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Abstract

Sirtuins or Sir2 family of proteins are a class of NAD+ dependent protein deacetylases which are 

evolutionarily conserved from bacteria to humans. Some sirtuins also exhibit mono-ADP ribosyl 

transferase, demalonylation and desuccinylation activities. Originally identified in the yeast, these 

proteins regulate key cellular processes like cell cycle, apoptosis, metabolic regulation and 

inflammation. Humans encode seven sirtuin isoforms SIRT1-SIRT7 with varying intracellular 

distribution. Apart from their classic role as histone deacetylases regulating transcription, a 

number of cytoplasmic and mitochondrial targets of sirtuins have also been identified. Sirtuins 

have been implicated in longevity and accumulating evidences indicate their role in a spectrum of 

diseases like cancer, diabetes, obesity and neurodegenerative diseases. A number of studies have 

reported profound changes in SIRT1 expression and activity linked to mitochondrial functional 

alterations following hypoxic-ischemic conditions and following reoxygenation injury. The SIRT1 

mediated deacetylation of targets such as PGC-1α, FOXO3, p53 and NF-κb has profound effect 

on mitochondrial function, apoptosis and inflammation. These biological processes and functions 

are critical in life-span determination and outcome following injury. Aging is reported to be 

characterized by declining SIRT1 activity and its increased expression or activation demonstrated 

prolonged life-span in lower forms of animals. A pseudohypoxic state due to declining NAD+ has 

also been implicated in aging. In this review we provide an overview of studies on the role of 

sirtuins in aging and injury.
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Introduction

Protein acetylation is a post translational modification that regulates key cellular functions 

including DNA recognition, protein–protein interaction, catalytic activity and protein 

stability [1–3]. The protein acetylation and deacetylation at N-epsilon lysine residues are 

catalyzed by histone acetyltransferases (HATs) and histone deacetylases (HDACs) 

respectively [4]. There are four classes of HDACs, Classes I–IV, based on phylogenetic 
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analysis of all HDAC-related proteins [5]. Sirtuins are classified as Class III HDACs that are 

homologous to yeast transcriptional repressor, Sir2 [4]. The major functional difference 

between sirtuins and other HDACs is that sirtuins catalyze deacetylation of substrate 

proteins in a reaction that consumes NAD+. These protein modifying enzymes play 

significant roles in diverse cellular processes like apoptosis [6, 7], mitochondrial biogenesis 

[8], lipid metabolism [9], fatty acid oxidation [9, 10], cellular stress response [11–14], 

insulin secretion [15], aging [16–19] and inflammation [20].

Biochemistry of sirtuins

Sir2 (silent information regulator2) was the first sirtuin identified, from studies on mating 

type regulation in yeast Saccharomyces cerevisiae [21, 22]. The first evidences of the 

enzymatic activity of sirtuins came from studies on Sir2. Using 32P-labelled NAD it was 

shown that human ortholog of yeast Sir2 can transfer 32P from NAD+ to bovine serum 

albumin, suggesting their role in mono ADP ribosylation of proteins [23]. The observed 

enzymatic activity of Sir2 was found to be critical for the transcriptional repression at the 

silent mating–type loci, telomeric DNA regions, and the rDNA repeats [24]. The role of 

sirtuins as histone deacetylases was better characterized following molecular analysis of 

lysine residues of specific histone subunits [25–27]. Imai et al analyzed the product formed 

from Sir2 reaction by HPLC and mass spectrometry, and together with supporting data from 

mutational studies on conserved residues of the core domain of Sir2 concluded that NAD+ 

dependent deacetylase activity rather than ADP-ribosyltransferase activity account for Sir2 

functions in vivo [25]. The histone deacetylation by Sir2 is coupled to NAD breakdown 

resulting in the formation of deacetylated protein, nicotinamide (NAM) and O-acetyl-ADP-

ribose (OAADPr) [28]. The deacetylation reaction catalyzed by Sir2 is represented in Figure 

1. The absolute requirement of NAD+ in the reaction, unlike the reactions catalyzed by other 

known protein deacetylases, makes their chemistry complex and energetically more 

demanding. However the benefit of this seemingly expensive reaction is its intricate 

regulation in multiple ways including by its own reaction products. The catalytic activity of 

Sir2 function is regulated by dynamic changes in cellular NAD+ concentration or the NAD+/

NADH ratio [29, 30]. Cellular levels of nicotinamide phosphoribosyltransferase (Nampt), 

the rate-limiting enzyme for NAD+ synthesis varies during different pathophysiological 

conditions and hence affect sirtuin activity [31]. NAM is a potent inhibitor of sirtuin-

mediated deacetylation [32]. PNC1 (pyrazinamidase/nicotinamidase 1), which encodes an 

enzyme that deamidates nicotinamide, converts NAM to nicotinic acid by a salvage pathway 

and regulates NAM accumulation [33]. Therefore both PNC1 and NAM can modulate Sir2 

activity in the cells. In addition, OAADPr, another product of Sir2 mediated deacetylation, is 

also increasingly recognized as an important metabolic by-product [34, 35]. OAADPr was 

found to regulate gene silencing by facilitating the assembly and loading of the Sir2-4 

silencing complex onto nucleosomes [36, 37]. Moreover, it is also a substrate for 

deacetylation by cellular macrodomain proteins like human MacroD1, human MacroD2, 

Escherichia coli YmdB, and the sirtuin-linked MacroD-like protein from Staphylococcus 

aureus [38]. Therefore the deacetylation catalyzed by Sir2 serves critical functions in 

cellular homeostasis.
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Sir2 gene family is highly conserved from bacteria to humans suggesting a common 

mechanism of gene silencing across the phylogenetic domains [39]. The bacterial and 

archaeal sirtuins play important roles in regulating transcription and cellular processes. For 

instance bacterial sirtuin CobB is an enzyme involved in propionate catabolism and 

cobalamin biosynthesis [40]. It deacetylates and activates acetyl-CoA synthetase in an 

NAD-dependent manner [41] and regulates E. coli chemotaxis by deacetylating CheY [42]. 

These findings suggest that both eukaryotes and prokaryotes carry out lysine acetylation as a 

common regulatory mechanism [41]. Studies also suggest a role for protein acetylation and 

deacetylation in bacterial stress response systems [43]. The archael sir2 homolog from 

Sulfolobus solfataricus P2 has both NAD-dependent deacetylase and mono-ADP-ribosyl 

transferase activities and regulate the binding of DNA binding protein alba [44].

Crystal structures of bacterial, yeast and mammalian sirtuins have been elucidated and 

reveal a highly conserved core domain made of a larger region with Rossmann-fold structure 

and a smaller variable region with zinc ribbon motif [45–47]. The sirtuins also contain N-

and C-terminal extensions outside the catalytic core which are not conserved [47]. 

Prokaryotes generally contain one or two sirtuin genes whereas eukaryotes encode multiple 

isoforms. Yeasts contain the founding member Sir2 and four homologs of Sir2 (HST1-4). 

Mammalian sirtuin system is composed of seven genes; SIRT1 to SIRT7 among which 

SIRT1 has the highest sequence similarity to yeast Sir2 [48]. Sirtuins from a diverse number 

of organisms were phylogenetically analyzed and organized in to 5 major classes (I, II, III, 

IV and U) [48]. Class 1 comprises 5 yeast sirtuins (Sir2 and HST proteins) and human 

sirtuins SIRT1, SIRT2 and SIRT3. Class II has mammalian SIRT4 and sirtuins from other 

eukaryotes and bacteria. Class III has mammalian SIRT5 as well as bacterial and archael 

sirtuins. Most bacterial sirtuins belong to Class III. Class IV includes mammalian SIRT6 and 

7. Class U contains sirtuins from gram positive bacteria and Thermotoga maritima.

An Overview of Mammalian Sirtuins

Mammalian sirtuins differ in their subcellular localization and function. SIRT1, SIRT6 and 

SIRT7 are mainly nuclear proteins with distinct subnuclear compartmentalization [49]. 

SIRT3, SIRT4 and SIRT5 are localized to mitochondria whereas SIRT2 is predominantly 

cytoplasmic [49]. While SIRT1-3 have strong deacetylase activity, SIRT4-7 are reported to 

have weak or no detectable deacetylase activity [50, 51] [52]; SIRT4 has predominantly 

ADP ribosyl transferase activity [53]. Table 1 represents the different mammalian sirtuins, 

their localization, and intracellular targets.

SIRT1

SIRT1, the mammalian ortholog of yeast Sir2, is the most studied mammalian sirtuin. 

SIRT1 plays important roles in embryonic development [149, 150] and skeletal muscle 

differentiation [151]. It has diverse functions in the cells ranging from chromatin 

modification and epigenetics to roles in metabolic pathways, inflammation and stress 

response (Figure 2) [152]. It interacts with and deacetylates histones and a number of non-

histone substrates. SIRT1 preferentially deacetylates specific residues in histone subunits 

like the lysine 16 of histone 4 (H4K16), lysine 9 of histone 3 (H3K9), lysine 56 of histone 3 

(H3K56) [153] and lysine 26 of histone 1 to promote heterochromatin formation and 
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transcriptional silencing [54, 55]. The non-histone protein substrates of SIRT1 include but 

not limited to tumor suppressor p53, nuclear factor-κB (NF-κB), peroxisome proliferator-

activated receptor gamma coactivator 1-alpha (PGC-1α), fork-head box protein O (FOXO) 

transcription factors, liver X receptor (LXR), PARP, Ku70 and hypoxia-inducible factor 

(HIF)-1α [154] [11, 58], [60], [61], [65] [70, 85, 155]). SIRT1 plays a predominant role in 

regulating apoptosis through deacetylating p53 and inhibiting p53 dependent transcription 

during cellular stress [56, 150, 156]. It also controls inflammation through regulating NF-κB 

signaling by deacetylating the p65 subunit of the complex thereby inhibiting NF-κB 

signaling. On the contrary, NF-κB signaling diminishes SIRT1 activity by modulating 

expression of miR-34a, IFNγ, and reactive oxygen species [57]. miR-34a, a tumor 

suppressor, has been reported to bind directly to 3′-UTR of SIRT1 thereby repressing its 

expression and enhancing p53 mediated apoptosis [157]. It has been also known that 

miR-34a is a transcriptional target of p53 [157, 158]. Furthermore, Kim et al demonstrated 

that p53 is influenced in miR-34a-mediated repression of SIRT1 in cisplatin-induced 

cytotoxicity [159]. The antagonistic crosstalk between SIRT1 and NF-κB signaling is 

apparent in many inflammatory diseases and aging [160–163]. Moreover, inflammation 

associated increase in nitric oxide (NO) production results in S-Nitrosylation and inhibition 

of SIRT1 activity which further heightens the inflammatory response through increased 

acetylation of p65 [164]. In addition, SIRT1 has demonstrated role as a tumor suppressor in 

rodent studies which likely involves its ability to deacetylate and inhibit beta-catenin 

transcriptional activity [165, 166].

SIRT1 plays a major role in metabolic regulation and PGC-1a deacetylation is one of the 

important events in this process. Hepatic SIRT1 has been suggested to play an important 

role in glucose and lipid metabolism in during fasting [167]. SIRT1 has a vital role in 

maintaining lipid homeostasis through PPARα mediated beta-oxidation of fatty acids in the 

liver [9] and mobilization of fat from white adipocytes during fasting [168]. In addition, 

SIRT1 controls mitochondrial biogenesis though regulating PGC-1α pathway [59]. SIRT1 

negatively regulates the expression and phosphorylation of signal transducer and activator of 

transcription 3 (STAT3) and STAT3 mediated cellular respiration [169]. A noteworthy 

aspect of SIRT1 mediated metabolic control is its regulation by AMPK which is also known 

as the cellular fuel gauge. AMPK activation has been reported to enhance SIRT1 activity by 

increasing NAD+ levels resulting in deacetylation of SIRT1 targets [170]. Conversely, 

SIRT1 activation is reported to induce AMPK activation by deacetylation of AMPK 

upstream kinase, LKB1 [74]. Adipokines like adiponectin have been shown to stimulate 

AMPK-SIRT1-PGC-1α pathway and increase mitochondrial content in myocytes [74]. 

Another key feature of SIRT1 is its positive regulation on insulin secretion in pancreatic β 

cells by repressing uncoupling protein2 (UCP2) gene [171]. The SIRT1 localization and/or 

enzymatic activity is subjected to regulation by post-translational modifications like 

phosphorylation [172], SUMOylation [173], S-nitrosylation [164] and carbonylation [174]. 

The pleiotropic roles of SIRT1 in the cells make it an important intracellular marker protein 

in aging as well as different diseases like cardiovascular diseases, diabetes, cancer, 

neurodegenerative diseases and other conditions in health and disease (Figure 3) [152].
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SIRT2

SIRT2 is the mammalian ortholog of yeast Hst2 and is predominantly cytoplasmic. It 

deacetylates α-tubulin [98]. SIRT2 protein levels often fluctuate during cell cycle, with a 

marked increase in expression and phosphorylation during the mitotic and G2/M transition 

phase playing a role in mitotic exit during cell cycle [175]. A characteristic feature of SIRT2 

is its migration to the nucleus during G2/M transition to modulate chromatin condensation 

by histone H4 deacetylation [96]. SIRT2 can also deacetylate FOXO1 and promote FOXO1 

binding to PPARγ resulting in the suppression of PPARγ activity and hence adipocyte 

differentiation [99]. It also deacetylates FOXO3A to promote expression of antioxidant and 

pro-apoptotic molecules under cellular stress [100]. A recent study suggests that cells sense 

extracellular oxidative stimuli to decrease acetylation of a key enzyme in the pentose 

phosphate pathway, glucose-6-phosphate dehydrogenase, in a SIRT2-dependent manner 

[108]. SIRT2 has been implicated in a number of diseases like cancer and neurodegenerative 

disorders like Parkinson’s and Huntington’s disease [176].

SIRT3

SIRT3 is an NAD+ dependent deacetylase predominantly located in the mitochondrial 

matrix. Inactive SIRT3 has been shown to be converted to an active form in the matrix 

following its cleavage by mitochondrial matrix processing peptidase [177]. It is highly 

expressed in tissues rich in mitochondria [178] and has a role in brown adipose tissue 

thermogenesis [179]. Another group reported the presence of enzymatically active full 

length SIRT3 in the nucleus which gets transported to the mitochondria under conditions of 

cellular stress [180]. However a later study by Cooper et al demonstrated an exclusive 

mitochondrial localization of human SIRT3 [180]. Consistent with its localization in 

mitochondria, loss of SIRT3 in a mouse model markedly elevated mitochondrial lysine 

acetylation [178]. SIRT3 loss resulted in a reduction in basal ATP levels in multiple organs, 

hyperacetylation of complex I components and reduction in complex I activity [181]. The 

first SIRT3 substrate identified was mitochondrial enzyme acetyl-CoA synthetase 2, the 

deacetylation of which leads to its activation [182]. SIRT3 acts as a stress responsive protein 

in the cardiomyocytes by deacetylating Ku70 and promoting its interaction with 

proapoptotic protein Bax thereby preventing Bax translocation to the mitochondria [117]. 

Another SIRT3 interacting partner is mitochondrial complex I protein NDUFA9 [181]. Two 

critical targets of SIRT3 deacetylation are mitochondrial superoxide dismutase (SOD2) and 

isocitrate dehydrogenase 2 (IDH2), the enhanced activity of these redox enzymes prevents 

accumulation of toxic ROS. By regulating ROS production, SIRT3 suppresses the hypoxia 

inducible factor 1α (HIF-1α) transcriptional activity and hence may act as a tumor 

suppressor [183]. SIRT3 has been reported to promote mitochondrial fatty acid oxidation by 

deacetylating long-chain acyl coenzyme A dehydrogenase, key enzyme involved in the 

oxidation of long-chain substrates [10]. A recent study suggests that a natural polyphenolic, 

Honokiol, blocks and reverses cardiac hypertrophy in mice by activating mitochondrial 

SIRT3 [184]. Taken together, it may be concluded that SIRT3 plays a significant role in 

maintaining mitochondrial homeostasis.
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SIRT4

SIRT4 is an NAD+ dependent ADP-ribosyl transferase localized to the mitochondria. 

Insulin secretion in pancreatic β cells is subjected to modulation by SIRT4 as secretion of 

insulin granules is triggered by local increase in ATP concentration by enzymes like 

glutamate dehydrogenase (GDH) that undergoes inhibition by SIRT4 ADP-ribosylation 

[53]. Another notable function of SIRT4 is its regulatory control over glutamine metabolism 

to facilitate DNA damage responses and to prevent tumorogenesis [185]. Consistently, 

mTORC1 pathway which is activated in proliferating tumor cells downregulates SIRT4 

expression [186]. Its deacetylase activity is reported to regulate hepatic lipid homeostasis 

[134]. SIRT4 was recently shown to possess lipoamidase function that inhibits the activity 

of pyruvate dehyrogenase, an enzyme that links glycolysis to citric acid cycle [135]. 

Together, these studies highlight a major role for SIRT4 in regulating cellular metabolism 

and preventing tumorogenesis.

SIRT5

Mitochondrial SIRT5 is an NAD+ dependent protein lysine demalonylase, desuccinylase 

[52] and a deglutarylase [187]. It plays a pivotal role in ammonia detoxification by 

deacetylating carbamoyl phosphate synthetase 1(CPS1), the rate limiting step in urea cycle 

[136]. In fact SIRT5 knockout mice had higher ammonia levels in blood during fasting or 

with a high protein diet [136]. CPS1 is also a target of desuccinylation [52] and 

deglutarylation by SIRT5 [187]. Other key targets of SIRT5 include SOD1 [137] and 

mitochondrial urate oxidase [138]. A recent study has reported its role in desuccinylating a 

key fatty acid oxidizing enzyme and promoting fatty acid oxidation [139]. Although loss of 

SIRT5 leads to hypersuccinylation of several metabolic pathway components [188], it is 

considered a dispensable isoform in terms of regulating metabolism [189].

SIRT6

SIRT6 is localized to nucleus and its enzymatic activities include deacetylation of histones, 

ADP ribosylase and lysine deacylase [190]. SIRT6 mediated lysine deacylation of tumour 

necrosis factor-α (TNF-α) promotes its secretion from macrophages [140]. SIRT6 is 

reported to have a crucial role in maintaining genomic stability and repairing DNA damages 

by different mechanisms [190]. It has a profound effect on glucose metabolism by 

suppressing the expression of HIF-1α and other glycolytic genes [191]. Hence a loss of 

SIRT6 resulted in severe hypoglycemia due to increased glucose uptake in muscle and fat 

tissues. It also exerts control over hepatic gluconeogenesis by regulating PGC-1α 

acetylation in an indirect manner through modifying the activity of acetyltransferase GCN5 

[143]. Additionally, SIRT6 is involved in lipid metabolism by negatively regulating 

triglyceride synthesis [192]. Like SIRT1, SIRT6 expression is correlated with longevity; its 

expression decreased with age in human dermal fibroblasts [193] and overexpression in 

male mice increased its life span [18]. SIRT6 function has also been implicated in several 

different types of cancers [190]. Collectively, these studies reveal major roles for SIRT6 in 

metabolism and aging.
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SIRT7

SIRT7 has been shown to be expressed in the nucleolus where it interacts with histones and 

RNA polymerase I to positively regulate ribosomal gene (rDNA) transcription [194]. It is 

phosphorylated during mitosis when the rDNA transcription is repressed and undergoes 

dephosphorylation and conformational changes to resume rDNA transcription at the exit 

from mitosis [195]. It is also proposed to play a key role in connecting the chromatin 

remodeling complexes to RNA Pol I machinery during transcription [196]. Initially an anti-

proliferative role for SIRT7 was described in a mouse model and murine cell lines [197]. In 

stark contrast, it was shown to deacetylate and repress transcription of genes linked to tumor 

suppression, thus maintaining oncogenic transformation [145]. The oncogenic potential of 

SIRT7 was further demonstrated in human hepatocarcinomas [198] and human colorectal 

cancer [199]. Other notable functions of SIRT7 include its role in ribosome biogenesis and 

protein synthesis [200], inhibition of hypoxia-inducible factor HIF-1α and HIF-2α [201], 

cofactor for transcriptional repression by Myc [202] and hepatic lipid metabolism [203]. A 

recent study reported its positive influence on mitochondrial homeostasis by regulating 

acetylation of GABPβ1, a master regulator of nuclear-encoded mitochondrial genes [147]. 

SIRT7 is considered a potential target for cancer therapy and studies continue to unravel 

novel roles for SIRT7.

Role of Sirtuins in Aging

The role of sirtuins in extending organism life span has been a topic of great interest among 

aging researchers. The functional relevance of sirtuins in mitochondrial bioenergetics and 

oxidative stress coupled with the observation that some of the sirtuins prolonged life 

prompted extensive studies on sirtuin family of proteins in aging biology. Though most of 

the studies on sirtuins were focused towards elucidating the functional role of SIRT1, other 

members of this family are also being studied to understand their role in aging, health and 

disease [204].

The initial results on the effect of Sir2 on life-span in yeast was further extrapolated into 

other model organisms like Drosophila, Caenorhabditis elegans and rodents [16, 18, 205, 

206]. In yeast, Sir2 mutation shortened lifespan owing to accumulation of toxic 

extrachromosomal rDNA circles (ERC) whereas Sir2 overexpression extended life span by 

silencing HM loci and inhibiting ERC formation [205]. Sir2 was found to mediate the life 

span extension in yeast induced by caloric restriction [207] by increasing mitochondrial 

oxidation and respiration [208]. Life span may be extended by limiting activity of glucose-

sensing cyclic-AMP-dependent kinase (PKA) which requires Sir2 and NAD [208]. Studies 

have also uncovered the role of nicotinamide clearance by PNC1 in regulating longevity by 

CR in yeast [33, 209]. Aging is reported to decrease tissue levels of NAD resulting in 

declined SIRT1 activity and decreased NAD+/NADH leading to increased ROS formation 

in mitochondria [210]. Another theory is the suppression of target of rapamycin (TOR) 

signaling pathway by CR [211] which leads to inhibition of ribosome biogenesis and 

relocalization of the transcription factors Msn2p and Msn4p from the cytoplasm to the 

nucleus thereby increasing expression of PNC1 [212].
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Consistent with a role for Sir2, its activator resveratrol was found to mimic CR induced 

longevity in the yeast [2] and sirtuin activating compounds (STACs) delayed aging in 

metazoans [213]. However the involvement of Sir2 or other homologs [214] in CR induced 

longevity has also been questioned in some studies [215–217]. For instance, CR was 

reported to enhance longevity in yeast cells lacking Sir2, implying a Sir2 independent 

mechanism [215]. Conforming to this observation, Sir2 homolog Hst2 was shown to 

mediate SIR2-independent life-span extension by CR [214]. Contrary to the above, another 

report precludes the involvement of any Sir2 family members in lifespan extension by CR 

[216]. Another study reports absence of a role for Sir2 in chronological aging (long term 

survival of non-dividing cells) in yeast unlike its role in replicative aging [218]. Increased 

Sir2 gene content also extended life span in Caenorhabditis elegans [16] and Drosophila 

[206]. In C. elegans, SiR2.1 activated DAF-16 [219], a forkhead transcription factor, that 

mediates life span regulation by insulin/IGF-1 signaling pathway [220]. Activating 

autophagy is one of the underlying mechanisms suggested to be behind life span extension 

benefits of Sir2 [221]. In Drosophila, overexpression of Sir2 in adult fat body but not in 

muscle promoted longevity indicating tissue specific effects of Sir2 expression [222, 223]. 

In humans, SIRT1 expression and activity are abrogated in aged arteries suggesting its role 

in vascular aging [224]. SRT1720, a small molecule activator of SIRT1, improved health 

and life span of mice, further suggesting the role of SIRT1 [225]. Interestingly a positive 

correlation exists between mitotic activity and SIRT1 levels in mammalian tissues [226]. 

The anti-aging effect of SIRT1 likely involves p53, as SIRT1 was found to antagonize 

promyelocytic leukemia protein (PML) induced acetylation of p53 and cellular senescence 

in primary mouse embryo fibroblasts [227]. Another plausible mechanism is through 

repressing PPARγ thereby attenuating adipogenesis and promoting fat mobilization in white 

adipocytes [168].

SIRT2 is reportedly elevated in the white adipose tissue and kidney of caloric restricted 

mice where it deacetylates FOXO transcription factors and increases expression of FOXO 

target genes, p27(Kip1), manganese superoxide dismutase and Bim [100]. Cohen and 

colleagues recently showed that SIRT6 overexpression in male mice extended life span 

compared to wild type mice and this was associated with lower serum levels of insulin-like 

growth factor 1 (IGF1) [18]. They also had observed an increased SIRT6 levels following 

caloric restriction in rats [228]. Accumulating evidences also suggest a role for SIRT3 in age 

related pathologies [229, 230]. Interestingly both mammalian SIRT3 and bacterial CobB 

regulate acetyl-CoA synthetase through its deacetylation suggesting an evolutionary 

conservation of the mechanism. Although sirtuins possess anti-aging functions from yeast to 

mammals, the underlying mechanisms have also evolved to meet the complexity of higher 

order species. In yeast, sirtuins mainly act through suppressing genomic instability 

(recombination mainly at the ribosomal DNA locus) where as in mammals they affect 

multiple pathways to regulate aging.

Aging has been described to be characterized by declining NAD+, delinking PGC-1α/β from 

mitochondrial control and the emergence of a pseudo-hypoxic state [210, 231]. Further, the 

pseudo-hypoxic state was compared to Warburg reprogramming and was suggested to be 

reflected in SIRT1 deficiency which may be restored with NAD+ augmentation. This has 
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parallels to injury conditions manifested by hypoxia and nutrient deprivation in downstream 

tissues and therefore SIRT1 mediated metabolic regulation in tissue injury and repair draws 

attention for investigations.

Role of Sirtuins in Tissue Injury and Repair

Sirtuins are key physiological modulators controlling a number of critical metabolic 

pathways and functions including cell death and repair. These physiological regulations 

occur by virtue of their direct enzymatic action on target proteins as well as due to 

alterations in the level of metabolites related to the reaction. Though not all sirtuins are 

robust deacetylases, the network of proteins that include PGC-1α, SIRT1 and AMPK are 

considered to be a critical part of the energy sensing network in cells [232]. SIRT1 and 

AMPK act as metabolic sensors by their ability to deacetylate and phosphorylate, 

respectively, the mitochondrial biogenesis factor PGC-1α. Therefore the actions of SIRT1 

are closely linked to enhancement of mitochondrial function and biogenesis and mitigation 

of redox injury making this protein an attractive target in molecular therapeutics [233]. It is 

further substantiated by the observation that following cellular stress SIRT1 activity is 

altered and modulation of the activity and or expression of SIRT1 following cellular injury 

is important in restoring cellular homeostasis, repair and death.

Sirtuins and cardiac injury

Several studies, including that from our lab, have demonstrated the importance of sirtuins in 

improving organ function and survival following tissue injury [234–236]. In post myocardial 

infarction (MI) patients, ischemia/reperfusion (I/R) injury remains the major cause for 

cardiac remodeling and heart failure [237]. Therefore methods to prevent I/R injury become 

instrumental in reducing mortality in post MI patients. Numerous studies have been reported 

on the role of sirtuins, specifically SIRT1, in managing I/R injury [234, 238, 239].

I/R injury was associated with a reduction in SIRT1 mRNA and protein [234]. Using 

transgenic mice with cardiac specific over expression of SIRT1, Hsu et al clearly 

demonstrated a significant reduction in myocardial infarction area and a greater recovery 

after reperfusion of isolated hearts, compared to wild type. Conversely, cardiac specific 

knockdown of SIRT1 resulted in increased size of myocardial infarction/area. The observed 

effects of SIRT1 overexpression is attributed to suppression of oxidative stress and 

apoptosis by FOXO1 mediated upregulation of antioxidant molecules like manganese 

superoxide dismutase and down regulation of proapoptotic molecules [234]. One of the 

prominent changes that occurs during cardiac hypertrophy is the shift in myosin isoform 

from α- to β-myosin heavy chain (MHC) [240]. Interestingly, fructose feeding was shown to 

have a protective effect on the heart following I/R injury by inducing cardiac α-MHC 

expression. Fructose feeding also stimulated cardiac NAD+ and SIRT1 levels and these 

effects were mimicked by resveratrol [241]. The role of SIRT1 in α-MHC expression was 

further confirmed by cardiac specific overexpression studies. It is interesting to note that 

both a direct agonist of SIRT1 (resveratrol) and its indirect activation by NAD+ levels could 

cause similar physiological effects in tested animals. However the mechanism of SIRT1 

mediated induction of α-MHC expression is still unclear.
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Ischemic preconditioning (IPC) is effective in limiting cardiac damage occurring during 

prolonged occlusion and reperfusion [237]. Nadtochiy et al studied the role of SIRT1 in 

cardioprotective effects of acute IPC using SIRT1 deficient and SIRT1 overexpressing mice. 

Consistent with a role for SIRT1, IPC induced cytosolic lysine deacetylation in wild type 

hearts whereas SIRT1 deficient hearts had more cytosolic lysine acetylation and were 

refractive to preconditioning. Conforming to these results, SIRT1 overexpressing mice 

exhibited decreased cytosolic acetylation and endogenous protection against I/R injury 

[238]. Both IPC induced lysine deacetylation and cardiac protection was inhibited by SIRT1 

inhibitor splitomycin [238]. Nicotinamide phosphoribosyltransferase (Nampt), a key enzyme 

in the salvage pathway of NAD synthesis, is a critical regulator of energy status and survival 

in cardiac myocytes [242]. Nampt was found to play a crucial role in mediating the 

protective effect of IPC against ischemia and reperfusion, which was also mimicked by 

exogenous nicotinamide mononucleotide (NMN), a product of Nampt in the NAD+ salvage 

pathway. On the other hand, Nampt can be secreted from cardiomyocytes to act as a 

proinflammatory cytokine. The exogenous Nampt was found to be a positive regulator of 

cardiac hypertrophy and adverse ventricular remodeling [243]. Therefore, although 

intracellular Nampt is essential to the cardiac myocyte survival, exogenous Nampt could be 

detrimental demanding fine balance between its synthesis and secretion. Interestingly, the 

cardiac protection conferred by IPC deteriorates with age [244]. The lack of ischemic 

tolerance in aged hearts is mainly accounted for by a reduced SIRT1 expression and activity 

although one study has ruled out the role of SIRT1 [244].

Caloric restriction (CR) was previously shown to increase longevity in yeast and other 

species [207, 245, 246]. Shinumura et al studied the effects of short-term [247] and long-

term caloric restriction [248] on ischemic tolerance and ischemic preconditioning (IPC) in 

aged rats. Short-term CR improved left ventricular function in both young and aged rats 

which was associated with an increase in AMPK phosphorylation [247]. Long term caloric 

restriction also improved recovery of left ventricular function and reduced infarct size after 

ischemia-reperfusion. However these changes were not associated with any changes in 

expression of myocardial total or phosphorylated AMPK. Strikingly, long-term CR induced 

cardiac protection was associated with nitric oxide-dependent increase in nuclear SIRT1 

content [248]. CR mediated protection against I/R injury was associated with Nampt 

upregulation whereas the protective effect was abrogated in SIRT1−/− mice, suggesting a 

Nampt-SIRT1 axis [249]. Analysis of the molecular changes underlying CR induced 

cardioprotection revealed an overall reduction in acetylated mitochondrial proteins with CR. 

Consistent with a role for sirtuins, deacetylation of specific proteins of the electron transport 

chain was observed, which preserves mitochondrial integrity by preventing accumulation of 

toxic ROS [250]. Deacetylation of mitochondrial proteins also implies an involvement of 

mitochondrial sirtuins apart from nuclear/cytoplasmic sirtuins like SIRT1.

Studies from our laboratory using a hemorrhagic shock model showed that when 60% of the 

blood volume was removed from rats and subjected to a prolonged shock phase, there was a 

significant decline in SIRT1 and PGC-1α protein levels in the heart at two hours following 

resuscitation [235]. It is unclear whether this is the effect of oxidative stress associated with 

resuscitation or initiated by the hypoxic/ischemic condition due to hemorrhagic shock. 

However, administration of resveratrol, a SIRT1 activator and antioxidant, along with 
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resuscitation fluid proved to be beneficial in improving left ventricular function and cardiac 

contractility, and prolonged lifespan in the absence of resuscitation [235, 251]. Furthermore, 

hemorrhagic shock induced a shift in the metabolic process towards glycolysis, consistent 

with a mitochondrial functional decline which was restored by resveratrol administration 

[252]. Other investigators have also observed the beneficial effect of resveratrol following 

hemorrhagic shock, though methodologies varied [253–255]. Resveratrol pretreatment was 

also effective in reducing IR-induced arrhythmias and mortality in rats [80]. Resveratrol was 

protective against myocardial injury in a rat model of autoimmune myocarditis [81]. The 

SIRT1 activator resveratrol has been extensively used in aging and injury conditions and at 

least part of the health effect of resveratrol is likely through activation of SIRT1.

SIRT1 exerts its beneficial effects at both transcriptional level and posttranslational levels. 

At the transcriptional level, it affects the expression of many antioxidant genes and apoptotic 

molecules by stimulating the transcriptional activity of FOXO1 [234]. Rui-Hong Wang et al 

found that hepatic SIRT1 deficiency in mice can impair mTorc2/Akt signaling leading to 

oxidative damage and insulin resistance [256]. At the post-translational level, SIRT1 

influences acetylation and activity of a number of proteins. Likewise the regulation of 

SIRT1 exists at multiple levels. Aldehyde mediated carbonyl stress is considered as yet 

another factor contributing to increased susceptibility of aging heart to I/R injury [174]. 

Carbonyl modification of SIRT1 during aging impairs its activity and causes myocardial 

ischemic intolerance which could be restored by cardiac aldehyde dehydrogenase activation 

[174]. Therefore more studies are required to address the posttranslational changes in SIRT1 

and other sirtuins that may affect their compartmentalization and function inside the cells. In 

cardiac myocytes SIRT1 expression is regulated by microRNA, miR199a. miR199a itself is 

markedly down regulated during cardiac ischemia which favors rapid accumulation of 

HIF-1α by preventing its degradation [257].

Several endogenous and exogenous molecules have been shown to exercise cardio 

protective effects through SIRT1 regulation. For example locally acting insulin-like growth 

factor-1 isoform has been shown to protect cardiomyocytes from oxidative/hypertrophic 

stress through SIRT1 activation [258]. SIRT1 induction by resveratrol is reported to have a 

modulatory effect on mitogen-activated protein kinase (MAPK) pathway which is 

commonly upregulated under stress [259]. Likewise sidenaphil, a phosphodiesterase-5 

inhibitor improves I/R injury and a concomitant SIRT1 activation was observed [260]. 

Cardiomyocyte apoptosis is a characteristic feature of heart failure. Silibinin, a plant 

flavonoid was found to ameliorate β-adrenergic agonist isoproterenol-induced injury in 

cultured rat neonatal cardiac myocytes through mechanisms including but not limited to 

upregulation of SIRT1 [261]. However, in one study it has been shown that constitutive 

SIRT1 overexpression resulted in impaired cardiac mitochondria and cardiac dysfunction in 

response to pressure overload [262].

Other sirtuins are also gaining prominence with respect to their roles in managing the 

detrimental effects of hypoxic/ischemic and reperfusion injury. One of the mitochondrial 

sirtuins, SIRT4 was shown to play a protective role in hypoxia induced apoptosis in H9c2 

cardiomyoblast cells [263]. Similarly, another mitochondrial sirtuin, SIRT5 undergoes 

marked downregulation in cardiomyocyes upon oxidative stress [264]. Both SIRT4 and 
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SIRT5 knockdown significantly increased apoptosis in cardiomyocytes [263, 264]. The 

mitochondrial sirtuin, SIRT3 is increasingly recognized as an important molecule in 

preserving mitochondrial integrity and improving cardiac function. Case studies on post MI 

patients indicate that exercise training exerts beneficial effects on improving cardiac 

functions [265, 266]. Jiang et al studied the molecular basis of cardioprotection by aerobic 

interval training (AIT) exercise in rat models. They found increased mitochondrial 

biogenesis in AIT rats accompanied by AMPK phosphorylation and increased SIRT3 levels 

[267]. A recent report shows the protective effect of resveratrol in combating oxidative 

stress by upregulating SIRT3 expression in the mitochondria of human vascular endothelial 

cells [268]. Flavanoids like rhamnetin also exhibit cyto protective effects against oxidative 

stress in H9c2 cardiomyoblasts by SIRT3 and SIRT4 induction [269]. Consistent with these 

observations, SIRT3 deficient hearts were less tolerant to I/R injury with greater infarct size 

[270]. This decline in function is attributed to inhibition of enzymatic activities of SIRT3 

targets Cx1 and Mn SOD. SIRT3 knockdown in H9C3 cardiac cells made them more 

vulnerable to oxidative damage [270]. Together these results suggest that SIRT3 may be an 

important component of damage control in I/R and other forms of injury and demand more 

attention. SIRT7 is yet another sirtuin with a profound effect on preventing apoptosis and 

inflammatory cardiomyopathy; the observed effects likely mediated through its effect on 

p53 deacetylation [148].

Sirtuins and Neuronal injury

The neuroprotective effects of SIRT1 have been demonstrated in different models of 

traumatic brain injury, ischemic injury and in a number of neurodegenerative disorders. 

Ischemic brain damage often leads to fatal outcomes unless managed in a narrow window of 

time [271, 272]. Therefore studies to identify novel strategies to manage ischemic damage 

would have important clinical implications [273] [274]. Like in hearts, ischemic 

preconditioning is found to be an effective strategy in protecting neurons from lethal 

ischemia. An in vitro model of cerebral ischemia using hippocampal slice cultures subjected 

to oxygen-glucose deprivation (OGD) is a useful alternative to in vivo ischemia [275]. Initial 

studies by Raval and colleagues using this in vitro model confirmed neuroprotective action 

of SIRT1 agonist resveratrol in cerebral ischemia [272, 276]. Both IPC and resveratrol 

preconditioning induced neuroprotection were accompanied by SIRT1 activation and 

concomitant reduction in uncoupling protein 2 levels [239]. Ischemic brain injury leads to 

brain cell apoptosis by poly(ADP-ribose)polymerase (PARP) activation which depletes 

intracellular NAD+ [277]. NAD+ replenishment could reduce ischemic injury by OGD in in 

vitro cultures of primary neurons [278] and also in rat model of focal ischemia [279]. The 

positive effects of NAD+ repletion is mimicked by overexpression of Nampt. Nampt 

overexpression induced neuroprotection was dependent on SIRT1 mediated LKB1 

deacetylation and AMPK activation [74]. A later study also showed the involvement of 

autophagy in the neuroprotection conferred by Nampt in cerebral ischemia. Overexpression 

of Nampt enhanced autophagy in a SIRT1 dependent manner through TSC2-mTOR-S6K1 

signaling pathway [280]. Analyzing the signaling pathways modulated by resveratrol in the 

ischemic brain concluded an increase in Akt and p38MAPK phosphorylation and a decrease 

in ERK1/2 phosphorylation. Additionally the expression of SIRT1, PGC-1α and 

phosphorylation of cyclic AMP-response-element-binding protein were augmented with a 
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reduction in anti-apoptotic Bcl2 transcription [281]. A direct role for SIRT1 in stroke is 

evident from studies that show greater infarct size in SIRT1 knockout mice that underwent 

middle cerebral artery occlusion compared to wild type mice [282, 283]. The infarct volume 

was also affected by pharmacologic modulation of SIRT1; SIRT1 activator A3 decreased 

infarct volume whereas sirtinol increased the infarct volume. An increase in acetyation of 

p53 and NFκB explains the exacerbated injury upon SIRT1 deletion [283]. Recent reports 

highlight the role of SIRT1 in preserving cerebral blood flow following cerebral 

hypoperfusion injury [284, 285]. These vasculoprotective effects of SIRT1 are likely 

mediated through its deacetylation of brain endothelial nitric oxide synthase. Traumatic 

brain injury (TBI) is another domain where SIRT1 action comes to the limelight. SIRT1 

induction seen in TBI is crucial in preventing neuronal apoptosis and this protection is lost 

with SIRT1 inhibition [286]. Taken together these studies indicate an indispensable role for 

SIRT1 activation in reversing brain damage.

Several natural products and neuroprotective agents have been shown to act through SIRT1. 

For instance, SIRT1 up regulation is involved in the neuroprotective effects of 2,3,5,4′-

tetrahydroxystilbene-2-O-beta-D-glucoside (TSG) [287] and icarin [288] against ischemic 

brain injury. Epigallocatechin-3-gallate, a component of tea polyphenols conferred 

protection in an in vitro model of neuronal cell injury by stimulating SIRT1 and PGC-1α 

levels and suppressing ROS production [289]. SIRT1 is also augmented with vitamin E 

supplementation that alleviates oxidative damage following mild traumatic brain injury 

[290]. Adipokine leptin showed neuroprotection in permanent middle cerebral artery 

occlusion accompanied by increased SIRT1 expression [291]. Erythropoietin is yet another 

hormone which protects against brain injury by SIRT1 activation [292]. In fact SIRT1 

behaves like a sensor that helps the cells adapt to environmental changes. Several dietary 

modifications which cause cellular oxidative imbalances have been linked with changes in 

SIRT1 levels. For example a high fat diet diminished SIRT1 expression in hippocampus and 

cerebral cortex which was reversed by vitamin E supplementation [293]. SIRT1 expression 

in hippocampus was reduced in mild traumatic brain injury and was restored by omega-3 

fatty acids supplementation [294]. Similar to hearts, caloric restriction offers protection 

against ischemia-induced neurodegeneration. Rats subjected to short term food restriction 

displayed improved recovery in terms of spatial learning and memory following ischemia 

[295]. However the role of sirtuins in these protective effects is yet to be determined.

The SIRT1 protective effects are implicated in neurodegenerative diseases like Alzheimer’s 

[296, 297], Parkinson’s [298], Huntington’s disease [299], Amyotrophic lateral sclerosis 

[300], Multiple sclerosis [301] and prion diseases [302]. Alzheimer’s and Parkinson’s are 

often associated with axonal degeneration which is an active process of self-destruction. 

Rapid Wallerian degeneration is observed in axons and their synapses distal to an injury 

whereas Wallerian degeneration slow (wlds) mice are protected from axonal degeneration 

[303]. Nicotinamide mononucleotide adenylyltransferase1 (Nmnat1) is a key enzyme 

involved in the NAD biosynthetic pathway in the nucleus. An increased Nmnat1 activity and 

SIRT1 activation is accounted for the axonal protection in wlds mice [274]. These studies 

clearly underscore a prominent role for SIRT1 in conferring neuroprotection. However 
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SIRT1 also sensitizes neurons to oxidative damage by deacetylating IRS-2 and reducing 

activation of the Ras/ERK1/2 pathway, hinting at a pro-aging role [304].

Apart from cardio and neuroprotective effects, sirtuins have to be shown to play important 

role in injuries to other organs. Renal specific overexpression of SIRT1 conferred 

considerable protection from cisplatin induced acute kidney injury (AKI). These protective 

effects of SIRT1 were mediated through a reversal of peroxisome number and function, 

mitochondrial function, attenuation of ROS and apoptosis [305]. Conforming to the above 

study, SIRT1−/− mice were more susceptible to unilateral ureteral obstruction (UUO) model 

of kidney injury. The increased susceptibility to injury in SIRT1 deficient mice is attributed 

to diminished Cox2 expression and increased apoptosis and fibrosis. Opposite effects were 

observed with SIRT1 pharmacologic activation with resveratrol or SRT2183 [306]. 

Resveratrol also protected mouse proximal tubular cells from cisplatin induced renal injury 

through p53 deacetylation and apoptosis, further confirming the role of SIRT1 in p53 

mediated apoptosis [307]. Not only does cisplatin increases acetylation of p53 but also 

induces acetylation of p65 subunit of NF-κB both of which accounts for the cytotoxic 

effects of cisplatin. Overexpression of SIRT1 in renal proximal tubule cells significantly 

attenuated the cytotoxic effects of cisplatin by NF-κB deacetylation [308]. Although, 

beneficial effects of resveratrol are well evident in diabetic nephropathy, it is also suggested 

to be independent of SIRT1 [309]. Resveratrol feeding in db/db mice significantly improved 

mitochondrial oxidative stress and associated pathologies but failed to enhance AMPK 

activation or SIRT1 expression in the kidney precluding a role for SIRT1 [309]. Since this 

study has not tested SIRT1 activity in the kidney, the role of SIRT1 in mediating resveratrol 

effects cannot be ruled out. In stark contrast another study clearly shows the involvement of 

AMPK-SIRT1-PGC1α axis in the salutary effects of resveratrol in diabetic nephropathy 

[310].

Sirtuin family of proteins are important physiological modulators and play critical roles in 

cellular homeostasis. Though SIRT1 is among the most studied sirtuins, the role of other 

sirtuins and small molecule modulators of sirtuins in cell survival, growth, proliferation and 

death is being investigated by many laboratories and the information gained will allow us to 

better understand the molecular processes in aging and injury. The profound effect of some 

of the sirtuins, such as SIRT1 and SIRT3, in regulating mitochondrial function and cellular 

energetics makes these proteins important players in determining outcome following cell, 

tissue and organ injury. Declining mitochondrial function is a hallmark of both aging and 

injury and therefore, further studies on the regulation of sirtuin family of proteins remain 

important.
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Highlights

Sirtuins are a family of evolutionary conserved proteins.

Sirtuin-mediated deacetylation of critical proteins modulate mitochondrial function.

Sirtuins play important functions in metabolism, immune response and longevity.

Sirtuins are also important in tissue injury and repair.
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Figure 1. Protein Deacetylation by Sir2
Sir2 catalyzes the transfer of acetyl group from the protein to ADP-ribose moiety of NAD+ 

to form O-acetyl-ADP-ribose (OAADPr) and nicotinamide (NAM). Nicotinamide 

phosphoribosyltransferase (Nampt), the rate limiting enzyme in NAD biosynthetic pathway 

converts NAM to nicotinamide mononucleotide (NMN). NMN is then converted to NAD by 

nicotinamide mononucleotide adenylyltransferase (Nmnat). Another NAD salvage pathway 

component, Pnc1, converts NAM to nicotinic acid.
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Figure 2. SIRT1 Regulation in Health and Disease
Increased SIRT1 activity results in deacetylation of histone and nonhistone substrates 

affecting multiple cellular processes.
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Figure 3. SIRT1 Modulation in Aging and Injury
SIRT1 expression and/or activity are upregulated with caloric restriction, ischemic 

preconditioning and STACS resulting in longevity and protection following injury.
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Table 1

Sirtuin Localization Substrates Enzymatic activity

SIRT1 Nuclear, cytoplasmic Histone H1 [54], Histone H3[54], Histone H4 [55], 
p53 [56], NF-κB [57], FOXO4 [58], PGC1α [59], 
HIF1α [60], HIF2α [61], CTIP2 [62], Tat [63], p300 
[64], LXR [65], FXR [66], eNOS [67], MEF2 [68], 
Notch1 [69], Ku70 [70], XPA[71], WRN [72], NBS1 
[73], LKB1 [74], AceCS1 [75], HMGCS1 [76], c-Myc 
[77], androgen receptor [78], SUV39H1 [79], BMAL1 
[80], PER2 [81], DNMT1 [82], hMOF [83], TIP60 
[83], cortactin [84], PARP1 [85], SREBP-1C [64], 
SATB1 [86], RFX-5 [87], TDG [88], FOXA2 [89], 
IRF-1 [90], HMGB1 [91], PGAM1 [92]; CRABPII 
[93], TopBP1 [94], PML [95].

Deacetylation

SIRT2 Nuclear, cytoplasmic Histone H4 [96], Histone H3 [97], Tubulin [98], 
FOXO1 [99], FOXO3A [100], p53 [101], p300 [102], 
p65 [103], PEPCK1 [104], Par-3 [105], CDK9 [106], 
HIF1α [107], G6PD [108], PGAM [109], ALDH1A1 
[110], TUG [111], BubR1 [112], beta-secretase 1 
[113].

Deacetylation, Demyristoylase

SIRT3 Mitochondrial AceCS2 [75], HMGCS2 [114], LCAD [115], SDH 
[116], Ku70 [117], SOD2 [118], IDH2 [119], GDH 
[120], LKB1 [121], MRPL10 [122], LCAD [10]; ATP 
synthase F1 [123], Cyclophilin D [124], OTC [125], 
ALDH2 [126], Skp2 [127], FOXO3 [128], PDH 
[129], OGG1 [130], OPA1 [131], Hsp10 [132], GOT2 
[133], MDH [113], Aconitase 2 [113].

Deacetylation

SIRT4 Mitochondrial GDH [53], MCD [134], PDH [135], Hsp60 [113], 
Stress-70 [113], Nnt [113].

ADP-Ribosylation, Deacetylation, Lipoamidase

SIRT5 Mitochondrial Cytochrome C [120], CPS1 [136], SOD1 [137], Urate 
oxidase [138], PML [95], VLCAD [139], Prx-1 [113], 
HMGCS2 [113], Hsp70 [113], MCAD [113].

Deacetylation, Demalonylation, Desuccinylation, 
Deglutarylation

SIRT6 Nuclear TNFα [140], Histone H3 [51], CtIP [141], PARP1 
[142], GCN5 [143], KAP1 [144], GEN1 [113], Kup86 
[113], p70 [113].

Deacetylation, ADP-ribosylation

SIRT7 Nucleolus Histone H3 [145], PAF53 [146], GABPβ1 [147], p53 
[148], MEF-2C [113], DNA-PK [113]

Deacetylation

Abbreviations: AceCS, acetyl-CoA Synthase; ALDH, aldehyde dehydrogenase; CDK9, cyclin-dependent kinase 9; CPS1, carbamoyl phosphate 
synthetase 1; CtIP, C-terminal binding protein; CTIP2, chicken ovalbumin upstream promoter transcription factor interacting protein 2; CRABPII, 
cellular retinoic acid binding protein II; DNA-PK, DNA-dependent protein kinase; DNMT1, DNA methyltransferase 1; eNOS, endothelial nitric 
oxide synthase; FOX, forkhead transcription factor; FXR, farnesoid X receptor; GABPβ1, GA binding protein 1; GCN5, General Control Non-
repressed Protein 5; GDH, glutamate dehydrogenase; G6PD, glucose-6-phosphate dehydrogenase; GOT2, glutamate oxaloacetate transaminase 2; 
HMGB1, high-mobility group box 1; HMGCS, 3-hydroxy-3-methylglutaryl CoA synthase; hMOF, human ortholog of the Drosophila males-
absent-on-the-first; Hsp10, heat shock protein 10; IDH2, isocitrate dehydrogenase 2; IRF-1, interferon regulatory factor 1; KAP1, KRAB-
associated protein 1; LCAD, long-chain acyl coenzyme A dehydrogenase; LKB1, liver kinase B1; LXR, liver X receptor; MCAD, medium-chain 
acyl-CoA dehydrogenase; MCD, malonyl CoA decarboxylase; MDH, malate dehydrogenase; MEF2, myocyte enhancer factor 2; NBS, nijmegen 
breakage syndrome; Nnt, nicotinamide nucleotide transhydrogenase; OGG1, 8-oxoguanine-DNA glycosylase 1; OPA1, optic atrophy 1; PAF53, 
polymerase-associated factor 53; PARP1, poly(ADP-ribose) polymerase 1; PDH, pyruvate dehydrogenase; PEPCK1, phosphoenolpyruvate 
carboxykinase; PER2, period 2; PGAM, phosphoglycerate mutase; PML, Prx-1, peroxiredoxin 1; RFX-5, regulatory factor for X-box; SATB1, 
special AT-rich sequence-binding protein-1; Skp2, S-phase kinase associated protein 2; SOD2, superoxide dismutase 2; SUV39H1, suppressor of 
variegation 3–9 homolog 1; TDG, thymine DNA glycosylase; TIP60, HIV-1 TAT-interacting protein of 60 kDa; TopBP1, DNA topoisomerase 2-
binding protein 1; XPA, xeroderma pigmentosum group A
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