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The acyclic monoterpene alcohol linalool is one of the most frequently encountered volatile compounds in floral scents.
Various linalool oxides are usually emitted along with linalool, some of which are cyclic, such as the furanoid lilac compounds.
Recent work has revealed the coexistence of two flower-expressed linalool synthases that produce the (S)- or (R)-linalool
enantiomers and the involvement of two P450 enzymes in the linalool oxidation in the flowers of Arabidopsis thaliana. Partially
redundant enzymes may also contribute to floral linalool metabolism. Here, we provide evidence that CYP76C1 is
a multifunctional enzyme that catalyzes a cascade of oxidation reactions and is the major linalool metabolizing oxygenase
in Arabidopsis flowers. Based on the activity of the recombinant enzyme and mutant analyses, we demonstrate its prominent
role in the formation of most of the linalool oxides identified in vivo, both as volatiles and soluble conjugated compounds,
including 8-hydroxy, 8-oxo, and 8-COOH-linalool, as well as lilac aldehydes and alcohols. Analysis of insect behavior on
CYP76C1 mutants and in response to linalool and its oxygenated derivatives demonstrates that CYP76C1-dependent
modulation of linalool emission and production of linalool oxides contribute to reduced floral attraction and favor protection
against visitors and pests.

INTRODUCTION

The acyclic monoterpene alcohol linalool (3,7-dimethyl-1,6-
octadiene-3-ol) is one of the most frequently encountered floral
volatile compounds, occurring widely in both monocots and
dicots (RagusoandPichersky, 1999;Knudsen et al., 2006). Its two

enantiomeric forms, due to thechirality of its hydroxylatedcarbon,
occur in different proportions in floral extracts from distinct plant
species (Dötterl et al., 2006a; Parachnowitsch et al., 2013). Var-
ious cyclic pyranoid or furanoid oxygenated derivatives are most
often present along with linalool, such as the furanoid lilac
compounds (Figure 1). These compounds,which usually occur as
complex mixtures of diastereomeric alcohols and aldehydes with
different organoleptic properties, are important fragrance and
flavor components. Volatile linalool oxides are prominent con-
stituentsof thescentoraromaofflowersand/or fruits, forexample,
from lilac (Syringa vulgaris) (Wakayama et al., 1973; Kreck et al.,
2003), Clarkia breweri (Pichersky et al., 1994), kiwi (Actinidia ar-
guta) (Matich et al., 2003, 2011), papaya (Carica papaya) (Flath
and Forrey, 1977; Winterhalter et al., 1986), and grape (Vitis
vinifera) (Williams et al., 1980; Luan et al., 2006), as well as tea
(Camelia sinensis) leaves (Morita et al., 1994; Wang et al., 2000).
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A large proportion of linalool and its oxides is often present as
bound, glycosidic conjugates in the plant tissues, the aglycones
being released upon fruit maturation or tissue disruption (Heidlas
et al., 1984; Flath et al., 1990; Raguso and Pichersky, 1999). In the
case of grape and tea, these compounds are released upon
manufacturing processes for the production of wines and semi-
fermented or fermented teas (Williams et al., 1980; Wang et al.,
2000). Convergent labeling experiments carried out with lilac
(Burkhardt andMosandl, 2003; Kreck et al., 2003) and kiwi flowers
(Matich et al., 2007, 2011) or with papaya fruit (Schreier and
Winterhalter, 1986) and grape berry mesocarp (Luan et al., 2006)
demonstrated that lilac compounds, as well as other oxides,
derive from linalool via successive oxidation steps, but the
mechanism for their formation has not been elucidated.

Arabidopsis thaliana flowers were long considered to be
scentless and a poor model to study the metabolism of volatile
compounds, until the sequencing of the plant genome revealed
the existence of a quite broad family of terpene synthases and
triggered investigation of the flower-emitted volatiles (Tholl and
Lee, 2011). Initial analyses showed that sesquiterpenoids were
predominant in the floral bouquet of Arabidopsis (Chen et al.,
2003; Tholl et al., 2005). However, Chen et al. (2003) reported
a flower-expressed terpene synthase (TPS14) producing (+)-(3S)-
linalool. Rohloff and Bones (2005), in a more extensive analysis of
the complexArabidopsis floral volatile bouquet, then detected the
presence of small amounts of linalool, as well as lilac aldehydes.
Only recently have investigations based on coexpression of cy-
tochromeP450oxygenaseswith two terpenesynthasesstarted to
reveal a complex floral linalool metabolism in the flowers of
Arabidopsis (Ginglinger et al., 2013). This work revealed the co-
existence of two flower-expressed linalool synthases, TPS14 and
TPS10, producing (S)- and (R)-linalool enantiomers, respectively,
and the role of two P450 enzymes, CYP76C3 and CYP71B31, in
linalooloxidation.Thisstudyalsosuggested thepresenceofpartially
redundant P450 enzymes that may contribute to floral linalool
metabolism. The hypothesis of the involvement of other P450
oxygenases in floral linaloolmetabolismwas then further supported
byasystematic functionalexplorationof theexpressionpatternsand
in vitro activities of the CYP76C3 paralogs present in Arabidopsis
(Höferetal.,2014),which revealedfloralexpressionofCYP76C2and
CYP76C1, two other monoterpenol-metabolizing oxygenases.
CYP76C1 emerged as the best candidate due to its high and se-
lective linalool oxygenase activity, which is 10 times higher than the
activity of CYP76C2. This work also indicated that CYP76C1 was
mainly expressed in the inflorescence.

This ledustopostulate thatCYP76C1mightbeasignificantplayer
in floral linalool metabolism and possibly in flower-insect inter-
actions.Here,weprovideevidencethatCYP76C1is themain linalool
metabolizingoxygenase inArabidopsis flowers.Wedemonstrate its
prominent role in the control of linalool emission and in the formation
of most linalool oxides detected in vivo, both as volatile and soluble
conjugated compounds, including 8-hydroxy, 8-oxo, and 8-COOH-
linalool, as well as lilac aldehydes and alcohols (Figure 1). Insect
behavioron theCYP76C1mutantsand in response to linalool and its
oxygenatedderivativesdemonstrates thatCYP76C1, viacontrolling
the emission of linalool and its conversion into more oxidized de-
rivatives, contributes to reducing floral attraction of typical pollinator
taxa and favors protection against floral antagonists and pests.

Figure 1. Scheme Summarizing CYP76C1-Catalyzed Reactions.

Arrows indicate CYP76C1- and NADPH-dependent reactions in vitro.
Mainstream CYP76C1-dependent pathway in vivo is shown in bold.
Dashed arrows indicate that the formation of the compounds is not de-
pendent on CYP76C1 in vivo. The minor product of primary linalool oxi-
dation, 9-OH-linalool, was not available and thus not further tested as
a substrate.
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RESULTS

Gene Coexpression and Functional Screening Identify
CYP76C1 as a Prime Candidate for Regulating Linalool
Metabolism in Arabidopsis Flowers

A thorough in silico analysis indicated that the expression of
CYP76C1 was tightly coordinated in mature Arabidopsis flowers
with the expression of genes involved in linalool metabolism.
Figure 2A shows that CYP76C1 is expressed in the petals and
anthers at anthesis and is tightly coregulated with TPS10 and
TPS14, with high correlation coefficients of 0.902 and 0.854,
respectively. It was also coexpressed with CYP71B31 and
CYP76C3, encoding the twoP450s recently shown tobeactiveon
linalool (Ginglinger et al., 2013). Coregulation of CYP76C1 with
these genes involved in linalool metabolism (Figure 2B) and other
enzymes potentially involved in this pathway (Supplemental
Figure 1) was confirmed by qRT-PCR. The highest level of coreg-
ulation was found between CYP76C1 and CYP71B38 (Figure 2A),
but expression of the latter was very low (Figure 2B). Therefore,
CYP71B38 was not considered as a priority candidate for further
investigations. Plants transformed with the CYP76C1 promoter
fused to the b-glucuronidase gene (CYP76C1p:GUS) were used to
obtain a more precise description of CYP76C1 activity. They re-
vealed a transient and tissue-specific expression of CYP76C1 in
filaments, anthers, stamen, andpetals uponanthesis (Figures 2C to
2E), with some expression also detected in the stigma, petal ab-
scission zone, and young siliques.

The subcellular localization of the CYP76C1 protein was in-
vestigated via transient coexpression of CYP76C1:eGFP and
TPS10:mRFP1 constructs in the leavesofNicotianabenthamiana.
This experiment indicated a localization of CYP76C1 at the en-
doplasmic reticulum contrasting with the patchy intrachloro-
plastic pattern observed for TPS10 (Supplemental Figure 2). The
tridimensional imaging employed for this experiment better il-
lustrated our previous observation (Ginglinger et al., 2013) that
plastids appear wrapped in endoplasmic reticulum sheets, which
would most likely favor P450 conversion of the plastid-emitted
linalool.

CYP76C1 Sequentially Metabolizes Linalool and Its
Successive Oxides to Form Lilac Aldehydes/Alcohols and
8-COOH-Linalool

CYP76C1 was previously shown to metabolize (2)-(3R)-linalool
into8-OH-linalool andsmall amountsof9-OH-linalool (Höfer et al.,
2014). To determine if CYP76C1 was selectively metabolizing
R-linalool or both the (2)-(3R) and (+)-(3S) enantiomers, which are
respectively produced by TPS10 and TPS14 (Ginglinger et al.,
2013), the conversion of both of these enantiomers by yeast-
expressed CYP76C1 was investigated (Supplemental Figure 3;
Figure 3). Recombinant yeast microsomes metabolized the ra-
cemic mixture (Figure 3B) and pure enantiomers (Supplemental
Figures 3B and 3C) to form amajor metabolite identified as 8-OH-
linalool (2) (Supplemental Figure 4A). Comparison of the catalytic
parameters for the conversion of R- or S-linalool into 8-OH-linalool
showed that both enantiomers were metabolized with very simi-
lar efficiencies (kcat/Km = 14.0 min21 mM21 for R-linalool and

9.8 min21 mM21 for S-linalool; Supplemental Figure 5). The other
minor coeluting products (3/4) of linalool oxidation by CYP76C1
were identified as 9-OH-linalool (3) and 8-oxo-linalool (4) (Figure
3B; Supplemental Figures 3G, 4B, and 4C).
Another member of the CYP76 family, CYP76B6 from Mada-

gascar periwinkle (Catharanthus roseus), was recently shown to
metabolize geraniol and to further oxidize its hydroxylated
product, 8-OH-geraniol into 8-oxo-geraniol (Höfer et al., 2013).
The detection of 8-oxo-linalool in linalool conversion products
thus suggested that CYP76C1 might also further metabolize
8-OH-linalool. When tested as a substrate of CYP76C1, 8-OH-
linalool (2) was converted into 8-oxo-linalool (4) as the main
product, along with two minor unknown compounds, (5) and (6),
and small amounts of lilac aldehydes (7) (Figure 3C; Supplemental
Figures 4D to 4F). The conversion of 8-OH-linalool into 8-oxo-
linalool and four lilac aldehyde diastereoisomers was confirmed by
NMRafter upscaling the reaction (Supplemental Figures6Aand6B).
Considering the presence of lilac compounds in the reaction

products, further metabolism of 8-oxo-linalool by CYP76C1 was
then also investigated (Figure 3D). Since the systematic presence
of lilac aldehydes and lilac alcohols in the standard of 8-oxo-
linalool (Supplemental Figure 3E) suggested that 8-oxo-linalool
and the lilac compounds were prone to autoxidation, a time-
courseexperimentwasperformed. This experiment confirmed the
transient formation by CYP76C1 of lilac aldehydes after 30 s and
1 min of incubation followed by their decline in prolonged in-
cubations (Supplemental Figure 7). This was explained by the
capacity of the recombinant CYP76C1 to metabolize pure lilac
aldehydes into several lilac alcohol diastereoisomers (Figure 3E;
Supplemental Figure 4G). The minor products (5) and (6) were
identified by NMR as 8-OH-6,7-dihydrolinalool and 8-oxo-6,7-
dihydrolinalool, respectively (Supplemental Figure 6C).
Ultraperformance liquid chromatography-tandem mass spec-

trometry (UPLC-MS/MS) analysis of the reaction products
(Supplemental Figure 8) confirmed the formation of the products
detected by gas chromatography (2, 8-OH-linalool; 3, 9-OH-
linalool; 4, 8-oxo-linalool; 5, 8-OH-6,7-dihydrolinalool; 6, 8-oxo-
6,7-dihydrolinalool; 7, lilac aldehydes; and 8, lilac alcohols). In
addition, it revealed the formation of 8-COOH-linalool (9) from
8-oxo-linalool (Figure 4).
Altogether, our data thus reveal an unexpectedly versatile activity

of the recombinantCYP76C1on linalool and its successiveoxidized
metabolites and suggest that it plays an important role in the for-
mationofabroadrangeof linalooloxides, including8-COOH-linalool
and the cyclic volatile lilac compounds. The cascade of reactions
catalyzed by CYP76C1 in vitro is illustrated in Figure 1.

CYP76C1 Is the Major Linalool Oxidase in Arabidopsis
Flowers and Modulates the Emission of Linalool and
Lilac Compounds

In order to investigate the physiological and ecological roles of
CYP76C1 in Arabidopsis flowers, two independent homozygous
insertion lineswere selected (cyp76c1-1 and cyp76c1-2) and their
genotype confirmed by RT-PCR (Supplemental Figure 9). In ad-
dition, a complemented/overexpression line was generated by
transformation of the insertion mutant cyp76c1-1 with the full
coding sequence of CYP76C1 under control of the CaMV 35S

2974 The Plant Cell

http://www.plantcell.org/cgi/content/full/tpc.15.00399/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00399/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00399/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00399/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00399/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00399/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00399/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00399/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00399/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00399/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00399/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00399/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00399/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00399/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00399/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00399/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00399/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00399/DC1


Figure 2. CYP76C1 Expression and Coexpression Patterns in Arabidopsis Flowers.
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promoter (35S:CYP76C1) (Supplemental Figures 9B and 9C).
Extensive gene expression analysis of theCYP76C1 insertion and
complemented lines did not reveal any changes in expression for
the genes known to be involved in linalool metabolism (TPS10,
TPS14, CYP71B31, and CYP76C3) nor for P450s belonging to
the same cluster as CYP76C1 and known to be active on linal-
ool (CYP76C2, CYP76C3, and CYP76C4) (Höfer et al., 2014)
(Supplemental Figure 9C). This ensured that any change in linalool
metabolism would be the result of CYP76C1 activity.

The headspaces collected from the inflorescences of the dif-
ferent lines were first evaluated by gas chromatography-mass
spectrometry (GC-MS) analysis (Figure 5). Linalool emission was
increased more than 10-fold in the insertion mutants compared
with the wild type, reaching an emission rate of 47 ng h21 g21

fresh weight (FW), which was close to the emission rate of
b-caryophyllene (up to 80 ng h1 g21 FW), the most abundant
volatile compound emitted by the flowers of Col-0 Arabidopsis.
Conversely, overexpression of CYP76C1 resulted in barely de-
tectable linalool emissioncomparedwith thewild type. Incontrast,
the emission of lilac aldehydes and lilac alcohols was reduced by
;85 and 70%, respectively, in the cyp76c1 mutants compared
with the wild type and was restored, although not to the wild-type
level, in the complemented/35S:CYP76C1 line.

Taken together, these results reveal a very active CYP76C1-
dependent linalool oxidative metabolism that almost completely
suppresses the emission of the linalool formed by TPS10 and
TPS14 in wild-type Arabidopsis flowers. They also indicate that
CYP76C1 largely determines the level of floral emission of linalool
and linalool oxides. However, the amounts of lilac compounds
emitted by the wild type do not mirror the amounts of linalool
emitted by the cyp76c1 insertion lines, which could be explained
by the retention of oxygenated and/or conjugated soluble me-
tabolites in the wild-type flower tissues.

A Major Proportion of the CYP76C1-Derived Linalool Oxides
Is Accumulated as Soluble Conjugates in Arabidopsis
Flower Tissues

Linalool and its oxides have been reported to accumulate as free
or conjugated compounds in flower tissues from various plant
species including Arabidopsis (Aharoni et al., 2003; Ginglinger
et al., 2013; Yang et al., 2013). Soluble linalool derivatives were
thus quantified by targeted UPLC-MS/MS in the inflorescence of
wild-type, cyp76c1, and complemented/35S:CYP76C1 lines
(Figure 6; Supplemental Figure 10).

The linalool conjugates were exclusively detected as putative
linalyl-hexose and linalyl-malonyl hexoses, as previously ob-
served (Ginglinger et al., 2013; Yang et al., 2013). They accu-
mulated at up to 5 times higher concentrations in the cyp76c1
lines, and their levels were significantly reduced in the com-
plemented/35S:CYP76C1 line compared with the wild type
(Figure 6; Supplemental Figure 10A).
Conversely, all linalool oxides were detected as aglycones after

deglycosylation. The levels of 8-OH-linalool and 9-OH-linalool, also
formed by the CYP76C2 and CYP76C3 enzymes (Ginglinger et al.,
2013; Höfer et al., 2014), were moderately reduced in the cyp76c1
flowers compared with the wild type, but almost completely abol-
ished in the complemented/35S:CYP76C1 line. The levels of lilac
aldehydes and alcohols conjugates were strongly reduced in the
cyp76c1 flowers and partially restored in the complemented/35S:
CYP76C1 line.Conversely, the levelsof8-COOH-linalool,whichwas
almost absent in the cyp76c1 lines, strongly increased in com-
plemented/35S:CYP76C1 plants compared with the wild type,
which confirms the efficient CYP76C1-dependent conversion of
8-oxo-linalool into 8-COOH-linalool in the plant. Interestingly,
whereas 8-COOH-linalool has not previously been detected in
Arabidopsis flowers, it appears to be the most abundant linalool
oxidation product, with amounts reaching 1.4 µg$g21 of fresh
weight in wild-type flower tissues. This concentration, estimated
on the basis of the fresh weight of the whole inflorescence, was
most likely much higher in the tissues specifically expressing
CYP76C1, such as petal or anther filaments.
Although produced in vitro from the 8-oxo-linalool conversion by

CYP76C1, the amounts of 8-OH-6,7-dihydrolinalool were slightly
higher in the cyp76c1 mutants compared with the wild type and
strongly reduced in theoverexpressor line.Acompetingenzymemay
thus be responsible for the formation of this metabolite in the plant.
Altogether, these results point to a major role of CYP76C1 in

a complex and branched linalool metabolism leading to the ac-
cumulation of a variety of soluble conjugates in Arabidopsis
flowers, with 8-COOH-linalool being the main product.

Transient Coexpression of TPS10/TPS14 and CYP76C1 in
N. benthamiana Leaves Leads to Massive Accumulation of
8-COOH-Linalool but No Lilac Emission

In an attempt to reconstruct the CYP76C1-dependent linalool
pathway in a heterologous system, N. benthamiana leaves were
transfected with vectors driving the expression of the enantio-
specific linalool synthase TPS10 and TPS14 from Arabidopsis

Figure 2. (continued).

(A) Expression heat map of the top 40 genes most closely coregulated withCYP76C1. Coexpression analysis was performed using the Expression Angler
tool and the AtGenExpress Tissue Compendium data set (Toufighi et al., 2005). Heat map shows the expression levels in selected flowers tissues: flower
stages 9, 10/11, 12, and 15 andpetals, stamens, pedicels, and carpel at flower stages 12 and15.Coexpressedgenes are ranked according to their Pearson
correlation coefficients with CYP76C1 (R values). Genes highlighted in red are known to be involved or putatively involved in linalool metabolism.
(B)Relative transcripts levels ofCYP76C1,CYP71B38,TPS10, andTPS14 in flower organs (left panel) and during flower development (right panel). Relative
transcript levels were determined by qRT-PCR using the EDCtmethod, and the specific efficiency of each primer pair and normalization with four reference
genes forwhich the stable expression level are known (Czechowski et al., 2005). Results represent themean6 SE of three biological replicates for the flower
parts and four biological replicates for flower stages.
(C) to (E)GUS staining showing spatiotemporal floral expression ofCYP76C1. Staining was 19 h for inflorescence (C), flowers at different stages (D), and
parts of fully opened flowers (E).
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either alone or together withCYP76C1 (Figure 7). This experiment
revealed the occurrence of an endogenous linalool-derived me-
tabolism in N. benthamiana leaves resulting in low linalool emis-
sion (Figure 7A) and the accumulation of small amounts of 8- and
9-OH-linalool conjugates (Figure 7B).Minor amounts of 8-COOH-
linalool conjugates were also detected in control leaves (Figure
7B). Expression of TPS10 or TPS14 alone led to increased
emission of linalool and to increased accumulation of all linalool-
derived metabolites.
Coexpression of each linalool synthasewithCYP76C1 resulted

in the restoration of the basal linalool emission observed in control
leaves, confirming the CYP76C1-dependent metabolism of both
linalool enantiomers produced by TPS10 and TPS14 in the plant
(Figure 7A). Acceleration of the linalool oxidation cascade was
further confirmed by the decrease in 8- and 9-OH-linalool levels
in cotransfected leaves compared with leaves transformed
with each TPS alone and by the concomitant accumulation of
8-COOH-linalool. The formation of other linalool-derived metabo-
lites, such as the lilac compounds, or 8-OH-6,7-dihydrolinalool, was
not detected in these experiments.
Reconstruction of theCYP76C1-dependent linalool pathway in

N. benthamiana thus confirms that CYP76C1 efficiently converts
both linalool enantiomers in vivo and that strong expression of
CYP76C1 favors the production of 8-COOH-linalool.

CYP76C1-Dependent Modulation of Linalool and Linalool
Oxide Production Affects the Behavior of Flower-Visiting
Insects and Florivores

Engineered Arabidopsis plants transformed with the linalool/
nerolidol synthase gene Fa-NES1 from strawberry (Fragaria
ananassa) produce massive amounts of linalool and also accu-
mulate glycosidesof linalool oxides in leaves (Aharoni et al., 2003).

Figure 3. Gas Chromatography Analysis of the Products Resulting
from Yeast-Expressed CYP76C1 Activity on Linalool and Linalool
Oxides.

GC-MS chromatograms of a mix of authentic standards (A) and of ethyl
acetate extracts of theproducts from the conversionof a racemicmix of (R/
S)-linalool (B), 8-OH-linalool (C), 8-oxo-linalool (D), and lilac aldehydes (E)
by yeast-expressed CYP76C1. Microsomal membranes from the re-
combinant yeast expressing CYP76C1 (final [P450] ;50 nM) or trans-
formedwithanemptyvector (Emptycontrol)were incubated for15minwith
200 µM of substrate in presence or absence (neg. control) of NADPH.
Chromatograms show the relative abundance of total ion current and the
selected ions m/z 111 + 153 + 155 in the inserts. Compared with control,
CYP76C1-dependent 8-oxo-linalool metabolism results in a decrease of
8-oxo-linalool and lilac aldehydes and a simultaneous increase in lilac
alcohols (D). This suggested that the lilac aldehydes formed via conversion
of 8-oxo-linaloolmight be converted rapidly into alcohols byCYP76C1 (E).
Formationof lilac aldehydes from8-oxo-linaloolwasconfirmedperforming
a time-course experiment using low substrate and P450 concentrations
(Supplemental Figure 7). (1) Racemic R/S-linalool, (2) 8-OH-linalool, (3)
9-OH-linalool, (4) 8-oxo-linalool, (5) 8-OH-6,7-dihydrolinalool, (6) 8-oxo-6,7-
dihydrolinalool, (7) lilac aldehydes, and (8) lilac alcohols. IS, nonyl acetate
used as internal standard for normalization. (2), (4), (7), and (8) were
identified by comparison of RT and MS with those of authentic standards
(Supplemental Figure 4). (3)was identifiedby comparisonof itsMSwithMS
of 8-OH-linalool (2) when separated from (4) on a HP-35ms column
(Supplemental Figure 3). (5) and (6) were identified by NMR after reaction
upscaling and purification by preparative GC (Supplemental Figure 6).
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In dual-choice tests, Fa-NES1 plants were shown to repel aphids.
We thus tested the behavior of the aphid Myzus persicae on
Arabidopsis flowers, expecting a preference for wild-type flowers
overflowersofcyp76c1mutants,whichemit high levelsof linalool.
Nosignificant differencewasobserved in aphidbehavior in adual-
choice test between the flowers of wild-type and cyp76c1 lines
(Supplemental Figure11), possiblydue to thepreferenceofaphids
for stems rather than flowers since they feed on phloem.

Arabidopsis is a self-pollinating plant that does not depend on
pollinators to be fertilized. However, outcrossing events occur in
natural populations due to visitation of flowers by insects such as
solitary bees, hoverflies, and thrips (Jones, 1971; Snape and
Lawrence, 1971; Hoffmann et al., 2003). The behavior of two of
these insects, thrips (Frankliniella occidentalis) and hoverflies
(Episyrphus balteus), was tested using cyp76c1 flowers and/or
linalool oxides (Figure 8). Dual-choice tests performed on thrips
demonstrated that they preferred to visit the flowers of the
cyp76c1 mutants over the wild type (Figure 8A; Supplemental

Figure 12). Thrips are antagonistic flower visitors described as
being attracted by pure linalool (Koschier et al., 2000) and by
linalool-emitting engineered chrysanthemum (Chrysanthemum
morifolium) plants transformed with Fa-NES1, but repelled by
linalool conjugates (Yang et al., 2013). To distinguish the role of
volatiles from the influence of compounds stored in flowers
the thrips could feed on, we conducted dual-choice tests in a
Y-shaped olfactometer giving thrips the choice between vola-
tiles from theflowersof thewild-type,cyp76c1, or complemented/
35S:CYP76C1 lines using different combinations (Figure 8B).
Thrips always preferred the volatiles from the plant emitting more
linalool and less lilac compounds (cyp76c1-1 over the wild type,
the wild type over complemented/35S:CYP76C1, and cyp76c1
over complemented/35S:CYP76C1). Todiscriminatebetween the
influence of linalool and lilac compounds on this behavior, thrips
preference was also tested using pure compounds (Figure 8C). In
good agreement with their preference for cyp76c1 flowers emit-
ting increased amounts of linalool and less lilacs compounds over
the wild type, thrips were attracted by linalool, but they avoided
lilac alcohols, lilac aldehydes, or an equimolar mix of both.
Hoverflies are known to be occasional pollinators of Arabidopsis

in natural populations (Jones, 1971; Snape and Lawrence, 1971;
Hoffmann et al., 2003). Their behavior was thus tested in a star-
shaped olfactometer using pure compounds (Figure 8D). The syr-
phids spent significantly more time in fields supplied with linalool
than in neutral fields serving as a control. Conversely, they avoided
fields supplied with lilac compounds. Likewise, syrphids tended to
avoid olfactometer fields supplied with 8-OH-linalool or 8-COOH-
linalool, albeit not significantly. However, the neutral field was sig-
nificantly preferred to fields supplied with an equimolecular mix of
linaloolandallof the linalooloxides (linalool,8-OH-linalool,8-COOH-
linalool, lilac aldehydes, and lilac alcohols) tested separately (Figure
8D), which confirms that the attraction of linalool can be reduced/
reversed by the presence of lilac compounds and other linalool
oxides.
To test the hypothesis that the chemical display of Arabidopsis

flowers represents an adaptation to defend against florivores
instead of attracting pollinators, we tested the behavior of three
florivorous insects, including the generalist Spodoptera littoralis
(larvae) and theBrassicaceae specialistsPlutella xylostella (larvae)
and Phaedon cochleariae (adults), in dual-choice assays (Figure
9). All three of these insects significantly preferred feeding on
cyp76c1-1 (Figure 9A), which may either result from a deterrent
effect of the soluble linalool oxides that accumulate in wild-type
flowersor attractionby linalool emitted fromcyp76c1flowers. This
suggests an increase in flower fitness resulting from CYP76C1
expression due to reduced florivory. To test the effect of the
soluble linalool oxides that accumulate in wild-type flowers,
P. cochleariae feeding preference was then further tested on
cabbage leaves treatedwith pure linalool or linalool oxides (Figure
9B;Supplemental Figure 13). Thebeetles significantly preferred to
feed on control leaves over leaves treated with 1 mg g21 FW of
8-OH-linalool or 8-COOH-linalool in dual-choice tests. No impact
of linalool or lilac alcohols was detected in these choice assays
(Supplemental Figure13).Considering that8-COOH-linalool is the
most abundant linalool oxide that accumulates in wild-type
flowers, with an estimated floral concentration around 1.4 µg g21

FW, the response of the beetle to higher concentrations of the

Figure 4. TargetedUPLC-MS/MSAnalysis of theProductsResulting from
Yeast-Expressed CYP76C1 Activity on 8-Oxo-Linalool.

Samples were analyzed by UPLC-MS/MS using MRM. Left panels show
a specific channel of MS/MS transition developed for the detection of
8-oxo-linalool (151.2 → 92.8 m/z). Right panels show a specific channel
of MS/MS transition developed for the detection of 8-COOH-linalool
(167.2 → 92.8 m/z).
(A) Mix of authentic standards.
(B)Methanol extract of the products from the conversion of 8-oxo-linalool
by CYP76C1. Yeast microsomal membranes (final [P450] ;100 nM) were
incubated for20minwith thesubstrate (200µM) in thepresenceor absence
(neg. control) of NADPH. Red panel shows the consumption of the sub-
strate by CYP76C1 in presence of NADPH compared with the negative
control. Minor amount of 8-COOH-linalool is detected in the negative
control, probably due to 8-oxo-linalool autoxidation. 8-COOH-linalool was
identified from its specific MS/MS and retention time compared with the
authentic standard. More details and extended results are shown in
Supplemental Figure 8. (4) 8-oxo-linalool and (9) 8-COOH-linalool.
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compounds or their glycosidic forms is not excluded. Our data are
thus indicative of a deterrent effect or toxicity of soluble linalool
oxides, such as 8-OH-linalool and 8-COOH-linalool, which ac-
cumulate in flower tissues as glycosides.
The behavior of both pollinators and florivores onwild-type and

mutant lines (or in thepresenceof purecompounds) thussupports
the hypothesis that the expression of CYP76C1 reduces the at-
tractiveness of Arabidopsis flowers by decreasing free linalool
emissionsbut simultaneously increasing theproductionof volatile
or conjugated lilaccompoundsandother linalool oxides that serve
as defensive compounds against floral antagonists.

DISCUSSION

Linalool hasbeen reported tobeemittedbyflowersof around70%
of the seed plant families (Knudsen et al., 2006). Linalool floral
emission is often regarded as spatially and temporally governed
by the expression of linalool synthases during flower develop-
ment, but little information on the mechanism and role of its ox-
idative metabolism has been available, although sequestered
and oxidized forms have been reported (Pichersky et al., 1994;
Dudareva et al., 1996; Raguso and Pichersky, 1999; Lücker et al.,
2001). Here, we describe how a single enzyme, CYP76C1, plays
an essential role in linalool metabolism in Arabidopsis flowers by
simultaneously tuning linalool emission and the production of its
oxidized derivatives, which both affect (in different ways) the
behavior of flower visiting insects.

CYP76C1 Is a Multifunctional and Pleiotropic
Monoterpenol Oxidase

Our data provide clear evidence that the cytochrome P450
CYP76C1 is the major player in the oxidation of linalool in the
flowers of Arabidopsis. CYP76C1 is expressed at a high level in
flower tissues and catalyzes a cascade of oxidations on linalool
and its oxidationproducts, producing solublemetabolites such as
8-COOH-linalool and the volatile cyclic derivatives lilac alcohols
and lilac aldehydes (Figure 1). The prominent role of CYP76C1 in
linalool metabolism is demonstrated by the massive emission of
linalool and accumulation of linalool conjugates in cyp76c1 in-
sertion lines, while the production of 8-COOH-linalool and lilac
compounds is strongly reduced in these lines. The production of
these compounds is largely recovered in the complemented line.
In vitro assays demonstrate that CYP76C1 is able to catalyze

the whole oxidation cascade from linalool to lilac alcohols and

Figure 5. Comparative GC-MS Analysis of the Flower Headspace
of Wild-Type Arabidopsis, cyp76c1 Mutant, and 35S:CYP76C1
Lines.

(A) Targeted GC-MS chromatograms showing linalool, lilac compounds
(inset), and caryophyllene emission based on selected ion currents 93 +
111+126m/z (mainpanels) and93+153+155m/z (insets).Representative
chromatograms are shown for an authentic standard mix of (1) linalool, (7)
lilac aldehydes, (8) lilac alcohols, (10) caryophyllene, and (IS) nonyl acetate
internal standard (top panel), as well as wild-type (Col-0), cyp76c1-1, and
35S:CYP76C1 lines.
(B) Quantification of headspace volatiles. Data are mean 6 SE of three
biological replicates. Statistically significant differences relative to the wild
type are indicated (Student’s t test: *P # 0.05; **P > 0.01; ***P < 0.001).
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8-COOH-linalool. This cascade includes alcohol and aldehyde
intermediates, some of which, such as alcohols, can be detected
in the plant tissues, and others, such as the aldehyde, are too
unstable or rapidly converted to final products. The cascade
also includes some side products such as reduced derivatives
resulting from the activity of other enzymes. A strictly parallel
increase or decrease in the levels of all intermediates of the re-
action cascade is not observed in Arabidopsis in vivo. In addition,
transient expression of CYP76C1 was not sufficient to obtain the

whole spectrum of metabolites in N. benthamiana. This partially
results from the variable efficiency of CYP76C1 for catalyzing the
different steps of the reaction cascade. It also reflects the exis-
tence of other enzymes, which participate in the biosynthesis of
these compounds or in branching pathways in vivo. For example,
8- and 9-OH-linalool are also produced by CYP76C2 and
CYP76C3 in Arabidopsis flowers (Ginglinger et al., 2013; Höfer
et al., 2014), whereas in N. benthamiana leaves, oxidation of
monoterpenols and monoterpenol oxides into the derived acids
and glycosides was demonstrated by previous studies (Dong
et al., 2013; Höfer et al., 2013).
Autoxidation of substrates, background metabolism by yeast

enzymes, rapid conversion of the products byCYP76C1, and lack
of pure enantiomers prevented the determination of the enzyme
catalytic parameters for the reactions downstream of the for-
mation of 8-OH-linalool. It was thus not possible to clearly identify
potential bottlenecks in the reaction cascade. However, both the
analyses of Arabidopsis complemented plants and transformed
N. benthamiana indicate that CYP76C1 overexpression under
a strong promoter favors direct formation of 8-COOH-linalool and
decreases the accumulation of 8-OH-linalool, the precursor of
8-oxo-linalool, which was never detected in the plant. The con-
version of 8-oxo-linalool into 8-COOH-linalool is thus likely to be
faster in vivo than the upstream steps of the pathway. This is
expected to reduce the pool of precursors required for the for-
mation of lilac compounds, and fine-tuning of CYP76C1 ex-
pression might be required for effective production of lilac
compounds. On the other hand, additional enzymes may be re-
quired for the effective formation of lilac alcohols in vivo. Oxy-
doreductases were recently found to enhance P450-catalyzed
oxidation cascades in the biosynthesis of artemisinin (Paddon
et al., 2013) and iridoids (Brown et al., 2015). Moreover, most
linalool oxides are prone to autoxidation, in particular 8-oxo-
linalool. Hence, a role of chemical conversion to form lilac com-
pounds or of autoxidation to prevent 8-oxo-linalool accumulation
in specific cellular environments such as photosynthetic tissues
cannot be excluded.
Plant cytochrome P450s are usually regarded as enzymes with

rather high substrate and regio/stereospecificities. CYP76C1
represents a counterexample. While this enzyme has a clear
preference for linalool among other monoterpenols and is
not metabolizing geraniol (Höfer et al., 2013, 2014), it is able
to metabolize both R- and S-linalool with equal efficiencies, as
well as a broad range of linalool oxides, in addition to phenylurea
herbicides (Höfer et al., 2014). Comparison of its lilac products
with a mixture of standards in which the eight isomeric forms
of lilac aldehydes and lilac alcohols are present (racemic mix-
tures of the four diastereoisomers) suggests that CYP76C1
can generate the four lilac diastereoisomers, but not with the
same efficiencies. Different proportions of lilac aldehydes or
alcohols diastereoisomers are detected after conversion of ra-
cemic mixtures of 8-OH-linalool, 8-oxo-linalool, or lilac alde-
hydes. With respect to substrate preference, CYP76C1 radically
differs from CYP76B6 from C. roseus, which oxidizes a broad
range of monoterpenols (geraniol, nerol, linalool, and citronellol)
with similar efficiencies, but never beyond the stage of the al-
dehyde, and cannot metabolize phenylurea (Höfer et al., 2013,
2014).

Figure 6. Targeted UPLC-MS/MS Quantification of Linalool and Linalool
Derivatives in the Flowers from Wild-Type and CYP76C1 Insertion and
Complemented Lines.

Methanol extracts of the flowers were treated with b-glycosidase before
UPLC-MS/MS analysis using the MRM method. The total amount of
aglycones detected was quantified based on standard curves, except for
lynalyl derivatives, which were only detected as conjugates and for 8-OH-
6,7-dihydrolinalool, for which no standard was available. Data are mean6

SE of three biological replicates. Statistically significant differences relative
to the wild type are indicated (Student’s t test: *P # 0.05; **P > 0.01; ***P <
0.001).Representativechromatogramsareshown inSupplementalFigure10.
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A broad substrate range seems to be a common feature of the
CYP76 family. For example, the CYP76Ms of rice (Oryza sativa)
evolved asmultifunctional enzymesdedicated to the biosynthesis
of labdane-related diterpenoid antifungal phytoalexins (Wang
et al., 2012; Wu et al., 2013). This underscores the fast evolution
and versatility of the CYP76 family and its specialization in dif-
ferent taxa to generate promiscuous enzymes, allowing fast
adaption to ecological niches. This high enzyme versatility in the
CYP76C subfamily seems to correlate with a high genetic vari-
ability (Höfer et al., 2014) and most likely favors the retention of
gene duplicates.

CYP76C1 Sets the Balance between the Emission/
Accumulation of Linalool and Linalool Oxides in the Flowers
of Arabidopsis

By catalyzing linalool oxidation, CYP76C1 also reduces the
emissionof free linalool. The large increase in linaloolemissionand
accumulation of linalyl conjugates upon gene inactivation dem-
onstrates that CYP76C1 is the most abundant and active linalool
metabolizing enzyme in the flowers of Arabidopsis. CYP76C1
diverts the free and conjugated linalool to volatile and soluble
oxidation products, a large proportion of which is conjugated and
stored in the plant tissues. Conjugation/deconjugation are thus
expected to constitute other regulatory mechanisms for the
storage and release of the bioactive oxygenated compounds.
Indeed, a glycosyl transferase, UGT85A3, belonging to a family
known to be active on monoterpenols and iridoids (Caputi et al.,
2008; Nagatoshi et al., 2011) and an a-b hydrolase are coex-
pressed with CYP76C1. As previously discussed by Raguso and
Pichersky (1999), some of the conjugates could be considered
precursors of the free volatiles released upon flower maturation.
However, the timing of TPS and P450 gene expression, which is
quasisimultaneous with terpenoid emission, appears to exclude
this possibility. The linalool oxide conjugates are thus expected to
have a protective function, with aglycones potentially released
upon attack by florivores or pathogens.

Unforeseen Complexity of Linalool-Derived Signaling in
Arabidopsis Flowers

The two other linalool oxidases previously found to be expressed in
the flowers of Arabidopsis, CYP76C3 and CYP71B31 (Ginglinger
et al., 2013), led to the formation of 1,2-epoxylinalool, 4-OH-linalool,
8-OH-linalool, and different diastereomers of 5-OH-linanool as

Figure 7. Heterologous Reconstitution of the Linalool-Derived Pathway by
TransientCoexpressionofLinaloolSynthasesandCYP76C1 inN.benthamiana
Leaves.

N. benthamiana leaves were infiltrated with Agrobacterium tumefaciens
transformedwith an empty vector or with vectors driving the expression of

CYP76C1, TPS10, or TPS14. Each gene was expressed alone or in the
combinations TPS10/CYP76C1 or TPS14/CYP76C1. Five days post-
infiltration, headspacevolatileswerecollected from the transformed leaves
and analyzed by GC-MS. Simultaneously, b-glucosidase-treated meth-
anol extracts from the leaves were analyzed by UPLC-MS/MS.
(A) Head-space analysis.
(B) Quantification by targeted UPLC/MS-MS of 8-OH-linalool, 9-OH-
linalool, and 8-COOH-linalool, the only linalool-derived metabolites detected
in the transformed leaves and for which the accumulation was modified
depending on the enzymes coexpressed. Data are mean 6 SE of three
biological replicates. Statistically significant differences relative to empty
vector are indicated (Student’s t test: *P # 0.05; **P > 0.01; ***P < 0.001).
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primaryproducts inatransientplantexpressionassay,althoughtheir
finalproducts inArabidopsisflowerswerequantitatively toosmall for
identification. Both CYP76C3 and CYP71B31 were mainly ex-
pressed in the upper segment of the anther filament and nectaries
(with very low expression in petals), whereas CYP76C1 was ex-
pressed infilaments, anthers, stigma,andpetalsduringanthesis.No
CYP76C1 expression was detected in nectaries. This suggests the
occurrence of local concentrations of specific compounds and fine-
tuning of olfactory and gustatory cues in the different organs of
Arabidopsis flowers. Considering the existence of other flower-
expressed genes potentially encoding linalool/linalool oxide-
metabolizing enzymes such as CYP76C2 and CYP71B38, further
complexity in linalool oxides signaling in Arabidopsis is expected.

CYP76C1 Influences the Interactions of Flowers
with Insects

Linalool in flower fragrance was long considered to function as
a pollinator attractant (Borg-Karlson et al., 1996; Raguso and
Pichersky, 1999;Reisenmanetal., 2010).However, constitutiveor
induced/engineered linalool emission can also serve in plant
defense (Junker et al., 2011; McCallum et al., 2011; Xiao et al.,
2012), and linalool can also attract antagonistic flower visitors
such as thrips (Koschier et al., 2000). In addition, herbivore-
induced emission of linalool has been found to affect multitrophic
interactions in several systems, where it attracts herbivores as
well as their predators and parasitoids (Loughrin et al., 1995;
Turlings et al., 1995; Xiao et al., 2012). Thus, it seems that the
roles of linalool differ depending on the plant-insect inter-
actions. Interestingly, Yang et al. (2013) reported that thrips
were first attracted by linalool emitted by engineered chrysan-
themum expressing linalool/nerolidol synthase from strawberry
(Fa-NES1) butwere ultimately repelled by linalool conjugates. The
role of linalool conjugates and linalool oxides in ecological in-
teractions is still amatter of debate (Raguso andPichersky, 1999).
For self-compatible plants that do not depend on pollinators for

successful reproduction, such as Arabidopsis, floral defenses may
bemore important thanattractivedisplays tomaximize thefitnessof
plant individuals. As the floral morphology of Arabidopsis does not
provide any physical protection, we hypothesize that volatile or
nonvolatile secondary metabolites produced by wild-type flowers

Figure 8. Behavior of Flower Pollinators and Floral Antagonists on
CYP76C1 Mutant Lines and Pure Compounds.

(A) Thrips dual-choice test between flowers from the wild type and
cyp76c1-1mutant.Results represent theaveragenumberof thrips (6SE)on
the flowers from five biological replicates and for three independent tests.
Statistically significant differences relative to the wild type are indicated
(Wilcoxon test: n = 5, *P # 0.05).
(B) Thrips dual-choice test between volatiles from Col-0, cyp76c1, and
35S:CYP76C1 flowers performed in a Y-shaped arena of an olfactometer.
Three headspace combinations were tested: Col-0 versus cyp76c1-1,
Col-0 versus 35S:CYP76C1, and cyp76c1-1 versus 35S:CYP76C1. Results
represent the average thrips’ choice + SE from five independent replicates,

each using different individual plants and for which choice of 30 to 40
individual thrips was scored. Statistically significant differences are in-
dicated (paired t test: n = 5, **P < 0.01; ***P < 0.001).
(C) Thrips dual-choice test between pure compounds performed in
Y-shaped arena of an olfactometer. Results represent the average thrips’
choice + SE from six independent replicates and for which the choice of 30
individual thrips was scored. One hundredmicrograms of each compound
alone or 100 µg of both lilac compounds for the mix were used for each
assay. Statistically significant differences are indicated (paired t test: n = 6,
**P < 0.01).
(D) Hoverfly dual-choice test between pure compounds performed in
a star-shaped arena of an olfactometer. Results represent the average
percentageof time+ SE spent in substanceor control fields for 30 individual
hoverflies. One hundred micrograms of each compound alone or in mix
were used for each assay. Statistically significant differences are indicated
(paired t test: n = 25, **P < 0.05).
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may function as defenses against florivores (generalists and those
specializedonBrassicaceae) andpollen thieves (Kessler et al., 2008;
Junker and Blüthgen, 2010; Junker et al., 2010a).
In support for our hypothesis, we found that thrips and flori-

vorous insects show strong preference for mutant flowers with
increased linalool emission but reduced emissions of lilac alde-
hydes and lilac alcohols and lower concentrations of linalool
oxides stored in the tissues. Bioassays with pure compounds
further confirmed that preference formutant flowers resulted from
anattraction to linalool and from the lackof defensive volatiles and
stored products (linalool oxides). It has been shown that lilac
compounds are important in a specialized nursery pollination
system for recognition by the noctuid moth nursery pollinator of
white campion (Silene latifolia) (Dötterl et al., 2006b, 2007).
Moreover, lilac aldehydes fromAsimitellariawere shown to induce
the nectaring behavior of long-tongued fungus gnats but are
repellent for short-tongued fungus gnats in olfactometer tests
(Okamoto et al., 2015). In our hands, both lilac aldehydes and lilac
alcohols turned out to be repellent for a number of other insect
taxa. This is in accordance with the dual function of individual
volatiles and scent bouquets, with the obligate dependency of the
moths to find their hosts for both resources and oviposition
(Junker and Blüthgen, 2010; Schiestl, 2010) and the concurrent
necessity for plants to protect reproductive tissues. In line with
this, it is interesting to note that CYP76C1 is present as a pseu-
dogene in the genome of the outcrossing relative Arabidopsis
lyrata (Höfer et al., 2014).
Thus, we have shown how one gene/enzyme may be sufficient

to turn an attractive display into a defensive phenotype using the
attractive compound as substrate for the production of defensive
metabolites. Interestingly, constitutively expressed CYP76C1 is
localized specifically in the stamen (anthers and filament), petals,
and top of the style of Arabidopsis flowers, which are the most
valuable tissues for seed set and reproduction. Additionally, the
role of CYP76C1 in flower defense against flower antagonists
suchasflorivorous insects issupportedby its temporallyactivated
expression during flower opening and anthesis, the stages when
flowers are most exposed and visited.

Prospect for Engineering Flower Scent, Aroma, Drug
Production, and Plant Defense

Lilac aldehydes and alcohols form an important class of fragrance
compounds, with lowodor threshold and olfactory properties that
depend on their complex stereochemistry (Kreck and Mosandl,
2003; Siska et al., 2014). Both lilac aldehydes and alcohols were
first isolated from lilac flower oil (Wakayama et al., 1970, 1971;
Wakayama and Namba, 1974) and later identified as fragrant
components inGardenia jasminoides flowers (Hattori et al., 1978),
slender bog orchid (Platanthera stricta) (Patt et al., 1988), and
Artemisia pallens (Misra et al., 1991). Lilac compounds, together
with pyranoid and furanoid linalool oxides, are also produced in
flowers and fruits of a broad range of plant species as diverse as
papaya (Schreier andWinterhalter, 1986), grape (Luanetal., 2006),
kiwi (Matich et al., 2003), and C. breweri (Pichersky et al., 1994).
Their formation in these plants is expected to involve similar
oxidative cascades. The demonstration of the role of CYP76C1 in
multiple linalool oxidations is a first step in engineering lilac

Figure 9. Behavior of Florivores onFlowers ofCYP76C1Mutant Lines and
Pure Compounds.

(A) Feeding preferences of larvae ofP. xylostella andS. littoralis and adults
of P. cochleariae for flowers from the wild type and cyp76c1-1 mutant in
dual-choice test. Response index R represents the mean proportion
consumed from cyp76c1-1 flowers minus the mean proportion of Col-0
flowers consumed in each case (6SE) for 30 individuals per insect species.
Negative values indicate a preference for the mutants. Statistically sig-
nificant differences relative to the wild type are indicated (Student’s t test:
n = 3, **P < 0.01; ***P < 0.001).
(B) Dual-choice test with adults of P. cochleariae feeding on cabbage
leaves treatedwith pure 8-OHand 8-COOH-linalool. Onegramof cabbage
leavewas treatedwith 10, 100, or 1000 ng of pure compounds dissolved in
methanoloronlywithmethanol (Control). Results represent thepercentage
mean choice of 30 individuals between treated or control leaves. Statis-
tically significant differences relative to control are indicated (paired t test:
n = 30, *P < 0.05).
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compounds. On the other hand, 8-COOH-linalool is a structural
buildingblockof compoundswith high therapeutic potential, such
as a,b-unsaturated monoterpene acid glucose esters, which are
prevalent in the genus Eucalyptus (Goodger andWoodrow, 2011,
2013), and cytotoxic saponins from Acacia victoriae (Hanausek
et al., 2001; Haridas et al., 2001) and Albizia lebbeck (Noté et al.,
2015). Expression or modulation of CYP76C1 functional homo-
logs in different plant species and microorganisms might thus be
considered for applications as diverse as aroma enhancement,
drug synthetic biology, engineering plant defense against herbi-
vores, and enhancing/improving flower scent.

METHODS

Plant Growth

Arabidopsis thaliana Col-0 and Nicotiana benthamiana seeds were sown
onastandard soil compostmixture in 7-cm-diameter pots andcultivated in
growthchambersunderwhitefluorescent lampswitha light intensityof100
to150µmolm22s21at22°Cduring the12-hdayperiodand19°Cduring the
12-h night period for Arabidopsis and at 24°C during the 16-h day period
and at 20°C during the 8-h night period for N. benthamiana.

Gene Coexpression Analysis and Quantification of Gene Expression

CYP76C1 expression and coexpression patterns were investigated
using the ExpressionAngler tool (Toufighi et al., 2005). Quantification of
gene expression was performed by qRT-PCR as previously described
(Ginglinger et al., 2013; Höfer et al., 2014). Tissues and organs of Arabidopsis
were harvested fromat least five floweringplants and immediately frozen in
liquid nitrogen. Total RNA was extracted by the classical lithium chloride-
phenol protocol and treated with DNase I (Fermentas, Thermo Fisher
Scientific) according to the manufacturer’s instructions. cDNAs were
synthesized from 2 µg of total RNA with SuperScript III reverse tran-
scriptase (Invitrogen, Life Technologies) in the presence of oligo(dT)18
primers (Fermantas, Thermo Fisher Scientific) and then 10-fold diluted.
Primers used for each gene are provided in Supplemental Table 1. qRT-
PCR reactions were prepared with a Biomek 3000 (Beckman Coulter) and
contained 2 mL cDNA, 5 mL of LightCycler 480 SYBR Green I Master
(Roche), and 250 nM of forward and reverse primers in a total volume of
10 µL. Samples were analyzed in triplicate on a LightCycler 480 II (Roche)
with an amplification profile consisting of 95°C for 10 min and 40 cycles
(95°C denaturation for 10 s, annealing at 60°C for 15 s, and extension at
72°C for 15 s), followedby amelting curve analysis from55 to 95°C to verify
the specificity of transcripts. Relative transcript levels were calculated
using the EDCtmethod (Pfaffl, 2001), corrected with the specific efficiency
of each primer pair and normalizedwith four reference geneswhose stable
expression has been validated (Czechowski et al., 2005). Five biological
replicates were used for the organs, three for the floral stages and four for
flower parts.

Generation of Vector Constructs

Vector constructs were generated as previously described (Ginglinger
et al., 2013; Höfer et al., 2014) with the USER cloning technique (New
England Biolabs) according to Nour-Eldin et al. (2006). USER extensions
were added to the primers (Supplemental Table 1) to integrate the ap-
propriate sequences into the suitable plasmids. The CYP76C1 coding
sequence was integrated into the yeast expression plasmid pYeDP60u2
and the plant expression vector pCAMBIA3300u (Höfer et al., 2013).
CYP76C1 and TPS10 coding sequences with modified 39 ends were re-
spectively fused to the 59 sequence of eGFP (Sagt et al., 2009) andmRFP

(Campbell et al., 2002) according to Geu-Flores et al. (2007) as previously
described (Ginglinger et al., 2013) and inserted into the plant expression
vector pCAMBIA2300u. The 1-kb promoter region of CYP76C1 was in-
tegrated into the plant expression vector pBI101u as previously described
(Ginglinger et al., 2013). Constructs were confirmed by sequencing. Plants
and yeasts were transformed as previously described (Ginglinger et al.,
2013; Höfer et al., 2014).

GUS Reporter Analysis of CYP76C1 Tissue-Specific Expression

Aconfirmedconstructwas introduced into theAgrobacterium tumefaciens
strain GV3101 for Arabidopsis transformation by floral dip (Clough and
Bent, 1998). Transformed lines were selected on plates containing
kanamycinat50µg$mL21. Three independentT1kanamycin resistant lines
were brought to T3 stable progeny by germination on kanamycin to obtain
homozygous stable lines. GUS staining of the flowers was performed for
19 h after vacuum infiltration of 5-bromo-4-chloro-3-indolyl-b-D-glucuronide
(X-Gluc) (Jefferson et al., 1987).

Subcellular Distribution of CYP76C1 and TPS10 Transiently
Expressed in N. benthamiana Leaf Epidermal Cells Monitored by
Confocal Microscopy

Constructs were transformed into the Agrobacterium LBA4404 strain (van
der Fits et al., 2000). Twenty-day-old N. benthamiana leaves were co-
transformed by agroinfiltration with a culture of equal density expressing
the p19protein of tomato bushy stunt virus (Voinnet et al., 2003) in a ratio of
1/1 (v/v) for transient expressionasdescribedbyBassard et al. (2012). Four
days postinfiltration, leaf discs were excised for observation by confocal
microscopy.Cell imagingwasperformedusingaLeicaTCSSP5Xconfocal
laser scanning microscope equipped with a DM6000 microscope (Leica).
Images were recorded using a 633 water immersion objective lens (HCX
PL APO lambda blue 633 1.2 water UV; Leica). Excitation/emission
wavelengths were 488/495 to 530 nm for CYP76C1:eGFP construct, 548/
560 to 600 nm for TPS10:mRFP1 construct, and 488/600 to 770 nm for
chlorophyll fluorescence. The Z-stack image series were sequentially
acquiredusing the resonant laserof theSP5Xconfocal systemand theLAS
Advanced Fluorescence version 2.7.3.9723 software (Leica). Images se-
ries were processed with ImageJ software version 1.49o (NIH; http://rsb.
info.nih.gov/ij) or with Volocity version 6.3.0 (Perkin-Elmer). For ImageJ
processing, a standard deviation Z-projection was prepared from images
series, then contrasts were adjusted. For image processing by Volocity,
noise was removedwith the fine filter parameter, bleachingwas corrected,
and contrasts adjusted prior to 3D reconstruction with 3D opacity mode.

Synthesis of Linalool Oxides

Synthesis of racemic R/S-8-OH-linalool and racemic R/S-8-oxo-linalool was
performed as previously described from racemic R/S-linalool (Ginglinger
et al., 2013). Synthesis of racemic mixture of the four stereoisomers of lilac
aldehydes (2-(5-methyl-5-vinyltetrahydrofuran-2-yl)propanol) was performed
from (E)-2,6-dimethyl-6-hydroxy-2,7-octadienal following a slight modifica-
tion of the procedure of Wilkins et al. (1993) andWakayama et al. (1973). Dry
NaH (172mg, 7.13mmol, 4 equiv.) was added to a stirred solution of racemic
R/S-8-oxo-linalool (300 mg, 1.78 mmol, 1 equiv.) in anhydrous methanol
(10mL). The reaction mixture was stirred for 4 h, diluted with CH2Cl2 (30 mL),
andwashedwith a saturated aqueous solution of NaCl (30mL). The aqueous
phase was extracted with CH2Cl2 (33 40 mL). The combined organic layers
were dried over Na2SO4, filtrated, and concentrated under reduced pressure.
Pure product was obtained by flash chromatography (PE/EtOAc 100/0 to
30/70) to afford the title compound as yellowish oil (127mg, 0.75mmol, 42%,
four diastereoisomers). 1HNMR (CDCl3, 300MHz) characterization of the title
compoundwasas follows:d=9.72 (d, 1H,J=2.3Hz), 5.81 (d,1H,J=10.8Hz),
5.11 (dd, 1H, J = 17.3, 1.4 Hz), 4.93 (dt, 1H, J = 10.4, 1.2 Hz), 4.04 to
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4.14 (m,1H), 2.38 to2.47 (m, 1H),1.62 to 2.07 (m, 4H), 1.24 (s, 3H), 1.01 (d, 3H,
J = 7.0 Hz). 13C NMR (CDCl3, 75MHz) characterization of the title compound
was as follows: d = 204.56, 204.52, 204.29, 144.21, 144.03, 143.45, 143.33,
111.76,111.62,111.58,111.5,83.40,83.35,83.13,79.62,79.17,78.66,78.46,
51.90, 51.71, 51.10, 50.74, 37.63, 37.43, 36.89, 36.62, 29.97, 29.36, 29.22,
28.65, 27.08, 26.76, 26.52, 26.14, 10.37, 10.29, 9.95, and 9.28. Rf: 0.78
(PE/EtOAc 70/30).

Synthesis of racemic mixture of the four stereoisomers of lilac alco-
hols (2-(5-methyl-5-vinyltetrahydrofuran-2-yl)propan-1-ol) was performed
from the racemic mixture of the four stereoisomers of lilac aldehydes.
NaBH4 (70mg, 1.86mmol, 4 equiv.) was added to a stirred solution of 2-(5-
methyl-5-vinyltetrahydrofuran-2-yl)propanal (78 mg, 0.46 mmol, 1 equiv.)
in anhydrousmethanol (10mL,0.05M). The reactionmixturewasstirred for
30 min, subsequently diluted with Et2O (20 mL), and washed with NaCl
saturated aqueous solution (20 mL). The aqueous phase was extracted
with Et2O (3 3 20 mL). The combined organic layers were dried over
Na2SO4, filtrated, and concentrated under reduced pressure. Pure product
wasobtainedbyflashchromatography (PE/EtOAc100/0 to30/70) to afford
the title compound as yellowish oil (44 mg, 0.26 mmol, 56%, four dia-
stereoisomers). 1H NMR (CDCl3, 300 MHz) characterization of the title
compound was as follows: d = 5.80 to 5.92 (m, 1H), 5.16 (dd, 1H, J = 17.0,
1.7 Hz), 4.98 (d, 1H, J = 10.6 Hz), 3.75 to 3.86 (m, 1H), 3.60 (m, 3H), 1.98 to
2.06 (m, 1H), 1.65 to 1.89 (m, 4H), 1.30 (s, 3H), 0.79 (d, 3H, J = 6.9 Hz). 13C
NMR (CDCl3, 75 MHz) characterization of the title compound was as
follows: d = 144.57, 143.86, 143.76, 112.20, 111.97, 86.24, 85.84, 84.03,
83.89, 83.29, 82.72, 69.31, 69.06, 41.47, 41.35, 37.60, 37.29, 36.72, 31.49,
31.09, 27.57, 27.23, 27.06, 13.97, and 13.76 . Rf: 0.62 (PE/EtOAc 70/30).

Synthesis of a racemic mixture of 8-COOH-linalool [(E )-6-hydroxy-2,6-
dimethylocta-2,7-dienoic acid] was performed following the procedure of
Sharma and Chand (1996). A solution of NaClO2 (1.00 g, 11 mmol, 7.6 equiv.)
and NaH2PO4 (1.00 g, 8.3 mmol, 5.7 equiv.) in distilled water (10 mL) was
added dropwise to a stirred solution of (E )-6-hydroxy-2,6-dimethylocta-
2,7-dienal (244 mg, 1.45 mmol, 1 equiv.) in a mixture of t-butanol (25 mL)
and 2-methyl-2-butene (10 mL). The yellow solution was stirred overnight
at room temperature and concentrated under a vacuum. The aqueous
layer was diluted with water (30 mL) and extracted once with hexane (30 mL).
The aqueous layerwas titrated to pH3.0 andextracted twicewith Et2O (23
30 mL). The combined organic layers were washed with a saturated
aqueous solution of NaCl, dried over Na2SO4, filtrated, and concentrated
under vacuum, affording the title compound (232mg, 1.26mmol, 87%). 1H
NMR (300 MHz, CDCl3) characterization of the title compound was as
follows: 6.89 (td, 1H, J = 7.5, 1.6 Hz), 5.86 to 5.95 (m, 1H), 5.24 (dd, 1H, J =
17.3,1.3Hz), 5.10 (dd,1H,J=10.7, 0.9Hz), 2.13 to2.31 (m,2H), 1.83 (s,3H),
1.49 to 1.78 (m, 4H), 1.32 (s, 3H). 13C NMR (75MHz, CDCl3): 173.4, 145.1,
144.7, 127.5, 112.7, 73.5, 40.8, 28.4, 24.0, and 12.3.

Yeast Expression and in Vitro Activity of CYP76C1 on Linalool and
Linalool Oxides

Yeast expression ofCYP76C1wasperformed andquantifiedaspreviously
described (Höfer et al., 2014). For GC-MS analysis of CYP76C1 activity on
linalool and linalool oxides as substrates, assayswere performed in 300mL
of 20 mM sodium phosphate buffer (pH 7.4) containing 100 µM of sub-
strates, 1 mM NADPH, and adjusted amounts of P450 enzyme. After
addition of NADPH, samples were incubated at 28°C and the reaction was
stopped by addition of 600 mL ethyl acetate spiked with 10 µM nonyl
acetateon ice.Sampleswere vortexed for 10sandcentrifugedat4000g for
2 min. Four hundred microliters of the ethyl acetate phase was sub-
sequently recovered and dried over anhydrous Na2SO4 (Sigma-Aldrich),
rinsed with 100 mL ethyl acetate, and transferred into GC-MS vials.

ForUPLC-MS/MSanalysisofCYP76C1activity,assayswereperformed in
500 mL of 20 mM sodium phosphate buffer (pH 7.4) containing 200 µM of
substrates, 1 mM NADPH, and adjusted amounts of P450 enzyme. After
addition of NADPH, samples were incubated at 28°C and the reaction was

stoppedby addition of 250mLofmethanol on ice. Sampleswere vortexed for
10 sandcentrifugedat 5500g for 5min at 4°C. Four hundredmicroliters of the
supernatantwastransferredtoUPLCvials.For thedeterminationof thekinetic
parameters onR- andS-linalool by UPLC-MS/MS, assays were downscaled
toafinalvolumeof200µL,usingR-andS-linaloolconcentrationsrangingfrom
10 to 500 µM, 1mMNADPH, and;2 nMP450s. Formation of products was
quantified after 4.5min of incubation. Kinetic parameters were deduced from
Michaelis-Menten regression curves.

GC-MS Analysis

Capillary GC was performed on a Perkin-Elmer Clarus 680 gas chro-
matograph coupled to a Perkin-Elmer Clarus 600T mass spectrometer on
a HP-5ms or HP-35ms column (30 m, 0.25 mm, 0.25 µm; Agilent Tech-
nologies) using splitless injection, 250°C injector temperature, and a
temperature program of 0.5 min at 50°C, 20°C min21 to 320°C, and 5 min
at 320°C with a flow of 1.2 mL$min21 of helium gas as vector. Products
were identified based on their retention time and electron ionization mass
spectra (70 eV,m/z 50 to 300) comparedwith those of authentic standards.
The HP-35ms column was used to enable proper separation of 8-oxo-
linalool and 9-OH-linalool.

NMR Characterization of Products

Standard in vitro enzyme assays were scaled up to a volume of 10 mL
containing 1 mM of substrate. After a first incubation for 20 min at 28°C,
a second aliquot of microsomes expressing CYP76C1 was added and
incubated for another 20 min. The reaction was stopped by cooling the
sample on ice. Membranes were pelleted by centrifugation at 5500g for
5 min. Products in the cleared buffer were extracted by solid phase ex-
traction on SPE cartridges (Oasis HLB extraction cartridges; Waters) as
previously described (Höfer et al., 2014). The products were eluted with
CDCl3 prior to NMR analysis. Major products were directly analyzed by
NMRaspreviouslydescribed (Höferetal., 2014)ona500-MHzBrukerAvance
spectrometer (Bruker-Biospin) equipped with a 5-mm DCH dual cryoprobe
with z-gradient operating at 500.13 MHz for 1H and 125.758 MHz for 13C.
1D1H,1H-1HCOSY,edited1H-13CHSQC,and1H-13CHMBCwererecorded
for each sample, adding 1H-1H NOESY and 1D 13C when required.

Minor products from the 8-oxo-linalool transformation by yeast-
expressed CYP76C1 were separated by a preparative GC Agilent 7890A
GC instrument equipped with a HP-5 capillary column (30m3 0.53mm ID
with 1.5-µm film; Agilent Technologies) connected to a flame ionization
detector (Agilent) and a preparative fraction collector with a cryostatic trap
cooler (PFC;Gerstel) aspreviously described (Ginglinger et al., 2013).NMR
analysis of the collected products was conducted on a Bruker Avance 500
spectrometer equippedwith a 5-mmTCI cryoprobe (5mm)with z-gradient
operating at 500.13 MHz for 1H and 125.76 MHz for 13C as previously
described (Ginglinger et al., 2013).

Isolation of Insertion Mutant and Complemented/
Overexpression Lines

Arabidopsis insertion lines cyp76c1-1 (SALK_010566) and cyp76c1-2
(SALK_001949) were selected from SALK and obtained from the Not-
tingham Arabidopsis Stock Center. Homozygous mutant lines were se-
lected by PCR genotyping of genomic DNA extracted from young leaves
using theprimersprovided inSupplemental Table1.Absenceof transcripts
in the insertion lines was assessed by RT-PCR amplifying the full coding
sequence and qRT-PCR in flower tissues as describe above.

To generate a complemented/overexpressed line (35S:CYP76C1), the
plant expression vector pCAMBIA3300u harboring CYP76C1 was in-
troduced into the Agrobacterium GV3101 strain before transformation of
homozygouscyp76c1-1plantsbyfloraldip.TheT1progenywerescreened
by germination on phosphinothricin (BASTA), and several lines were
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screenedby qRT-PCR forCYP76C1 expression in flower tissues. Selected
T1 lines showing thehighest expressionwere brought toT3 stableprogeny
by germination on BASTA. CYP76C1 overexpression was analyzed on T3
lines by RT-PCR and qRT-PCR in leaves and flowers as described above.

Headspace Volatile Collection from Arabidopsis Flowers and
Transformed N. benthamiana

Collection of headspace volatiles was performed as previously described
(Ginglinger et al., 2013). About 50 to 60 inflorescences from each line were
used for the each sample collection with at least three biological replicates.
Detached inflorescences were placed in 12-mL glass tubes filled with water
and placed in 1-liter glass jars equipped with an inlet and an outlet. Volatiles
were pumped out from the jar with a vacuum pump at ;100 mL min21 and
trapped on a cartridge filledwith 150mgTenax TA (20/35;GraceScientific) at
theoutlet.Asimilarcartridgewasplacedat the inlet toensurepurificationof the
incoming air. Volatiles were sampled for 24 h. After volatile collection, flowers
were cut from the inflorescences and weighed before further analysis of
soluble compounds. Tenax cartridge desorption and volatile analysis were
performed as described (Ginglinger et al., 2013) using a TurboMatrix 100
thermaldesorber (Perkin-Elmer) andaPerkin-ElmerClarus680equippedwith
a Perkin-Elmer Clarus 600T quadrupole mass spectrometer.

For headspace analysis of volatiles emitted from transformed
N. benthamiana leaves, plant expression constructs carrying the coding
sequences of CYP76C1, TPS10, or TPS14 were transformed into Agro-
bacteriumLBA4404,whichwasusedto infiltrate theN.benthamiana leavesas
described previously (Ginglinger et al., 2013). Four days after infiltration, three
infiltrated leaves per samples corresponding to ;1.5 g of leaf material were
detached and maintained in a 12-mL glass vial filled with water placed in
a 1-liter glass jar. Leaf headspace was collected on Tenax cartridges as
described above for 4 h. After volatile collection, leaves were weighed before
further analysis of soluble compounds. Tenax cartridges were analyzed by
GC-MS as described above.

Extraction and b-Glycosidase Treatment of Soluble Compounds

After headspace volatile collection from Arabidopsis flowers and N. ben-
thamiana leaves,plantmaterialwasextractedwithmethanol foranalysisof the
soluble compounds. After weighing, sampleswere ground in 5mLmethanol,
sonicated for 10 min, and kept at220°C overnight. Methanol extracts were
centrifuged 10 min at 5500g, and the supernatant was recovered and con-
centratedunder argon to500µL.After additionof 1 volumeof ultrapurewater,
samples were kept one night at280°C to ensure precipitation of the chloro-
phylls. After centrifugationat 5500g for 10min, theclear supernatantwassplit
into two 500-mL samples and transferred into new vials. One of the vials was
reduced to dryness under argon. The other was kept for analysis of the raw
extract. The dried samples were treated overnight with b-glycosidase from
almond (Sigma-Aldrich) in a final volume of 250 mL of sodium acetate buffer
(150 mM) containing 6 units$mL21 of enzymes. The next day, 250 mL of
methanolwasadded toprecipitateproteins, andafter 10mincentrifugationat
5500g, the supernatant was transferred into a new tube.

UPLC-MS/MS Analysis of Soluble Compounds

UPLC analyses were essentially performed as previously described
(Ginglinger et al., 2013)withminor changes using anAcquity UPLC system
(Waters) coupled to a Quattro Premier XE mass spectrometer (Waters)
equippedwithanelectrospray ionization sourceandanAcquityUPLCBEH
C18 (100 3 2.1 mm, 1.7 µm; Waters) column and precolumn. The mobile
phaseconsistedof (A)water and (B)methanol, bothcontaining0.1%formic
acid.The runbeganwith2minof 85%A.Thena lineargradientwasapplied to
reach100%Bat27min, followedbyan isocratic runusing100%Bfor10min.
Return to initial conditionswasachieved in 1min followedbyaconditioningof
the column with 85%A for 2 min, with a total run time of 40 min. The column

wasoperatedat 35°Cwith a flow rateof 0.30mL/min, injecting4-mLsamples.
Nitrogen was used as the drying and nebulizing gas. The nebulizer gas flow
was set to ;50 L/h and the desolvation gas flow to 900 L/h. The interface
temperature was set at 400°C and the source temperature at 135°C. The
capillary voltagewas set to 3.4 kV and the cone voltage to 15V; the ionization
was in positive mode. Low mass and high mass resolution were 15 for both
mass analyzers, ion energies 1 and 2 were 0.5 V, entrance and exit potential
were 50 V, and detector (multiplier) gain was 650 V.

For qualitative analysis andmass spectra determination, samples were
analyzed with full scan in positive mode, with an energy cone of +15V on
a range of 50 to 500 m/z and with a 0.2-s scan time. For quantitative
analysis, multiple reaction monitoring mode (MRM)-specific MS/MS
transitions, cone energy, and collision energy were determined for each
compound using authentic standards. Analyses were performed using six
MRMchannels, eachspecific for acompound,with thespecific tunes listed
in Supplemental Table 2. For each channel, dwell time was 0.2 s and span
was set up at 0.1m/z. Data acquisition and analyses were performed with
MassLynx and QuanLynx software version 4.1 (Waters).

Insect Behavior

Aphids (Myzus persicae) preference for either flowers from thewild-type or
cyp76c1 insertion lines was tested in dual-choice assays. Detached in-
florescences from Col-0 and cyp76c1were placed on both sides of a Petri
dish ina layerof agarose (1%). Ten individual aphidswere thenplaced in the
dish. The number of aphids on each inflorescence was scored for 48 h.

Thrips (Frankliniella occidentalis) behavior towardwild-type andmutant
flowers was tested using dual-choice assays. Ten female adults for each
assay were starved overnight and released the next day in a Petri dish
containing (on both sides) one detached inflorescence from Col-0 and
cyp76c1, each with its stem inserted in a layer of 1% agarose. The number
of thrips on each inflorescencewas scored every hour for 6 h. Evaluation is
based on five biological replicates for each combination of lines and three
independent assays.

Thrips preference for the volatiles emitted from wild-type and mutant
flowers was studied in a y-shaped olfactometer as described by Junker et al.
(2010b). All flower stems from each plant, bundled with Teflon tape, were
wrapped in anovenbag. Thebagwas sealedwithmasking tapeon theTeflon
tape toavoiddamaging theplant tissue.An inlet/outletsystemwasconnected
to the topof theovenbags. Inlet airwaspurified throughcharcoal andpushed
into thebagswith apumpat 100mLmin21, thuspushing the volatiles emitted
from the flowers through the outlet connected to one arm of the olfactometer
arena. The two arms of the olfactometer arena were each supplied with the
volatiles from the flowers of one of the two different lines tested per assay.
Each arm was illuminated similarly to maintain uniform conditions for the
thrips.Aboutfive thripswere released in thearenaand theirfirst choice forone
of thearmswasscored.After each trial, thevolatilesupply in the twoarmswas
switched to avoid effects from side preferences. For each plant combination,
the behavior of 30 to 40 individual thrips was tested in four independent
replicates, each using different individual plants.

The thrips’ preference for pure compounds was tested in the same
y-shaped olfactometer. The arm of the olfactometer defined as the sub-
stance arm was supplied with an air stream from a desiccator in which
100 µg of pure substance (racemic mix of R/S-linalool, mixture of lilac
aldehyde diastereoisomers, mixture of lilac alcohol diastereoisomers, and
equimolar mix of stereoisomeric lilac aldehydes and alcohols) dissolved in
methanol was placed on a filter. The arm of the olfactometer defined as
neutral was supplied with an air stream from a control desiccator in which
the same amount ofmethanol was placed on a filter. About five thrips were
released in the chamber, and their first choice for the neutral or substance
arm was scored. After each trial, the volatiles supplying the arms were
switched to avoid artifacts. For each compound, the behavior of up to
40 individual thrips was tested with six independent replicates. For each
independent test, the pure substance was replaced with a new one.
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The behavior of adult hoverflies (Episyrphus balteus) was tested with
pure compounds in a star-shaped olfactometer described by Junker et al.
(2010a). The fields of the olfactometer defined as substance fields were
supplied as described abovewith 100 µg of pure compounds (racemicmix
of R/S-linalool, racemic mix of R/S-8-OH-linalool, racemic mix of R/S-8-
COOH-linalool, mixture of lilac aldehyde diastereoisomers, mixture of lilac
alcohol diastereoisomer, and equimolar mix of all these compounds) in
methanol placed on a filter. Hoverflies were placed one by one for 4 min in
the olfactometer, and time spent in the neutral or substance fields was
measured. Substances in the desiccator were replaced every 20 min.

The preference of the florivorous insects Plutella xylostella (L3 larvae),
Phaedon cochleariae (adults), and Spodoptera littoralis (larvae) for flowers
from the wild type and cyp76c1-1 mutants was tested using a dual-choice
feeding test. Eachset of fiveopenCol-0 andfivecyp76c1 flowerswasoffered
on opposite sides of a Petri dish; flowerswere placed intomoist foam to keep
them fresh for the duration of the experiment. One individual of either of three
insect species mentioned abovewas placed in the Petri dish. The number of
flowers (or flower parts) consumed by the insect was scored after 3 h. Each
individual was used only once in order to prevent pseudo-replication.

The feeding preference of P. cochleariae (adults) on cabbage leaves
suppliedwith linalooloxidesandcontrol leaveswastestedusingadual-choice
test. Small pieces of leaves were treated with 1 mL per 1 g FW methanol
containing 10, 100, or 1000 ng µL21 of pure compounds as described above
(linalool, lilacalcohols,8-COOH-linalool,or8-OHlinalool).Control leaveswere
treated in the same way with pure methanol. Leaves were offered in Petri
dishes and one individual was allowed to choose between treatment and
control. Within 10 min, the first choice (consumption) was scored.

Accession Numbers

Sequence data from this article can be found in the Arabidopsis Genome
Initiative or GenBank/EMBL databases under the following accession num-
bers: TPS10 (At2g24210), TPS14 (At1g61680), CYP76C1 (At2g45560), and
CYP71B38 (At3g53280).
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Supplemental Figure 1. Extended CYP76C1 expression and coex-
pression analysis.

Supplemental Figure 2. CYP76C1 and TPS10 subcellular local-
izations.

Supplemental Figure 3. Extended GC-MS analysis of the products
resulting from yeast-expressed CYP76C1 activity on linalool and
linalool oxides.

Supplemental Figure 4. Mass spectra of the products formed
by yeast-expressed CYP76C1 (in Figure 2 and Supplemental Figure 3).

Supplemental Figure 5. Determination of the catalytic parameters of
the R- and S-linalool conversion by CYP76C1 into 8- and 9-OH-
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Supplemental Figure 6. NMR characterization of linalool oxidation
products formed by CYP76C1.

Supplemental Figure 7. Time-course production of lilac aldehydes
from yeast-expressed CYP76C1 on 8-oxo-linalool.

Supplemental Figure 8. Targeted UPLC-MS/MS analysis of the
products resulting from yeast-expressed CYP76C1 activity on linalool
and linalool oxides.

Supplemental Figure 9. Genotyping of the Arabidopsis mutants.

Supplemental Figure 10. Targeted UPLC-MS/MS profiling of the
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Arabidopsis and CYP76C1 mutants.

Supplemental Figure 11. Myzus persicae dual-choice test between
flowers from the wild type and cyp76c1 insertion mutants.

Supplemental Figure 12. F. occidentalis dual-choice test between
flowers from the wild type and cyp76c1-2 mutant.

Supplemental Figure 13. Dual-choice test of feeding with adults of
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analysis in multiple reaction monitoring of the selected linalool and
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