3 Relative abundances of the OTUs associated to the seawater cultures (blue) and of the OTUs associated to the diatom-DOM
cultures (red) in the continuous-culture experiment after four bacterial-generation times (a) and relative abundance in surface waters of the
visited stations of the OTUs identified in the continuous-culture experiment (b). The relative abundances in individual triplicate cultures
are shown. OTUs that were also detected enhanced at a bloom site are noted with an asterisk (*). See Figure 3 and Results and Discussion
section for details.

Bacterial community composition and production
M Landa et al

46

The ISME Journal



an interesting feature to note. The correlation
coefficient was particularly high when Station E-3
was excluded from the data set, though it was
still significant when included (P=0.01, r2 = 0.60).
A specificity of Station E-3 was the low number of
enhanced OTUs, 3, and the high relative abundance
of one of them, an Actinomycetale (OTU 1853),
which accounted for 36% of the total community at
this station. For comparison, the relative abundances
of enhanced OTUs at the other bloom sites did not
exceed 11% of the total community, which is
indicative of a higher evenness among responding
taxa in these sites.

These results suggest that rates of bacterial
production were tightly linked to the compositional
changes induced by the growth of these 42 enhanced
OTUs. Bacterial production also increased as a
function of temperature (P=0.006, r2 = 0.68) across
the study sites. Interestingly, only the extent of
change in community composition revealed a

significant correlation with temperature (P=0.04,
r2 = 0.46), whereas the number of enhanced OTUs
did not. This suggests that higher temperatures acted
as an additional factor, rendering the changes in
bacterial community composition and bacterial
production more pronounced by stimulating the
metabolic activity of the OTUs that responded to
the bloom conditions.

We present here relationships based on a sub set of
the bacterial community, composed of 42 taxa that
through their capacity to respond to an environ-
mental change, were major drivers of composition
shifts and were associated with up to 40-fold
variability in bacterial production. Within this
community, the diversity of the enhanced OTUs,
driven by both their number and their relative
abundances, were key ecological features sustaining
the relationship. By contrast, the diversity of the total
communities was rather consistent among sites
(Shannon index 5 to 5.7, except for Station E-3: 4)
and not related to bacterial production (Supplementary
Figure S6). This result is not surprising as total
communities comprise both active and dormant cells
(Lennon and Jones, 2011), rendering it difficult to
study the link between community diversity and
productivity. The lack of evidence for other factors
structuring the bacterial communities supports our
assumption that the observed bacterial response is
mainly bottom–up driven, which is also consistent
with in situ and experimental observations of
fast-growing taxa that are likely to contribute
substantially to bulk bacterial production. Grazing
by heterotrophic nanoflagellates removed roughly
1% of the bacterial standing stock per day and viral
lysis was negligible during the early bloom phase
(Christaki et al., 2014, 2008). This further suggests
that top–down control was not a dominant removal
process at any of the investigated sites.

Our exploration of a mosaic of phytoplankton
blooms extending over several thousands of km2 in
the Southern Ocean provides novel insights on the
potential role of bacterial community structure in
carbon cycling. The coupling between changes in the
bacterial community composition and bulk bacterial
productivity across concurrently occurring spring
phytoplankton blooms point to the importance of
taxonomic identity and diversity for the functional
outcome of the community. The combined labora-
tory and in situ observations demonstrate that DOM
shapes the bacterial community, and they suggest
that substrate preferences might lead to resource
partitioning with consequences on biogeochemical
fluxes. We provide mechanisms of biodiversity
effects that could serve as working hypotheses to
be explored in other microbial ecosystems at
different spatial scales.
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