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Abstract

Motivation: Several algorithms exist for detecting copy number variants (CNVs) from human

exome sequencing read depth, but previous tools have not been well suited for large population

studies on the order of tens or hundreds of thousands of exomes. Their limitations include being

difficult to integrate into automated variant-calling pipelines and being ill-suited for detecting com-

mon variants. To address these issues, we developed a new algorithm—Copy number estimation

using Lattice-Aligned Mixture Models (CLAMMS)—which is highly scalable and suitable for detect-

ing CNVs across the whole allele frequency spectrum.

Results: In this note, we summarize the methods and intended use-case of CLAMMS, compare it to

previous algorithms and briefly describe results of validation experiments. We evaluate the adher-

ence of CNV calls from CLAMMS and four other algorithms to Mendelian inheritance patterns on a

pedigree; we compare calls from CLAMMS and other algorithms to calls from SNP genotyping

arrays for a set of 3164 samples; and we use TaqMan quantitative polymerase chain reaction to val-

idate CNVs predicted by CLAMMS at 39 loci (95% of rare variants validate; across 19 common vari-

ant loci, the mean precision and recall are 99% and 94%, respectively). In the Supplementary

Materials (available at the CLAMMS Github repository), we present our methods and validation re-

sults in greater detail.

Availability and implementation: https://github.com/rgcgithub/clamms (implemented in C).

Contact: jeffrey.reid@regeneron.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Detecting copy number variants (CNVs) with whole exome sequenc-

ing data is challenging because CNV breakpoints are likely to fall

outside of the exome. Almost all CNV-calling algorithms for whole

exome sequencing base their calls on read depths within the CNV,

which are linearly correlated to copy number state. Previously pub-

lished algorithms include CoNIFER (Krumm et al., 2012), XHMM

(Fromer et al., 2012), ExomeDepth (Plagnol et al., 2012) and

CANOES (Backenroth et al., 2014).

Depth-of-coverage is subject to both systematic biases (often

related to sequence GC-content) and stochastic volatility (which is

exacerbated by variation in input DNA quality). CNV callers must

normalize coverage data to correct for systematic biases and charac-

terize the expected coverage profile given diploid copy number, so
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that true CNVs can be distinguished from noise. Variability in sam-

ple preparation and sequencing procedures result in additional

coverage biases, often referred to as ‘batch effects’.

CoNIFER and XHMM use principal components analysis to

identify and remove systematic biases, while ExomeDepth and

CANOES handle bias by normalizing each sample’s coverage

against the average in a small, ‘custom’ reference panel of samples

with coverage profiles that are highly correlated to the individual

sample in question. Both strategies have quadratic time complexity

and large RAM requirements.

Each of these algorithms assumes that reference panel samples

are always diploid (presenting a unimodal coverage distribution at

each exon), resulting in inaccurate genotypes at common CNV loci.

They can also mistake population stratification of common CNVs

for batch effects if true batch effects are minimal.

2 Algorithm

The CLAMMS algorithm has three steps, outlined in Figure 1.

1. Coverage values for individual samples are normalized inde-

pendently to correct for GC-amplification bias and overall aver-

age depth-of-coverage. Low-mappability regions are filtered

altogether, as the read depths in these regions do not accurately

represent the sequence dosage in the genome.

2. Given a reference panel of samples, a finite mixture model is fit

for each exome capture region. Each mixture component models

the expected distribution of coverage across samples for a par-

ticular integer copy number state. Model parameters will vary

from exon to exon, correcting for additional non-GC-related

coverage biases. Exome-wide, copy numbers 0–3 are considered;

in known duplication regions, copy numbers 4–6 are considered

as well (see Supplement Section S1.3).

3. CNVs are called for individual samples using a hidden Markov

model (HMM). The input sequence to the HMM is the sample’s

normalized coverage values for each region. Emission probabil-

ities are based on the trained mixture models and transition

probabilities are similar to those used by XHMM.

The details of each step are described in the Supplementary

Material. Mixture models allow for copy number polymorphic loci

to be handled naturally, while the HMM incorporates the prior ex-

pectation that nearby anomalous signals are more likely to be part

of a single CNV than multiple small CNVs. Mixture models have

previously been used by Genome STRiP (a CNV caller for whole-

genome data, Handsaker et al., 2015), and XHMM, ExomeDepth

and CANOES use HMMs; but to our knowledge, no previous CNV-

calling algorithm has integrated both in a single probabilistic model.

Similar to CANOES and ExomeDepth, we handle data hetero-

geneity by selecting a ‘custom’ reference panel for each sample. Our

CNV calling pipeline (discussed further in the Supplementary

Material) works as follows:

1. We define a distance metric between samples based on seven

sequencing quality control metrics from Picard (http://broadin

stitute.github.io/picard).

2. Each newly sequenced sample is added to a k-d tree in this met-

ric space. CNVs are called using a reference panel consisting of

the sample’s 100 nearest neighbors, which are found efficiently

using the k-d tree.

Indexing n samples and finding the k nearest-neighbors for each

sample takes O(kn log n) time. Once the nearest neighbors have

been found, calling CNVs for the n samples takes O(kn) time, so the

complexity of the whole pipeline is O(kn log n). This improves on

the O(n2) complexity of previous algorithms, which all compare the

coverage profile of each sample to every other sample.

3 Validation

We performed computational and biological validations to compare the

performance of CLAMMS and previous algorithms. We summarize

our results here; details are provided in the Supplementary Material.

First, we used CLAMMS, XHMM, CoNIFER, CANOES and

ExomeDepth to call CNVs for an eight-member pedigree, sequenced

in three technical replicates. Ninety-two additional samples were

provided as a reference panel. By definition, most CNVs in the pedi-

gree are common variants. CLAMMS called a mean of 13.5 CNV/

sample. Ninety-five percent of its calls in children were inherited

and 92% of calls were consistent across all technical replicates.

XHMM, CoNIFER and CANOES were insensitive to common vari-

ants; ExomeDepth is sensitive, but < 2=3 of its calls were inherited.

Second, we compared CNV calls from each algorithm (except

CANOES, which ran out of memory on a server with 30 GB RAM)

against ‘gold-standard’ calls from microarrays (PennCNV, Wang et

al., 2007) for 3164 samples. We limited this analysis to rare variants

(AF�0.1%) to avoid false positives related to batch effects in the

array data. Using high-quality array-based rare-variant calls as the

ground-truth, CLAMMS had the best performance (F-score 6.6%

higher than ExomeDepth, 9.3% higher than XHMM and over dou-

ble that of CoNIFER).

Fig. 1. Overview of the CLAMMS CNV-calling pipeline. A reference panel is

selected for each sample based on seven sequencing QC metrics using an ef-

ficient k-d tree data structure. After selecting reference panels, each sample

and its corresponding reference panel may be processed in parallel across

processes and/or servers, requiring only �50 MB of RAM per process
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Finally, we used TaqMan quantitative polymerase chain reaction to

validate a random subset of CNVs predicted by CLAMMS at 20 rare

variant loci and 19 common variant loci that overlap disease-associated

genes in the Human Gene Mutation Database (not limited to genes

associated with CNVs; 7 430 disease genes in total; Stenson et al.,

2012); 19/20 (95%) rare variants were validated. At the common vari-

ant loci, CLAMMS genotypes achieved mean precision/recall values of

99.0% and 94.0%, respectively. ExomeDepth also had near-perfect

performance for mid-frequency CNVs but had inaccurate genotypes at

highly polymorphic loci (see Supplementary Table S5).
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