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Composition and temporal stability of the gut
microbiota in older persons
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1School of Microbiology, University College Cork, Cork, Ireland and 2Alimentary Pharmabiotic Centre,
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The composition and function of the human gut microbiota has been linked to health and disease. We
previously identified correlations between habitual diet, microbiota composition gradients and health
gradients in an unstratified cohort of 178 elderly subjects. To refine our understanding of diet–
microbiota associations and differential taxon abundance, we adapted an iterative bi-clustering
algorithm (iterative binary bclustering of gene sets (iBBiG)) and applied it to microbiota composition
data from 732 faecal samples from 371 ELDERMET cohort subjects, including longitudinal samples.
We thus identified distinctive microbiota configurations associated with ageing in both community
and long-stay residential care elderly subjects. Mixed-taxa populations were identified that had
clinically distinct associations. Microbiota temporal instability was observed in both community-
dwelling and long-term care subjects, particularly in those with low initial microbiota diversity.
However, the stability of the microbiota of subjects had little impact on the directional change of the
microbiota as observed for long-stay subjects who display a gradual shift away from their initial
microbiota. This was not observed in community-dwelling subjects. This directional change was
associated with duration in long-stay. Changes in these bacterial populations represent the loss of
the health-associated and youth-associated microbiota components and gain of an elderly associated
microbiota. Interestingly, community-associated microbiota configurations were impacted more by
the use of antibiotics than the microbiota of individuals in long-term care, as the community-
associated microbiota showed more loss but also more recovery following antibiotic treatment. This
improved definition of gut microbiota composition patterns in the elderly will better inform the design
of dietary or antibiotic interventions targeting the gut microbiota.
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Introduction

The mammalian intestine is colonised by micro-
organisms from birth onwards. The gut microbiota
develops over the first few years of life and thereafter
remains largely stable. Exceptions to this composi-
tional stability include microbiota alterations
associated with inflammatory bowel disease
(Rigottier-Gois, 2013; Gevers et al., 2014), obesity
(Ley et al., 2006; Parekh et al., 2014), irritable bowel
syndrome (Jeffery et al., 2012; DuPont 2014) and type
2 diabetes (Larsen et al., 2010). Another distinguish-
ing microbiota property is a reduction in overall
diversity or microbiome gene count, which is
associated with or causative for several pathophy-
siologies, including rheumatoid arthritis (Scher and
Abramson, 2011) and obesity (Turnbaugh et al.,
2009). A number of studies have attempted to
define distinctive configurations of human faecal

microbiota, including the identification of entero-
types that are based on the dominant taxa
(Arumugam et al., 2011). In elderly people (aged
465 years), a number of variations in gut microbiota
composition have been reported, particularly in
community-dwelling elderly compared with subjects
residing in long-term care facilities (He et al., 2003;
van Tongeren et al., 2005; Claesson et al., 2012;
Kinross and Nicholson, 2012; Collino et al., 2013;
Sepp et al., 2014). Reductions in dentition, chewing
ability, taste, digestion and intestinal transit time
may affect dietary choices and food digestion and
thus may all contribute directly or indirectly to the
microbiota alterations that characterise some elderly
subjects.

The aim of the ELDERMET project (http://elder
met.ucc.ie) started in 2007 was to determine the
intestinal microbiota composition of 500 elderly
subjects and to investigate microbiota associa-
tions with health. We previously identified a
Bacteroidetes-dominant microbiota across a subset
(n=191, including 13 young controls) of the unstra-
tified cohort, and large inter-individual microbiota
differences (Claesson et al., 2011). These differences
were borne out by metagenomic and metabolomic
analyses that identified a correlation between the
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Healthy Food Diversity index (Drescher et al., 2007)
(abbreviated as HeFD in this study to distinguish it
from high-fat diet), microbiota diversity (measured
using several indices) and overall health status, having
adjusted for multiple potential confounders (Claesson
et al., 2012). We also showed that the change in diet
upon entering a long-term residential facility resulted
in a change in microbiota composition (Claesson
et al., 2012). These microbiota changes correlated
with increased frailty and increased values of
markers for inflammation. Microbiota–health asso-
ciations were the strongest in long-stay subjects.

Using a significantly larger number of subjects
(n=371), for 110 of whom data were collected at
three time points, we now show fine-detailed diet–
microbiota–health associations within residential
strata that confirm these relationships independent
of where people live. We show that maximal micro-
biota diversity is not the variable most
strongly associated with health but that a particular
microbiota composition typifies healthy community-
dwelling subjects. Knowledge of the diet of these
subjects and their faecal microbiota composition will
help to identify dietary intervention and bacteriother-
apy strategies for promoting health in older people.

Materials and methods
Subject recruitment and data collection
Subjects were recruited as previously reported
(Claesson et al., 2011). Ethical approval was
provided by the Cork Clinical Research Ethics
Committee. Subjects aged 464 years were recruited
and defined as community-dwelling (Community),
attending outpatient day hospitals (Day Hospital), in
short-term rehabilitation care (Rehab,o6 weeks) or in
long-term care facilities (Long-stay). The mean age of
the 371 Irish elderly subjects included in this study is
78 (±8) years, ranging from 64 to 102 years. Alcohol
abuse, participation in a drug intervention and
advanced organic disease were exclusion criteria.
All subjects provided informed consent, unless
cognitively impaired, in which case the next-of-kin
provided informed consent. Clinical history, status,
medical history and anthropometric measurements
were collected. Antibiotic usage prior to participation,
as well as during the study for subjects providing
samples at multiple time points, was recorded.
Thirteen younger adults (28–46 years of age) were
also recruited, none of whom had received antibiotic
treatment 30 days prior to faecal sample provision.
The Geriatric Depression Test was administered by
questionnaire at time point 0 for each subject.

Clinical and nutritional data were collected as
reported previously (Claesson et al., 2012). Briefly,
food frequency questionnaires (FFQ) based on the
SLAN study (Harrington et al., 2011) were used to
assess habitual dietary intakes. The UK Food
Standards Agency Nutrient databank (McCance
and Widdowson, 2002) was used to analyse food

properties from FFQ data. The Mini Nutritional
Assessment (MNA) was used to assess malnutrition.
Non-fasted blood samples were analysed at Cork
University Hospital clinical laboratories. Multi-spot
microplates (Meso Scale Diagnostics, Rockville, MD,
USA) were used to measure cytokines. Mini Mental
State Exam, Barthel score and Functional Indepen-
dence Measures (FIM) were carried out on all
subjects. A research nurse reviewed medical records
for information on disease and current medication
for long-stay, rehabilitation and day hospital
subjects.

Molecular methods and bioinformatics
DNA was extracted from faecal samples, and the V4
region of the 16S rRNA gene was amplified,
sequenced and analysed as follows. V4 amplicons
were sequenced on a 454 Genome Sequencer FLX
Titanium platform (Roche Diagnostics, Dublin, Ire-
land and Beckman Coulter Genomics, Lismeehan,
Ireland). Raw sequence reads are available from
the Sequence Read Archive, under BioProject
PRJNA283106. Raw sequence reads were quality
trimmed using the QIIME pipeline with the follow-
ing criteria: (1) two mismatches were allowed in
barcode sequences; (2) reads could not begin with
ambiguous bases (Ns); (3) read lengths must
fall within the range of 150–350 bp; and (4) the
minimum average quality score must be at least 25.
The remaining criteria for quality trimming were
default settings from QIIME’s split_libraries.py.
Chimeric sequences were identified de novo per
faecal sample using chimera.uchime from the
Mothur project (Schloss et al., 2009) and removed.
This was performed de novo per sample, because
chimeric sequences will be lower-abundant reads
than their parent sequences. This does not hold well
when grouping multiple samples, and many chimera
identification tools introduce batch effects, which
will not be an issue when analysing per sample.
Sequences were then filtered by length (204–212
bases). Sequence reads were clustered into opera-
tional taxonomic units (OTUs, at 97% similarity)
using two-stage clustering (Jiang et al., 2012).
A frequency threshold of 15 was set for high- and
low-abundant sequences, and end gaps were
removed. The most abundant sequence within each
OTU was used to represent the OTU, and this was
classified using the wang method for classify.seqs
from the Mothur project with RDP trainset 9. The
representative sequences were aligned using
PyNAST, filtered and a phylogenetic tree was built
using FastTree. A rarefied OTU table (to 5000 reads)
was used with the resulting phylogeny to generate
unweighted UniFrac distances. We generated a
binary distance matrix from a binary OTU table,
and a Spearman distance matrix from a normalised
OTU table, to allow for comparisons with previous
data (Claesson et al., 2012). Principal coordinate
analyses (PCoAs) were performed on each of these
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distance matrices. Permutational multivariate analy-
sis of variance was used to determine whether
significant differences existed between subsets of
the data.

iBBiG (iterative binary bclustering of gene sets;
Gusenleitner et al., 2012) is a heuristic algorithm that
uses binary data to generate overlapping clusters of
both the microbiota profiles of faecal samples
and variables (in this case, OTUs). The heuristic
algorithm identified the strongest trend in the data
set through a series of additions of new OTUs or
faecal sample profiles to an original seed cluster. The
new cluster entropy is then compared with
the background entropy of the data set, and if the
addition improves the score, the new addition is
retained. This is done until further addition of OTUs
or microbiota populations from faecal samples
shows no further improvement. Once this occurs,
the first module is defined and the links that define
this cluster are removed from the data set, but the
OTUs and composition data associated with the
cluster are retained as they may be used to form new
modules. Once these strongest signals are removed,
the algorithm is then able to identify the next
strongest signal in the data set. iBBiG (Gusenleitner
et al., 2012) was used to generate overlapping
clusters of both OTUs and microbiota composition
profiles from faecal samples. A threshold for module
score was set to 1000, as this threshold consistently
returned four modules over 100 repetitions. Other
thresholds were not consistent in the modules they
returned.

All statistical analyses were performed using R
software (version 2.15.2 or higher). Kruskal–Wallis,
Wilcoxon rank-sum tests, t-tests and linear regres-
sion models were used to test for significant
differences between microbiota profiles for clinical
and biochemical measures and alpha diversity. Data
were visualised by boxplots, with the median
(interquartile ranges) indicated. Linear regression
was used to identify significant associations. Mini-
mal statistical models were generated by filtering out
variables that did not explain a significant amount
of variance. Variables were removed in a two-step
process before final models were produced. Vari-
ables were tested using the Likelihood Ratio Test,
while adjusting for residence location only. Signifi-
cant variables were modelled using an analysis of
variance, and each variable was tested using the
Likelihood Ratio Test. Variables with the highest
P-values were removed sequentially until all vari-
ables in the model explained a significant amount
of variance. The exception to this was residence
location, which was retained in all models regardless
of its significance. In cases where there was a high
correlation between variables, such as FIM and
Barthel, and HeFD and MNA, this process was
repeated with the order in which variables were
removed reversed, to ensure that order of removal of
the variables did not affect the final model. The
remaining variables were then modelled by linear

regression. We generated a summarised count of the
sum of logged abundances (SoLA) of rarefied OTUs
from each module for each person. Similar to the use
of data logged to the base 2 in microarray studies, the
data were logged to avoid domination of the analysis
by species that have a much higher abundance
than average. Use of non-logged data may cause
mathematical operations to treat an increase in
abundance as more significant than a decrease in
abundance due to perceived differences in the
magnitude of the fold change (0.5 versus 2). After
conversion to the log 2 scale, increases and decreases
in abundance are equally significant, and so an
analysis in the logged space is desirable. Although
summing the OTU abundance before logging is
useful, due to the fact that as the overall abundance
increases, the value increases, it does not take into
account the number of OTUs that are actually
present in a sample, which is a second desirable
feature of the measure generated. Using the sum(log2
(OTUs)) or SoLA gives the summarised values these
desired properties and allows for good discrimina-
tion between the clusters (Supplementary Figure S1).

Results and discussion

Global microbiota patterns
To assess microbiota composition in the elderly and
how it changes over time, we collected 732 faecal
samples (301 from males and 431 from females) from
384 ELDERMET cohort subjects including 13 sam-
ples from young controls (Supplementary Table S1).
Samples were collected at 3-monthly intervals from
time 0, with up to 4 time points for some subjects.
OTU clustering (at 97% sequence identity) resulted
in 5090 non-singleton OTUs from 18.4 million
sequence reads of 16S rDNA V4 region amplicons,
with a median of 24 550 (IQR of 13 440) reads per
faecal sample.

Analysis of β-diversity showed that the microbiota
of long-stay subjects segregated from that of
the community-dwelling subjects (Supplementary
Figure S2; Po0.001, for all distance matrices tested),
in line with our previous analysis on a smaller
number of elderly subjects (Claesson et al., 2012). As
before, the microbiota of day hospital patients
(community dwellers making occasional visits to
hospital) and rehabilitation subjects (in long-term
care but for o6 weeks) clustered between the
microbiota of long-stay subjects and community-
dwelling subjects. The microbiota of young controls
clustered with the community-dwelling subjects.

Bi-clustering of OTUs and microbiota profiles of faecal
samples
A clustering technique known as iBBiG
(Gusenleitner et al., 2012) has previously been used
to cluster microarray data based on co-occurrence of
differentially expressed genes in transcriptome
profiles. We implemented a novel application of this
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bi-clustering technique on the faecal sample compo-
sition profiles in order to determine whether sub-
groups of OTUs and of composition profiles could be
identified within the data set. We performed iBBiG
clustering on a presence/absence table of microbiota
compositions of faecal samples by OTUs, whereby
four modules, or clusters of objects/variables, passed
the threshold: M1, M2, M3, and M9 (Supplementary
Figure S3). A small set of composition profiles and a
large number of low prevalence OTUs did not fall
into any of these four modules, which we assigned to
a fifth residual module, denoted Ua (Unassigned).

The genus-level classifications of the OTUs for the
four iBBiG modules revealed distinctive character-
istics (Figure 1). M1 contains OTUs that are present
in a majority of the composition profiles and that had
a high cumulative abundance (Supplementary Table
S2). We therefore consider this module to represent a
core microbiota. The major genera in this module
include Bacteroides, Alistipes, Parabacteroides,
Faecalibacterium and Ruminococcus. We refer to
M1 module as ‘Core’ (Co). M2 contains a number of
genera that have previously been associated with
health or healthy high-fibre diets and high micro-
biota diversity, such as Coprococcus, Prevotella and
Catenibacterium (Claesson et al., 2012). We thus
designated M2 as ‘Diversity-Associated’ (DA). The
OTUs classified as DA are present in over one-third
of the composition profiles.

The OTUs in M3 correspond to genera such as
Anaerotruncus, Desulfovibrio and Coprobacillus,
which have been associated with elderly people in
long-term residential care (Claesson et al., 2012).

We therefore designated M3 as ‘Long-stay-Associated’
(LA). However, we note that not all microbiota
composition profiles assigned to this module were
from subjects that reside in long-term care
(Supplementary Table S3).

Module M9 taxa are high prevalence and M9 is
mostly composed of a subset of Co OTUs. We
designated M9 as ‘Reduced Core’ (RC). The taxon
classifications of the RC module are dominated by
phylum Bacteroidetes, with high relative abundance
of Bacteroides, Parabacteroides and Alistipes.

OTUs and faecal sample composition profiles cluster to
multiple modules
Because iBBiG allows both OTUs and faecal compo-
sition profiles to belong to multiple clusters, 11 OTU
groups and 7 profile groups are defined by combina-
tions of the four main modules (Figure 2). One OTU
group clustered with just the Core module, so we
refer to this OTU group as the Co group (Figure 2).
A second group formed from clustering both the
Co and DA modules, designated the Co-DA group.
Using this nomenclature system based on combina-
tions of the modules, the remaining OTU groups are
Co-DA-LA, Co-LA, Co-LA-RC, Co-RC, DA, DA-LA,
LA, LA-RC and RC (Figure 2). In all, 4742 OTUs did
not cluster to any of the four modules and belong to
the Ua group (Figure 2).

The iBBiG modules also defined seven groups of
microbiota composition profiles (Figure 2). A large
number (314) of these composition profiles cluster
with just the Co module (Figure 2). We therefore

Figure 1 Genus-level (inner circle) and Order-level (outer ring) classifications of OTUs belonging to each of the four major modules, and
the average proportion of these classifications in faecal microbiota composition profiles clustered to these modules, using the RDP
database.
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refer to this as a General group (GN). One hundred
and forty-seven composition profiles cluster with
both the Co and DA modules, so we have designated
this as a High Diversity (HD) group. The third
composition profile group is a mixture of the Co,
DA and LA modules, so has been defined as a Mixed
(MX) group. The fourth group is made up of
composition profiles belonging to both the Co and
LA modules. This is referred to as the General Long-
stay-Associated group (GN-LA). The fifth group
consists of composition profiles that only contain
the RC module OTUs, and so we refer to it as a Low
Diversity (LD) group. The sixth group clusters with
the LA and RC modules. This is termed the Low
Diversity Long-stay-Associated (LD-LA) group.
A seventh group clusters with only the LA module,
but with only one composition profile in this group,
it is not informative. The residual eight sample
composition profiles were combined into a group
termed Unclustered. The composition profiles for
these groups are shown in Supplementary Figure S4,
representing the large range of microbiota composi-
tion at genus level across the cohort.

To further explore the relationship between OTU
groupings and microbiota profile groupings, we
generated a heat plot of the OTUs and microbiota
composition of each faecal sample, separated
by their iBBiG groups (Figure 3), and residence
location data for the composition profile groups
(Supplementary Table S3). Although there are
associations between certain microbiota profiles
and particular residence locations, living in a certain
residence location does not absolutely define the
microbiota composition profile group for an indivi-
dual. This analysis also highlights that OTUs shared
between the Core and Reduced Core (Co-RC) are
some of the most abundant and prevalent OTUs.
These OTUs must be particularly important for the
normal functions of the microbiota. The microbiota

diversity metrics for the composition profile groups
shown in Supplementary Figure S5 illustrate the fact
that the microbiota diversity of a group or individual
is a function of the number and size of the OTU
modules that it harbours (discussed further in
Supplementary Information).

All but two of the young individuals clustered
with the composition profile group GN. One control
clustered with the HD group microbiota profiles, and
one had particularly high diversity and was clus-
tered into profile group MX, confirming with greater
precision our previous observation that the young
subjects’ microbiota separates with that of healthy
elderly subjects by PCoA (Claesson et al., 2012).
Compared with the simple residence stratification of
subjects in Supplementary Figure S2, the composi-
tion profile group annotation of the three-
dimensional PCoA analysis (Figure 4) highlights a
gradient from a preponderance of microbiota com-
position from community-dwelling HD microbiota
subjects to the right of the figure toward long-stay
predominance (LD) on the left.

iBBiG modelling compared with other microbiota
composition clustering methods
Other methods have been developed for
describing and comparing complex microbiota data
sets, including Co-Abundance Groups (CAGs) and
enterotypes (Arumugam et al., 2011; Claesson et al.,
2012). These rely upon either clustering of micro-
biota compositions of faecal samples, or in the case
of CAGs, a model based on co-occurrence of genera
which do not form discrete clusters. The enterotype
model was previously found not to fit the ELDER-
MET data set well (Claesson et al., 2012), and this
observation has been reported for other microbiota
data sets (Knights et al., 2014). This is due to the
continuous variation in the microbiota composition

Figure 2 Workflow indicating the definition of four modules from co-clustering of composition profiles and OTUs. OTUs can cluster into
multiple modules to form groups (left) from overlap between modules. OTU group names are generated by combinations of the modules to
which the OTUs were assigned. Composition profiles are also allowed to cluster to multiple modules, leading to seven groups (right). The
numbers of OTUs and of composition profiles that fall into each of the groups are indicated.
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between individuals in any sufficiently large cohort.
iBBiG bi-clustering provides both microbiota com-
position profile-based and OTU-based clusterings
dependent on the presence or absence of OTUs
within the profiles, whereas other approaches cluster
by microbiota composition profiles alone. This
allows iBBiG to be more discriminatory for compar-
ing data sets. iBBiG also allows the composition

profile of samples to be members of more than one
cluster or group and so better reflects the gradient
nature of the data, whereby overlapping modules are
defined by the algorithm. iBBiG can cluster micro-
biota profiles of faecal samples based on subsets of
the data, thereby finding secondary and tertiary
structures within data sets. iBBiG is optimised for
sparse data such as OTU matrices (Gusenleitner
et al., 2012), and the use of binary information
removes the problem of the non-parametric nature of
the data set, which means it is not excessively
influenced by high-abundance taxa.

To investigate correspondence of CAGs with
iBBiG modules, we applied the CAG methodology
to the OTU data set of compositional profiles of
faecal samples from 384 subjects, to produce a
hierarchical clustering/heat map and dendrogram
in which the CAGs are graphically identified
(Supplementary Figure S6). We aligned this heat
map with the four iBBiG modules. These presence/
absence data correlate with the major CAGs that are
identified by the dendrogram branches and the large
squares of red in the hierarchical clustering. Thus
iBBiG clustering identifies groupings that are
broadly comparable to CAGs. However, iBBiG has
the advantage of clustering microbiota profiles as
well as OTUs, and this provides greater granularity.

Metadata associated with differential microbiota
composition
We have previously investigated the association of
clinical variables to the microbiota (Claesson et al.,
2012). When assessing which variables may change
the microbiota, we concentrated on diet as this was
the largest trend in the data set. Since then, a number
of reports have confirmed that diet is a major
determinant of the microbiota (Zhang et al., 2009;
Mujico et al., 2013; Fallucca et al., 2014; Kelder
et al., 2014; Saha and Reimer 2014; Salonen et al.,
2014). A diet with increased content of animal
products and reduced plant-based content is
associated with a microbiota that, in turn, is
associated with increased frailty (Claesson et al.,
2012). Conversely, a high consumption of plant-
based foods correlates with a diverse microbiota that
is associated with healthy ageing (Claesson et al.,
2012). However, it has not been established what
proportion of the variance in the microbiota can be
attributed to diet in the elderly. There are obviously
many other factors that could potentially affect the
microbiota such as an altered gut physical environ-
ment associated with senescence, inflammation and
the number of co-morbidities of an individual. Thus
we interrogated the dietary–microbiota relationship
on this considerably larger data set and investigated
which metadata variables explain the variations in
microbiota populations in the elderly gut.

In order to visualise associations between the
microbiota modules and dietary properties, habitual
diet information in the form of FFQ data was

Figure 3 Heat plot of the microbiota composition profiles of
subjects in the iBBiG groups (top), against OTUs in the iBBiG
groups (side). Day hospital-visiting subjects were classified as
‘Community dwelling’. Rehabilitation subjects were classified as
‘Residential care’.

Figure 4 3-Dimensional PCoA on binary data, highlighting
iBBiG-defined microbiota composition profile groups.
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correlated with OTU abundances (Supplementary
Figure S7) revealing a large number of associations.
These correlations are weak, with scores in the range
of − 0.346 to 0.377. The correlations found are either
between fibre and its associated food properties and
OTUs or with saturated fat and its associated food
properties and OTUs. Fibre (non-starch polysacchar-
ide) was associated with increased abundances of
OTUs from groups Co-DA and DA. OTUs in these
groups are at their highest abundances in the
composition profile group HD (Figure 3), which is
mostly comprised of microbiota composition
profiles from community-dwelling subjects.
Increased abundances of OTUs from OTU groups
Co-LA, Co-LA-RC, LA and LA-RC have the highest
correlations with saturated fat consumption. OTU
groups LA and LA-RC are at highest abundances in
the microbiota profiles belonging to composition
group GN-LA, which is dominated by microbiota
composition profiles from long-stay subjects.

We next searched for correlations between the
iBBiG-defined modules and specific food properties.
For each microbiota composition profile, we calcu-
lated the SoLA of OTUs in each of the iBBiG modules.
We then correlated these with the food properties
(Supplementary Table S4). We found that the SoLA of
OTUs from the DA and Ua modules were associated
with increased consumption of fibre and other plant-
based food properties, whereas OTUs from the LA
and RC modules were associated with increased fat
and sucrose consumption. The Co module was not
significantly associated with any higher or lower
intake level for the food properties tested, consistent
with its near universal presence across the cohort.
This does not mean that individual taxa in the Co
cannot change abundance in response to dietary
interventions (Wu et al., 2011; David et al., 2013).

We utilised the SoLA of OTUs from each module
for each composition profile to determine the most
parsimonious model (most variance explained by the
lowest number of variables) for associations between
microbiota populations and health, immunological
factors and food properties. In total, 19 factors as
described in our previous publication (Claesson
et al., 2012) were used to generate minimal statistical
models predicting each of the 5 OTU modules.
Values for interleukin (IL)-6, IL-8, tumour necrosis
factor-α, body mass index and calf circumference
(a measure of muscle loss/sarcopenia, and strongly
associated with frailty) did not explain a significant
amount of variance (Likelihood Ratio Test 40.05)
when tested individually or after adjustment for the
other variables. The variable HeFD had the strongest
positive correlation with the SoLA of OTUs from the
Co, DA and Ua modules (Supplementary Table S5).
Lower nutritional status (MNA) was associated with
increased SoLA of OTUs from the LA module
(Supplementary Table S5). The RC module showed
significant associations with long-stay residency and
levels of C-reactive protein (CRP; an inflammatory
marker), but only for the higher CRP value range of

5–10mg l−1 compared with o5mg l−1. There was no
significant microbiota correlation for higher values
of CRP. Depression as defined by a Geriatric
Depression Test score of o5 was significantly
associated with reduced abundance of the DA
module. The Barthel Index that measures frailty (a
reduction in physical and mental health) was
associated with the Co and DA modules, and
inversely associated with the LA module, showing
that frailty is increased as people move from a HD-
type microbiota to a GN-LA type. It is worth noting
that the LA module is highly associated with the age
of the individual but only after the removal of other
age-related variables (frailty and MNA) from the LA
module model (Supplementary Table S6). Therefore,
we propose that the LA module is strongly asso-
ciated with ageing.

In our previous study (Claesson et al., 2012) and in
the analysis above, we examined microbiota–health
associations across a range of residential strata.
Reasoning that the associations found should also
be detectable within strata, we analysed metadata
components from non-antibiotic-treated community-
dwelling subjects only (Figure 5 and Supplementary
Figure S8). This analysis indicated that community
subjects with microbiota profiles that fall into the LA
composition group GN-LA have reduced FIM values,
reduced Mini Mental State Exam scores and
increased CRP levels, all markers of poorer health
even though they are resident in the community.
Conversely, the community-associated composition
group HD shows healthier levels of all these
variables. Plotting diversity against FIM and over-
laying groups of microbiota composition profile
shows that subjects with low microbiota diversity
often have low FIM values (Supplementary
Figure S9). However, what is not intuitive is that
while the presence of the LA-type microbiota
increases diversity, it is associated with decreased
FIM values, as can be seen from the FIM values
comparisons for compositional profile group GN
with GN-LA and HD with MX. Thus higher micro-
biota diversity is not axiomatically linked with
superior health.

Given the weak associations between particular
food properties and OTUs from each of the five
modules (Supplementary Table S4), and the larger
associations between HeFD, MNA and the micro-
biota modules (Supplementary Table S5), it is clear
that overall diet is a better indicator of harbouring a
health-associated microbiota than individual dietary
components or the clinical variables tested. Data
from dietary interventions will provide more
detailed information on how much of the microbiota
is modulated by diet and to what degree. Other
variables that are associated with the microbiota
include residential care and age. We have also
shown that many cytokines that are used as
markers for immunological status are not signifi-
cantly different between subjects in different mod-
ules after adjustment for other factors, particularly
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age. For instance, IL-6 levels do not predict micro-
biota populations well after adjustment for age, but
particular microbiota populations are associated
with increased age (Supplementary Table S6), which
in turn is associated with increased IL-6 levels.
Therefore, while microbiota composition may not be
predicted by certain variables, associations may still
be observed.

Intra-individual microbiota composition changes over
time
In order to investigate microbiota stability over time,
we selected 52 subjects for whom we had microbiota
composition data from three time points; the initial
time point (T0), 3 months (T3), and 6 months (T6),
and who had not been treated with antibiotics during
this time. These included 30 community-dwelling
subjects and 22 long-stay subjects. Using the Spear-
man distance (between microbiota at two time
points), we selected subjects in the highest quartile
of absolute distance between T0 and T3 and denoted
these subjects as ‘unstable’. The magnitude and

direction of change for each subject is shown in
Supplementary Figure S10. This highlights that
some of the stable long-stay subjects have microbiota
similar to that of community-dwelling subjects,
whereas some of the unstable community subjects
share similarities with long-stay subjects.

Based on this definition of stable and unstable,
we investigated subsequent microbiota stability
between 3- and 6-month periods (Figure 6). There
were no statistically significant differences between
stable community and long-stay microbiota or
between unstable community (uCommunity) and
unstable long-stay (uLongstay) microbiota between
T0 and T3 (Figure 6a). Between T3 and T6, the
unstable subjects’ microbiota still showed a greater
magnitude of change than the microbiota of
stable subjects (Figure 6b), although this difference
was not significant in long-stay subjects. Therefore,
the overall change over 6 months was greater in
unstable-microbiota subjects than in stable-
microbiota subjects (Figure 6c). Interestingly, there
was an unexpectedly significant difference between
the stable-microbiota long-stay subjects and the

Figure 5 Health factors associated with iBBiG-defined microbiota profile groups, showing (a) FIM; (b) Mini Mental State Exam (MMSE);
(c) IL-6 levels in the blood (logged); (d) calf circumference; in community-dwelling subjects who were not consuming antibiotics within
1 month prior to sample collection. Kruskal–Wallis test was used to determine significant differences between any composition profile
groups.
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stable-microbiota community subjects, which was
not observed between T0 and T3. This suggests that
the microbiota changes in long-stay are at least
partially cumulative.

Microbiota diversity and stability
Diversity at the T0 time point was significantly
higher in stable-microbiota community subjects than
uCommunity subjects (Shannon diversity) and
higher in stable-microbiota long-stay subjects than
in uLongstay subjects (as reflected by three separate
measures, Shannon, Chao1 and Phylogenetic diver-
sity; Figure 7). There was a significant negative
correlation between microbiota diversity at the
initial time point and the size of change measured
between T0 and T3 (Figure 8; Po0.005 Shannon
diversity; Po0.001 for Phylogenetic diversity; linear
regression model; iBBiG classification for visualisa-
tion and was not used in the statistical model). This
negative correlation suggests that a high level of
diversity may be protective against microbiota
instability. However, this low diversity-related
instability is a separate feature from the gradual
change observed for the stable long-stay microbiota
profiles, as these had a similar level of diversity to
the stable community microbiota which did not
show the same gradual change over time. Thus this
type of gradual change is caused by forces other than
diversity acting on the microbiota. Some microbiota
composition groups exhibit quite a small change
between T0 and T3 (for example, groups HD and
MX), whereas group LD has a high magnitude of
change, significantly higher than all other groups
shown here (Supplementary Figure S11a). The low
level of microbiota diversity in this group and the
domination by the genus Bacteroides may be
involved in the observed instability. Data from those

subjects who had not received any antibiotics during
this study (Supplementary Figure S11b) showed that
these significant differences are maintained.

Duration in long-stay care changes microbiota
composition group and diversity
The DA module microbiota is associated with con-
sumption of healthy plant-based diets (Supplementary
Table S4), whereas the LA module microbiota is
associated with age and residency in long-term care
(Supplementary Table S5). Residential care is itself
associated with a diet low in plant-based nutrients and
high in saturated fat and sugar as well as co-residence
with other elderly individuals, high antibiotic
treatment rates and increased co-morbidity
(Claesson et al., 2012). We can therefore use this
study to determine how the microbiota composition
profile groups change with duration in long-term
residential care.

Subjects entering long-stay are already depleted
for OTUs corresponding to the Co and DA modules
compared with the community-dwelling individuals
(Supplementary Table S7). There is a clear increase
in the proportion of subjects with the LA module
microbiota with increasing duration in long-term
care (Supplementary Table S7, χ=19.9, df = 3,
P-value =0.000176). We analysed the change in each
module for each subject over the log (base 10) of
the number of days spent in long-term care
(Supplementary Table S8). From this, we determined
a significant decrease in OTUs from both the Co and
DA modules with duration in long-term care and a
significant increase in LA module OTUs was
identified with duration in care. There was also a
trend for a decrease in Ua OTUs with duration in
care. As the duration was logged, this indicates that
when a person enters long-term residential care,

Figure 6 Boxplots showing the absolute Spearman distance from (a) T0 to T3; (b) T3 to T6; (c) overall from T0 to T6; for subjects
classified as community-dwelling (CM), long-stay-dwelling (LS) and unstable subjects from the community (uCM) and from long-stay care
(uLS). Significant differences between groups were determined by analysis of variance of linear models.
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their microbiota changes quickly, and continues to
change, albeit at a decelerated rate, for at least
18 months. Using categories for duration in care, we
can represent these changes with boxplots
(Supplementary Figure S12). These changes are not
just a loss in community-associated OTUs but are
accompanied by a gain in LA OTUs. As there is both
a gain and a loss, the net diversity does not change
significantly with duration in care (Supplementary
Table S8). Thus, if microbiota diversity is a con-
tributing factor to health status, the influence of
particular OTUs that have associations with major
food properties, age, nutrition and duration in care
carry more weight than microbiota diversity alone.

The microbiota is maintained in a dynamic state,
and outside factors such as diet have a cumulative
effect over time as well as causing an initial rapid
change in state. The timescale of microbiota changes
is longer than seen in previous publications
(Claesson et al., 2012), being at least 18 months, as
determined by the continued changes presented in
Supplementary Figure S12.

Microbiota changes and stability after antibiotic
treatment
It is well established that antibiotic consumption is
associated with reduced microbiota diversity and
causes altered composition (Woodmansey et al.,
2004; Dethlefsen et al., 2008; Pérez-Cobas et al.,
2012; Ferrer et al., 2014). This was also identified in
our previous analyses of ELDERMET subjects, but
only a small number of changes were observed
(O'Sullivan et al., 2013). To investigate this further,
we modelled the pairwise changes of the SoLA of
OTUs and diversity from each module between time
points associated with antibiotic treatment and
compared these with individuals who did not
receive antibiotics (Supplementary Table S9). Sub-
jects were divided into four categories. These are
(i) subjects not taking antibiotics at the first time
point but taking them at the second time point (New
Antibiotic Treatment), (ii) subjects taking antibiotics
at the first time point but not at the second
(Antibiotic Recovery), (iii) subjects continuously
taking antibiotics, and (iv) subjects not taking

Figure 7 Diversity boxplots showing differences between stable and unstable community and long-stay subjects at T0. Diversity
measures include (a) Shannon; (b) Simpson; (c) Chao1; and (d) Phylogenetic. Significance was determined by analysis of variance of linear
models for Shannon, Chao1 and Phylogenetic diversities and by Wilcoxon rank-sum test for Simpson diversity.
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antibiotics at either time point. New antibiotic use
was associated with significant decreases in SoLAs
of OTUs from the Co, DA and Ua modules between
time points. Recovery from antibiotic use showed
significant increases in abundances of OTUs from
the Co, DA and Ua modules. Continuous antibiotic
use, however, was associated with reduced effect
magnitude and did not show significant changes
in abundances of OTUs from any module
(Supplementary Table S9). Abundances of OTUs from
the LA and RC modules did not change in response to
antibiotic use. Thus analysis of the SoLA of OTUs of
each module allows us to detect large changes in the
microbiota at the microbial population level.

Models for changes in diversity with antibiotic
treatment were inconclusive. Of the four indices used,
only Shannon diversity showed a significant change
with antibiotic treatment and did not show significance
for recovery (data not shown). This may be due to the
varying times between antibiotic consumption and
sampling. It may also be explained by the fact that
although the Co, DA and Ua modules react to treatment
with antibiotics the way we predicted, the LA and RC
modules showed no significant changes associated
with antibiotic usage. Because the microbiota of some
elderly individuals, particularly long-stay subjects,
contain high proportions of LA and RC module OTUs,
the lack of change in diversity may be explained by the
elderly gut having higher proportions of these bacterial
populations that are not significantly altered by
antibiotic use.

To quantify microbiota changes between time
points and the magnitude of change attributable to
antibiotic treatment in comparison to subjects
not receiving antibiotics, we examined absolute

Spearman distance between T0 and T3 and
between T0 and T6 (Supplementary Figure S13;
Supplementary Tables S10 and S11). In community
subjects, the distance measured between T0 and T3
was not different from the overall distance between
T0 and T6, regardless of antibiotic consumption,
suggesting that, once a microbiota has changed due
to antibiotics or otherwise, it does not continue to
change from its original state.

Distance between time points for subjects who had
not taken antibiotics was lower than distances
between time points of people who were consuming
antibiotics, showing that antibiotics are associated
with increased instability in the microbiota. In long-
stay subjects, the distance between T0 and T3 was
less than the overall distances between T0 and T6 in
all categories. Therefore, regardless of antibiotic
consumption, long-stay subjects show cumulative
gradual microbiota changes that we did not observe
for the community subjects.

Concluding remarks

With global increases in life expectancy, healthy
ageing is increasingly important, as is the need to
understand the structure of gut microbiota in older
people and the role that it has in healthy ageing. We
have shown that this microbiota consists of groups of
co-occurring taxa that are either core and rarely lost or
are groups of co-occurring microbiota that are
associated positively with health parameters, while
other groups are associated negatively with these
parameters. Subjects harbouring the LA module
microbiota are frailer, consume increased amounts
of sugars and fats, have reduced MNA scores and are
mostly found in long-term care facilities but are also
detectable in the community with similar signs of
biological ageing. A healthy diet is important for
maintaining the HD community-type microbiota;
however, we identified microbiota profiles that are
age/frailty-related and are independent of the HeFD.
Subjects with low microbiota diversity are prone
to large microbiota changes, but this temporal
instability is independent of gradual change
observed when individuals enter residential care.
This gradual change continues for at least
18 months, over which time subjects lose
community-associated genera (from the Co and
DA modules) and gain long-stay-type micro-
biota (LA module). This timescale should be
considered when planning intervention studies, in
order to be able to fully detect the changes caused
by the intervention over the normal background
changes. Further studies will be needed to assess
whether this timescale is suitable for younger
individuals.
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