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Abstract

comprehensive analysis of public WGBS data.

Background: Whole genome bisulfite sequencing (WGBS) is a high-throughput technique for profiling genome-
wide DNA methylation at single nucleotide resolution. However, the applications of WGBS are limited by low
accuracy resulting from bisulfite-induced damage on DNA fragments. Although many computer programs have
been developed for accurate detecting, most of the programs have barely succeeded in improving either quantity
or quality of the methylation results. To improve both, we attempted to develop a novel integration of most
widely used bisulfite-read mappers: Bismark, BSMAP, and BS-seeker2.

Results: A comprehensive analysis of the three mappers revealed that the mapping results of the mappers were
mutually complementary under diverse read conditions. Therefore, we sought to integrate the characteristics of the
mappers by scoring them to gain robustness against artifacts. As a result, the integration significantly increased
detection accuracy compared with the individual mappers. In addition, the amount of detected cytosine was
higher than that by Bismark. Furthermore, the integration successfully reduced the fluctuation of detection
accuracy induced by read conditions. We applied the integration to real WGBS samples and succeeded in
classifying the samples according to the originated tissues by both CpG and CpH methylation patterns.

Conclusions: In this study, we improved both quality and quantity of methylation results from WGBS data by
integrating the mapping results of three bisulfite-read mappers. Also, we succeeded in combining and comparing
WGBS samples by reducing the effects of read heterogeneity on methylation detection. This study contributes to
DNA methylation researches by improving efficiency of methylation detection from WGBS data and facilitating the

Background

DNA methylation, defined as the addition of methyl group
on 5-carbon in cytosine, is a widely spread epigenetic
mark. The DNA methylation pattern can serve to identify
cells and guides cell development and tissue maintenance
[1]. For decades, researchers have focused on methylation
at CpG sites (mCpG) and found that differentially methy-
lated regions (DMRs) among various cells are involved to
cell-specific functions, aging and deceases [2-5]. Recently,
methylation at CpH (mCpH; where H can be A, C, or T)
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sites has been confirmed to be a key regulator of brain
development and embryonic stem cell (ESC) differentia-
tion [6-9]. Therefore, profiling both mCpG and mCpH in
a genome scale is crucial for understanding of various bio-
logical processes.

To analyze the methylation modifications, high-
throughput methods coupled with microarray and next-
generation sequencing have been widely used. Bisulfite
microarray is a specially designed genotyping microarray
combined with bisulfite treatment. Although this method
is a useful strategy for targeted DNA methylation ana-
lyses, it is not suitable for genome-scale studies due to
low genome coverage; only 0.8% of CpGs and 0.02% of
CpHs have been covered in the newest version [10].
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Reduced representation bisulfite sequencing (RRBS) [11]
utilizes enzyme bindings to “CCGG” sites to detect infor-
mation-rich regions, whereas the enzyme reaction leads
experimental bias and limits the detection of mCpH [12].
Alternatively, as the widely-accepted gold standard
method, whole genome bisulfite sequencing (WGBS) can
detect both mCpG and mCpH at single nucleotide reso-
lution in a genome scale [12].

For efficiently detecting the methylated sites with WGBS
data, many computer programs have been developed. In
particular, Bismark [13], BSMAP [14], and BS-seeker2 [15]
are the most widely used bisulfite-read mappers that
employ different strategies; BSMAP is a wild-card type
mapper that converts all cytosine bases (Cs) of a reference
genome to a letter Y and then aligns sequenced Cs and
thymine bases (Ts) to the Y [12] by using SOAP [16]. Bis-
mark and BS-seeker2 are three-letter type mappers that
convert all Cs to Ts in both sequenced reads and a refer-
ence genome. Bismark and BS-seeker2 employ Bowtie 2
[17] in global and local alignment modes, respectively. It
has been reported that wild-card type mappers are better
in mapping rate (percentage of reads being aligned) but
struggle with mapping accuracy (percentage of reads
mapped at correct positions) [12]. Three-letter type map-
pers show exactly opposite tendency [12]. Therefore, the
choice of bisulfite-read mapper is an important issue for
not only specific studies that use costly WGBS data but
also comprehensive large-scale analyses of public WGBS
datasets.

In this study, we investigated the performances of the
three mappers on virtual WGBS dataset that has been
simulated under various conditions. Through gathering
detailed information, we confirmed that the mappers
exhibit (dis)similar behaviors depending on the proper-
ties of simulated reads, which is consistent with results
from previous studies [12,15]. Since the results showed
that the behaviors of the three mappers were comple-
mentary to each other, we sought to integrate the char-
acteristics of the mappers by scoring them to gain
robustness against artifacts (e.g. sequencing errors and
aligning errors). As a result, our integrative approach
improved quality (i.e. the accuracy of the methylation
detection at each C) and quantity (i.e. the number of
detected Cs) of the methylation data with less depen-
dency on the read properties (Figure la). We also
applied our approach to public WGBS datasets of 13 tis-
sues, and successfully grouped them according to their
originated tissues by the patterns of mCpG and mCpH.
We believe that this study contributes to DNA methyla-
tion researches by efficiently analyzing the WGBS data
and facilitating comprehensive analyses of methylation
patterns under the public WGBS data. In addition, this
study gives a clue to algorithmic improvement of bisul-
fite-read mappers.
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Results and Discussion

Overview of integrative approach

We integrated the methylation results from three bisulfite-
read mappers: Bismark, BSMAP, and BS-seeker2. Bismark
and BSMAP are the most widely used three-letter type
and wild-card type mappers, respectively [18-20], and
BS-seeker2 is the newest three-letter type mapper, which
has shown higher mapping rate than Bismark [15].

The evaluation and integration of Bismark, BSMAP,
and BS-seeker2 were conducted as described below
(Figure 1b). First, bisulfite-read sets were generated by
Sherman [21], with randomly designated methylation
levels for every block of 500 base pairs (bps) in human
chromosome 19. Then we mapped the reads by
Bismark, BSMAP, and BS-seeker2 and evaluated the
performances of the three mappers with respect to map-
ping rate and accuracy; the mapping rate is the portion
of mapped read number over total read number,
whereas the mapping accuracy is the portion of cor-
rectly mapped read number over mapped read number.
Lastly, we integrated the methylation results from the
mappers with three strategies and evaluated the perfor-
mances in terms of detection accuracy (d-accuracy) and
amount of detected Cs (d-amount). The d-accuracy was
determined by the similarity between generated and
detected methylation levels at each block (Figure 1c).

Read-dependent performances of the three mappers

To investigate the performances of the three mappers
under diverse read conditions, we analyzed the mapping
results of the three mappers in the context of varying read
quality, read length, and methylation levels.

For all three mappers, the mapping rate and mapping
accuracy fluctuated with changes in read quality
(Figure 2a, and 2b). When reads contained low error
(<4%), BSMAP showed a higher mapping rate and lower
mapping accuracy compared with others, consistent
with previous studies [12,15]. As the read error rate
increased (6-8%), the mapping rate of the BSMAP
decreased dramatically, becoming lower than that of Bis-
mark. Interestingly, for BS-seeker2, both mapping rate
and mapping accuracy did not decreased substantially.

The read length also affected the performances of the
three mappers (Additional file 1: Figure S1). We com-
pared mapping results of 50 bp-long reads with those of
100 bp-long reads. When read error rate was low (2%),
both mapping rate and mapping accuracy were higher
within long reads. When read error rate was high (8%),
mapping rate of Bismark and BSMAP were higher
within short reads. Remarkably, the mapping accuracy
of Bismark was also higher in short reads.

Additionally, we found that the performances of the
three mappers varied greatly within repeat regions. In
particular, the reads generated from short interspersed
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Figure 1 Concept map and workflow of a research. (a) Concept map for integrative approach. (b) Workflow of analysis and integration. We
generated methylated reads by Sherman and mapped those reads with three mappers; Bismark, BSMAP, and BS-seeker2. Based on the analysis
of the three mappers, we integrated the mapping results of the three mappers with three methods; Ave, wAve, and pwAve. Lastly, we evaluated
the performances of the integrations with respect to detection accuracy (d-accuracy) and detected amount of cytosine (d-amount). (c) The d-
accuracy was calculated by 1-difference between generated and detected methylation level at each block.
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nuclear elements (SINEs) tended to be unmapped by
Bismark and BS-seeker2 (Figure 2c) and incorrectly
mapped by BSMAP (Figure 2d), which clearly showed
the difference in performances between wild-card type
and three-letter type mappers.

Lastly, we found that hypo-methylated reads tended to
be incorrectly mapped by BSMAP and BS-seeker2
(Figure 2e, and 2f). This tendency was not found in the
mapping results of Bismark. This may be explained in
part by that the increased number of Ts, induced by the
bisulfite conversion of unmethylated Cs, hindered the

correct mapping of BSMAP and BS-seeker2. To confirm
that, we measured the percentage of Ts in reads that
correctly and incorrectly mapped by the three mappers.
For BSMAP and BS-seeker2, the incorrectly mapped
reads contained higher amount of Ts than the correctly
mapped ones (Figure 2g).

In summary, Bismark, BSMAP, and BS-seeker2 per-
formed differently in different read conditions. Bismark
mapped reads with great accuracy and was not affected
by the density of Ts in reads. However, Bismark tended
to lose both mapping rate and accuracy when read error
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Figure 2 Mapping results of the three mappers with short reads (length = 50 bps). (a) Mapping rate of the three mappers across read
error rates. The mapping rate was calculated as mapped read number over total read number. (b) Mapping accuracy of the three mappers
across read error rates. The mapping accuracy was calculated as the rate of correctly mapped read number over mapped read number. Mapping
rate (c) and mapping accuracy (d) of the three mappers within all of hg19 chr19, LINEs, and SINEs. In this case, the read error rate was 2%.
Mapping accuracy of the three mappers with reads in which error rate equals to 2% (e) and 8% (f). X-axis means methylation level in reads set
at the bisulfite-read generation step. (g) Percentage of Ts in each read that were (in)correctly mapped by the three mappers.
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rate was higher in longer reads. BSMAP generally
mapped a large number of reads to incorrect positions.
Additionally, the mapping accuracy of BSMAP was
affected by the density of T's in reads. Both the mapping
rate and mapping accuracy of BS-seeker2 were only
slightly affected by the read error rate, whereas the map-
ping accuracy was affected by the density of Ts in reads.

Integrative approach improved both the accuracy and
amount of methylation detection

Based on the different performances of Bismark,
BSMAP, and BS-seeker2 in varying read conditions, we
integrated the mapping results of the three mappers
using three strategies: Ave - average of the methylation
levels from the three mappers, wAve - weighting by
read depths, and pwAve - weighting by probabilistic
method (i.e. Poisson distribution, see Method).

We first examined the overlap of correctly mapped

reads by the mappers. We found that 88.6% of high-
quality 100 bps reads (2% read error rate) were correctly
mapped by all the mappers, but this dramatically
decreased to 6.7% in the case of low-quality reads (8%
read error rate, Additional file 2: Figure S2). This result
suggests the possibility that combining consensus of the
mappers improves DNA methylation detection. Indeed,
as the number of covering mappers (i.e. #; in Methods)
increased, wAve improved the d-accuracy (Figure 3a).
However, the d-amount was dramatically decreased,
even becoming far lower than the average of the three
mappers when 7; =3 in the cases with high read error
rate (Figure 3b). Taking account of this tradeoff, we
choose n; 22 that yields constantly higher d-amount
than Bismark, and higher d-amount than BS-seeker2 or
BSMAP in some cases (Figure 3c).
As shown in Table 1 among the three integration methods,
wAve marked the highest d-accuracy in most read condi-
tions, whereas pwAve showed the best d-accuracy in lim-
ited cases that short reads contain few errors (<4%). The
wAve remarkably improved d-accuracy compared with the
individual mappers (Figure 3d). The Wilcoxon single-rank
test over 500 bps blocks revealed significantly low P value
(<5.0E-2) in most of read conditions (Additional file 3:
Tables S1-S4). Especially, the wAve increased d-accuracy
within SINEs in which the mappers showed low mapping
rate or accuracy (Figure 3e and 3f). Taken together, the
wAve successfully improved the methylation detection
compared with using individual mappers.

The superior performance of wAve may be explained
by the correlation between d-accuracy and mapping
rate. Using read depth as weight, the wAve considered
mapping rate as a first element on determining the cer-
tainty of the methylation levels from each mapper. On
the other hand, pwAve indirectly employed mapping
accuracy on weighting by considering the characteristics
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of the mappers; a mapper that maps larger number of reads
compared with other mappers tended to maps reads at
incorrect positions. The tendency was clearly revealed
within short reads containing low error, so the d-accuracy
of pwAve was the highest among the integration methods
in those read conditions. Generally, however, d-accuracy
was more strongly correlated with mapping rate (Pearson
correlation coefficient equals to 0.83) than mapping accu-
racy (Pearson correlation coefficient equals to 0.64, Addi-
tional file 4: Figure S3), resulting in the higher d-accuracy of
wAuve than that of pwAve in most read conditions.

It is noteworthy that the d-accuracy of wAve exhibited
the reduced dependency on read conditions (i.e. read
length and quality, Figure 3g). We checked the distribu-
tion of d-accuracies of the three mappers and wAve,
gathered from mapping results of 100 read sets (see
Method).The wAve shows relatively less variance of
d-accuracies among varied read conditions. Especially,
the wAve decreased the difference of d-accuracy between
high and low read error cases (Figure 3d). This implies
that the wAve successfully reduces the effects of hetero-
geneous read conditions on methylation detection, facili-
tating comprehensive analyses of methylation patterns
among public WGBS samples from various experiments.

The integrative approach facilitated the comprehensive
analysis of public WGBS data

Next, we re-analyzed 13 WGBS samples that were gener-
ated from various experiments with different read length
and quality. In particular, we included six brain samples
and four pluripotent stem cells, in which significant
amount of CpH methylation is accumulated [6-9].

The mapping rate of WGBS samples was consistent with
the mapping results of artificial bisulfite-reads (Additional
file 5: Figure S4). BSMAP showed the highest mapping
rate within nine samples, whereas BS-seeker2 showed the
highest mapping rate within left four samples. Bismark
showed the lowest mapping rate in most of the samples.
In accordance with mapping rate, the d-amount by
BSMAP was the highest among the three mappers within
12 samples. In contrast, BS-seeker2 showed the highest
d-amount within only one sample. The d-amount by
wAve was higher than Bismark within all samples
(Figure 4a). Also, the wAve showed higher d-amount than
BS-seeker2 within six samples.

We also examined the correlation between samples in
terms of CpG and CpH methylation levels detected by
the wAve. We found that both methylation levels
clearly grouped samples according to their tissue of origin
(Figure 4b and 4c). In particular, while brain samples were
produced from three different experiments, they were
closely positioned in the dendrogram. Moreover, an
unknown-brain sample, a WGBS data from brain of
which age was not known, and a sample from liver were
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Figure 3 Results with simulated reads (length = 100 bps). d-accuracy (a) and d-amount (b) of wAve when integrating positions covered by
more than one, two and three mappers. R err means read error rate. The red lines represent average d-accuracy or d-amount of the three
mappers. (c) Detected amount of CpGs by Bismark, BSMAP, BS-seeker2, and wAve. For wAve, the considered positions are those covered by
more than two mappers. (d) d-accuracy of methylation levels at CpG sites across read error rates. The d-accuracy was 1-difference between
generated and detected methylation level at each block. The d-accuracy within all of hg19 chr19, LINEs, and SINEs, in cases that read error rate
equals to 2% (e) and 8% (f). The d-accuracies in repeat regions were determined by evaluating d-accuracy of each block, in which more than
half is covered by repeat regions. (g) Distribution of d-accuracies within 100 read sets, in which read conditions were varied in length (50 bps
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Table 1. d-accuracy of the integration methods
Long reads (100 bps) Short read (50 bps)
Read error (%) 0 2 4 6 8 0 2 4 8
Ave 96.044 95.675 95.126 94.220 93.195 95.786 94.880 93.807 90.905
wAve 96.056 95.724 95.242 94.748 94.434 95.763 94.853 93.816 91.506
pwAve 96.050 95.691 95.146 94.324 93430 95.804 94.912 93.824 91.024
* Numbers in bold are the highest value within each column
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Figure 4 Results with real WGBS data. (a) d-amount of WGBS samples. ESC=Embryonic stem cell, iPSC = induced pluripotent stem cell, Br =
brain, d = day and y = year (e.g. Br-5 y means 5 years old brain). Hierarchical clustering results based on CpG (b) and CpH (c) methylation levels
of 10 kbps blocks across samples. The distance is 1-spearman correlation coefficient. (d) Spearman correlation coefficients of CpH methylation
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produced from the same experiment but were successfully
grouped according to each tissue type. These trends were
not observed for BS-seeker2 (Additional file 6: Figure S5).
The wAve clearly reduced false correlation between brain
and liver from the same experiment (Figure 4d). We also
found that the wAve results in significantly higher correla-
tion of CpG methylation levels in gene-body regions within
brain samples compared with that observed by Bismark
(Additional file 7: Figure S6). Especially, the correlation
among brain samples from different experiments were rela-
tively more increased than that from same experiment.
Thus, the wAve decreased the false correlation between
samples from the same experiment and increased the
correlation among samples from the same tissue.

Conclusions

To efficiently detect DNA methylation from WGBS
data, we analyzed and integrated the three most widely
used bisulfite-read mappers, Bismark, BSMAP, and
BS-seeker2. The procedure consisted of three steps:
mapper analysis, analysis with simulated reads, and ana-
lysis with real WGBS dataset.

Firstly, we confirmed that with low read error rate, the
performances of the three mappers were consistent with
the results of former studies of wild-card type
(e.g. BSMAP) and three-letter type (e.g. Bismark and
BS-seeker2) [12]. In particular, the two types of mappers
performed distinctly in SINEs, in which the wild-card
type mappers falsely mapped reads, whereas the three-
letter type mappers failed to map reads. It should be
further investigated what distinction in algorithm
induces the difference in mapping results in SINEs. In
addition, the performances of Bismark and BSMAP
dramatically decreased in case of high error reads,
whereas BS-seeker2 did not affected much by the read
error rates. Lastly, the mapping accuracies of BSMAP
and BS-seeker2 were found to be dependent on the
methylation level, whereas Bismark were not. Based
on the complementary performances of the three
mappers across varying read conditions, we integrated
the mapping results of the three mappers with three
methods: average (Ave), read depth-weighted average
(wAve), and probabilistically weighted average by
Poisson distribution (pwAve).

With the simulated reads, the wAve method resulted
in significantly higher detection accuracy than that
obtained with individual mappers and other integration
methods. On the other hand, pwAve showed decreased
accuracy compared with wAve. It should be further stu-
died what probabilistic methods could improve the
detection accuracy compared with read-depth weighting.
In addition, the wAve exhibited higher detection of Cs
than Bismark. Indeed, existing bisulfite mappers exhibit
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smaller increases in either quality or quantity of the
methylation results compared with former systems. It is
remarkable that the integration improved both the accu-
racy and amount of methylation detection. Furthermore,
the integration reduced the dependency of detection
accuracy on read conditions (i.e. error rate and length),
proving that our method can facilitate the comprehen-
sive analyses of multiple WGBS samples of which read
conditions are heterogeneous.

With real WGBS samples, the wAve reduced the false
correlation between WGBS samples generated from
same experiments and increased the true correlation
between those originated from same tissues. Thus, our
method succeeded in facilitating comprehensive analyses
of multiple WGBS datasets from various experiments by
reducing the dependency of methylation results on read
conditions.

In summary, our integrative approach improved both
quality and quantity of methylation results from WGBS
data, and facilitated the comprehensive analyses of DNA
methylation among various read conditions. This study
may contribute to researches about methylation patterns
among samples in different conditions (e.g. tissue, age,
or some diseases) by combining a massive public WGBS
data. In addition, this study may give a new clue to algo-
rithmic improvement of bisulfite-read mappers to
enhance epigenetic researches.

Methods

Generating artificial sequenced reads

The sequenced reads were generated by Sherman [21].
The Sherman generates virtually bisulfite-treated reads
with specific read number, length, error rate, and
methylation level. We designated methylation level of
CpG and CpH randomly and separately, on every 500
bps block of human genome (hg 19) chromosome 19.
The human chromosome 19 is short but reveals the
highest repeat rate among all chromosomes [22]. There-
fore, we could effectively observe the diverse mapping
results of the three bisulfite-read mappers with special
focus on repeat regions. From the randomly methylated
reference genome, we generated long (100 bps) and
short (50 bps) reads separately. The numbers of gener-
ated reads were 50 for 100 bps reads and 100 for 50 bps
reads in a block to adjust the average coverage depth
equals to 10. Also, we generated reads with designating
error rate to 0%, 2%, 4%, 6%, and 8%, in order to deter-
mine the dependency of mapping results on read error.
We repeatedly generated all the cases of read sets
10 times. In total, we generated 100 read sets (2 read
length cases x 5 read error cases x 10 repeat) for which
the read number was 5.4 million and 10.8 million for
long and short reads, respectively.
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Parameters for read generation
- For short reads

/Sherman -1 50 -n 100 -e [ERROR] —-genome_
folder [DIR] -CG [mCG] -CH [mCH]

- For long reads

/Sherman -1 100 -n 50 -e [ERROR] -genome
folder [DIR] -CG [mCG] -CH [mCH]

[DIR]: Directory to fasta file that include 500 bp-long
sequences. Before running Sherman, human chromo-
some divided into 500 bps sequences and saved in sepa-
rate directories.

[ERROR] : repeatedly set to 0, 2, 4, 6, and 8

[mCG] and [mCH]: randomly and independently set
from O to 100. After the read generation completed,
Sherman reported exact value of the bisulfite-treated
rates on CpG and CpH positions. We used the reported
values as designated methylation level at each block.

Read mapping and extracting methylation level
We mapped both artificial reads and real WGBS reads
with Bismark, BSMAP, and BS-seeker2. In mapping, we
unified the maximum mismatch threshold to 4% of the
read length, to determine the distinct performances of
the three mappers in unified parameters. The command
lines for each mapper were as below;

Bismark; we used bowtie2 as an aligner for better per-
formance [13].

perl . /bismark -o [ouput] -bowtie2 [refer-
ence genome] [input fastq] -score minL, O, -
0.24

BSMAP; we set the maximum number of equal best hits
to one [14].

./bsmap -a fastg file -d
genome] -o [output] -w1 -v 0.04

BS-seeker2; we used bowtie2 as an aligner for better
performance. [15]

python ./bs seeker2-align.py -i [input
fastqg] -o [output] -g [reference genome]
-aligner = bowtie2 -m 0.04

After mapping, we removed duplicates possibly
induced by PCR amplification. The duplicated reads
from Bismark, BSMAP, and BS-seeker2 were removed
by picard [23], samtool rmdup [24], and a program of
BS-seeker2 [15], respectively. After removing duplicates,
methylation levels of each C were extracted by programs
of each mapper. In results with simulated reads, we con-
sidered methylation levels at Cs that covered by more
than one read. In results with real WGBS data, however,
we considered methylation levels at Cs that covered by
more than five reads in order to increase the confidence
of methylation level at each C [25]. The methylation
level at each C was calculated as the ratio of uncon-
verted Cs over the total mapped read number.

[reference
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Integration of mapping results
The integration of three mappers was conducted at sin-
gle base resolution. We extracted the number of both
converted and un-converted Cs at each cytosine posi-
tion. The methylation level M;; at the ith C position
detected by a mapper j (=Bismark, BSMAP, BS-seeker2)
was calculated as below;

c..
M;; = 7[\] ’_,
Ncij + Ntij

where N° and N* are the number of Cs and Ts, respec-
tively. If there is no mapped read by the mapper j, M;; is
set to zero. We integrated M;; using three methods; Ave
(average), wAve (weighted average) and pwAve (prob-
abilistic weighted average). Ave was given by

> Mj

ni

Ave; =

where 7 is the number of mappers with constrain
M;; > 0. wAve weights M,; by the read depth of mapper j
with assuming that the methylation level detected by
many reads is more confident. This is based on the
observation that read-mapping rate and detection accu-
racy of methylation levels are correlated (Figure 2). The
wAve was given by

2 WiiM;j
n; ’

wAve; =

d
Nj;
d ’
Zj Nj;

where W and N? is the weight and the read depth,
respectively. pwAve uses Poisson distribution for weight-
ing M;;. Based on the observations of the performances
of the three mappers, we assumed that if a mapper
mapped more reads than other mappers, the probability
of existing incorrectly mapped reads at each position is
also higher than that by other mappers. The pwAve was
given by

Wi =

p
Zj WijMiJ'

i

pwAve; =

S (N )
ij (Ng} ’lj) ,

where W” is the weight by the probability function f of
Poisson distribution with parameter A that is the average
read depth of a mapper over whole genome.

ij
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Table 2. WGBS data description
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Tissue Age Read # Length Type Experiment Replica #
frontal cortex fetal(20-week) 788M 100 Single GSE47966[6] 9
middle frontal gyrus 35-day 669M 100 Single 12
middle frontal gyrus 2-year 900M 100 Single 12
middle frontal gyrus 12-year 594M 100 Single 12
middle frontal gyrus 25-year 903M 100 Single 12
prefrontal cortex 42-year 706M 100 Paired GSE46710[28] 2
brain Unknown 549M 90 Paired GSE46698[29] 4
liver Unknown 336M 100 Paired 7
ESCI 2655M 45 Single GSE40832[30] 1
Blood 1240M 45 Single 1
ESC2 460M 87 Single GSE16256(31] 5
iPSC1 667M 87 Single 13
iPSC2 837M 87 Single 20

WGBS data preparation
We collected 13 WGBS samples from 5 experiments
(Table 2). For evaluating the CpH methylation level,
seven of human brains and four of pluripotent stem
cells, known to have specific CpH methylation patterns
[6,9,26], were included to the dataset. All the samples
were quality-trimmed by fastx toolkit [27], with setting
that minimum phred quality score equals to 20 and
minimum read length equals to half of the original read
length. We mapped all WGBS sample in single mode
for the greatest generalization [20].

- Parameters for quality-trimming

fastg quality trimmer -t 20 -1 [half of
read length] -i sample.fastqg -o [output
directory] -Q [phred score scale]

Additional material

Additional file 1: Figure S1 - Mapping results of the three mappers
with long (100 bp) and short (50 bp) reads. The bars show mapping
rate and mapping accuracy of the three mappers with reads that
contains 2% error (a and ¢ for mapping rate and mapping accuracy,
respectively) and 8% error (b and d for mapping rate and mapping
accuracy, respectively). The dark purple bars represent results with short
(50 bp) reads and the light purple bars represent results with long (100
bp) reads. (Format: PDF)

Additional file 2: Figure S2 - Rate of correctly mapped reads by
three mappers. The numbers show rate of reads that correctly mapped
by each three mapper over total read number, when read error rate
equals to 2% (a) and 8% (b). The numbers in middle reveal rate of reads
that correctly mapped by all three mappers. Also the numbers followed
by each mapper shows rate of reads that correctly mapped only by the
mapper. (Format: PDF)

Additional file 3: Tables S1-S4 - one-side Wilcoxon single-rank test
between d-accuracy by wAve and d-accuracy by three mappers. The
tables show P-values by one-side Wilcoxon single-rank test between d-
accuracy by wAve and d-accuracy by three mappers across 500-long
blocks of hg19 chr19. If the P-value is lower than 0.05, it means the d-

accuracy by wAve is significantly lower than the d-accuracy by each
mapper across blocks. The bold types are values that lower than 0.05. R
err means read error rate. (Format: PDF)

Additional file 4: Figure S3 - Correlation of detection accuracy with
mapping accuracy and mapping read. It shows proportional
relationship between detection accuracy with mapping accuracy (a), and
detection accuracy with mapping rate (b). Each point represents
mapping results by Bismark, BSMAP and BS-seeker2 with read sets in
which the read error rates equal to 0%, 2%, 4%, 6% and 8%, and read
lengths equal to 50 bp and 100 bp. (Format: PDF)

Additional file 5: Figure S4 - Mapping rate of whole genome
bisulfite sequencing data. It shows mapping rates of WGBS samples by
the three mappers; ESC = Embryonic stem cell, iPSC=induced pluripotent
stem cell, Br = brain, d = day and y = year (cf. Br-5 y means 5 years old
brain) (Format: PDF)

Additional file 6: Figure S5 - Hierarchical clustering results base on
CpG and CpH methylation levels extracted by BS-seeker2.
Hierarchical clustering results base on CpG and CpH methylation levels
extracted by BS-seeker2; Distance is 1-spearman correlation coefficient.
ESC = Embryonic stem cell, iPSC = induced pluripotent stem cell, Br =
brain, d = day and y = year (cf. Br-5 y means 5 years old brain). Also, the
red circle groups the two samples that produced by same experiment.
(Format: PDF)

Additional file 7: Figure S6 - Correlation of CpG methylation levels
among brain samples that produced from same experiment and
different experiments. Spearman correlation of CpG methylation in
gene-body regions between brain samples that produced from same
experiment (GSE47966[6], 5 samples) and multiple experiments
(GSE4796616], GSE46710[28], GSE46698[29], 7 samples). Error bars
represent maximum and minimum correlation value between samples.
The information of gene-body regions was downloaded from refseq
database. (Format: PDF)
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