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Abstract

The complement system is an essential element of the innate
immune response that becomes activated upon recognition of
molecular patterns associated with microorganisms, abnormal
host cells, and modified molecules in the extracellular environ-
ment. The resulting proteolytic cascade tags the complement acti-
vator for elimination and elicits a pro-inflammatory response
leading to recruitment and activation of immune cells from both
the innate and adaptive branches of the immune system. Through
these activities, complement functions in the first line of defense
against pathogens but also contributes significantly to the mainte-
nance of homeostasis and prevention of autoimmunity. Activation
of complement and the subsequent biological responses occur
primarily in the extracellular environment. However, recent studies
have demonstrated autocrine signaling by complement activation
in intracellular vesicles, while the presence of a cytoplasmic recep-
tor serves to detect complement-opsonized intracellular patho-
gens. Furthermore, breakthroughs in both functional and
structural studies now make it possible to describe many of the
intricate molecular mechanisms underlying complement activation
and the subsequent downstream events, as well as its cross talk
with, for example, signaling pathways, the coagulation system,
and adaptive immunity. We present an integrated and updated
view of complement based on structural and functional data and
describe the new roles attributed to complement. Finally, we
discuss how the structural and mechanistic understanding of the
complement system rationalizes the genetic defects conferring
uncontrolled activation or other undesirable effects of comple-
ment.

Keywords complement; inflammation; innate immunity; proteolytic

regulation; structural biology

DOI 10.15252/embj.201591881 | Received 24 April 2015 | Revised 13 August

2015 | Accepted 28 September 2015 | Published online 21 October 2015

The EMBO Journal (2015) 34: 2735–2757

See the Glossary for abbreviations used in this article.

Introduction

The complement system is canonically regarded as a major effector

within innate immunity. As a universally distributed defense mecha-

nism in blood and interstitial fluids, complement is one of the first

lines of defense against pathogenic microorganisms that breach the

mechanical and chemical barriers of the body. It is a germ line-

encoded system of more than 50 circulating and membrane-bound

proteins. The majority of the circulating proteins are produced in

the liver, although extrahepatic complement biosynthesis does

occur in many other cell types including fibroblasts, T and B cells,

adipocytes and endothelial cells (Morgan & Gasque, 1997). The local

production of complement proteins appears to be sufficient for the

generation of humoral immune responses and is the main source of

complement in immune-privileged sites such as the brain and the

eye (Barnum, 1995; Gadjeva et al, 2002).

Complement was first identified as the heat-sensitive fraction of

human plasma that “complemented” antibodies in their ability to

kill bacteria. Although complement is usually considered pro-

inflammatory, it has also proven important in the homeostatic

processes leading to the removal of dying cells presenting danger-

associated molecular patterns (DAMPs) where complement triggers

a sterile inflammatory response leading to essentially the same

vascular and cellular inflammatory state (Rock et al, 2010). More

recent research additionally associates complement with transport

of immune complexes, and regulation of humoral immunity (Carroll

& Isenman, 2012). Furthermore, recent findings that implicate

complement in angiogenesis and synaptic pruning highlight the role

of complement during development in mice (Schafer et al, 2012;

Stephan et al, 2012; Haynes et al, 2013). Complement receptors,

effectors, and regulators intertwine into a complex network interact-

ing with other crucial pathways such as the coagulation pathway

and Toll-like receptor sensing and signaling (Hawlisch & Kohl,

2006; Amara et al, 2008). Clearly, this intricate network and its

interplay with other systems need to be carefully controlled. If this

fails, complement can target host tissues and cause organ damage

leading to autoimmune and chronic inflammatory diseases.

A long-standing observation in the clinic that complement

deficiencies lead to autoimmune diseases is now being explained

by the genetic, functional, and structural studies of complement
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regulators. One of the complement pattern recognition molecules

(C1q) has been identified as an important player in the clearance of

autoantigens offering an explanation as to why deficiency of C1q

presents the strongest known genetic predisposition for development

of the autoimmune disease systemic lupus erythematosus (SLE) with

near complete penetrance (Pickering et al, 2000). Acquired comple-

ment deficiencies are also frequently observed in SLE and thought to

contribute to pathogenesis. Examples of such acquired deficiencies

are lowered C1q levels caused by autoantibodies against C1q, or a

lowered concentration of two other pivotal complement proteins (C3

and C4). Thus, a well-established tool to monitor SLE activity used

worldwide is measurements of C3 and C4 levels (also as part of

disease scoring systems, e.g., SLEDAI) (Bombardier et al, 1992;

Gladman et al, 2002).

After the emergence of genome sequencing, it likewise became

clear that polymorphisms of complement genes were quite frequent

(> 5%). Recent elaborate reviews on the genetics underlying

complement deficiencies are found in references (de Cordoba

et al, 2012; Rodriguez et al, 2014; de Cordoba, 2015; Liszewski &

Atkinson, 2015). The individual-specific ensemble of polymor-

phisms in genes encoding complement proteins and regulators can

significantly influence the balance between complement activation

and regulation, and the set of polymorphisms which determines the

intrinsic complement activity is referred to as the complotype of an

individual [for review, see Harris et al (2012)]. In the following, we

provide an overview of the molecular mechanisms of complement

activation and regulation and couple this to the rapidly growing

information concerning the structure of complement proteins and

their complexes with particular emphasis on understanding the role

of complement proteins in health and disease.

Complement activation

Upon complement activation, structural rearrangements, proteolytic

cleavages, and the assembly of proteolytic and lytic complexes

occur. In this way, complement can be ubiquitously present in an

inactive form but become activated locally. Many of the molecules

and processes we describe in this Review are illustrated in Fig 1.

Complement is activated through the classical pathway (CP), the

lectin pathway (LP), and the alternative pathway (AP). The recogni-

tion of invading microorganisms by the complement system can

occur directly via recognition of pathogen-associated molecular

patterns (PAMPs) by soluble pattern recognition molecules (PRMs).

In humans, these are complement protein C1q, mannan-binding

lectin (MBL), collectin-LK (CL-LK), or the three ficolins L/M/H (also

denoted ficolin-1, ficolin-2, and ficolin-3) (Degn & Thiel, 2013). In

the classical and lectin pathways, binding of PRMs to a PAMP or a

DAMP (the activator) confers activation of zymogen proteases in

complex with the PRMs. Within the CP, the C1 complex consists of

the PRM C1q associated with the serine proteases C1r and C1s orga-

nized as a calcium-dependent C1r2s2 tetramer (Arlaud et al, 2001).

In antibody-dependent CP activation, the globular heads of C1q bind

to the Fc moieties of multivalent IgG–antigen complexes or to anti-

gen-bound IgM (Nayak et al, 2012) (Fig 1A). In addition to anti-

body–antigen complexes, a variety of other ligands have been

suggested for C1q (Fig 1A). This includes molecular patterns on

certain bacteria, viruses, parasites, and mycoplasma, indicating a

role as an antibody-independent PRM. C1q has also been reported

to bind to C-reactive protein (CRP) in complex with exposed phos-

phocholine residues on bacteria (Szalai et al, 1999), providing a

further means of host defense (Fig 1A). Other C1q ligands are

pentraxin-3 (PTX-3), serum amyloid P component, b-amyloid fibrils,

as well as tissue damage elements such as DNA and mitochondrial

membranes (Kang et al, 2009) (Fig 1A). C1q likewise recognizes a

variety of DAMPs exposed by apoptotic cells explaining its linkage

to SLE (see below). C1q has been reported to directly bind phos-

phatidylserine exposed on apoptotic cells (Paidassi et al, 2008),

Glosssary

3MC Malpuech, Michels, and Mingarelli-Carnevale
7TM Seven transmembrane
aHUS Atypical hemolytic uremic syndrome
AMD Age-related macular degeneration
AP Alternative pathway of complement
Bb Activated factor B
C3aR C3a anaphylatoxin chemotactic receptor
C5aR1 C5a anaphylatoxin chemotactic receptor 1
C5aR2 C5a anaphylatoxin chemotactic receptor 2
CCP Complement control protein
CFHR Complement factor H-related protein
CL Collectin
CP Classical pathway of complement
CR Complement receptor
CRD Carbohydrate-recognition domain
CUB Complement C1r/C1s, Uegf, Bmp1
CVF Cobra venom factor
DAF Decay-accelerating factor
DAMP Danger-associated molecular pattern
EGF Epidermal growth factor
EM Electron microscopy
FB Factor B
FBG Fibrinogen
FD Factor D
FDC Follicular dendritic cell
FH Factor H
FHL-1 Factor H-like protein 1
FI Factor I
FP Properdin
GAG Glycosaminoglycan
GPCR G protein-coupled receptor
IR Ischemia–reperfusion
LP Lectin pathway of complement
MAC Membrane attack complex
MAp19 MBL-associated protein of 19 kDa
MAp44 MBL-associated protein of 44 kDa
MASP MBL-associated serine protease
MBL Mannan-binding lectin
MCP Membrane cofactor protein
MDA Malonedialdehyde
MG Macroglobulin
MPGNII Membranoproliferative glomerulonephritis type II
PAMP Pathogen-associated molecular pattern
PNH Paroxysmal nocturnal hemoglobinuria
PRM Pattern recognition molecule
SAXS Small-angle X-ray scattering
SCR Short consensus repeat
SLE Systemic lupus erythematosus
SP Serine protease
SSM Subcapsular sinus macrophages
TP The terminal pathway of complement
vWA Von Willebrand factor A
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although more recent data suggest that the binding targets are rather

DNA, histones, and Annexins A2 and A5 on the apoptotic cell

surface (Martin et al, 2012). Recently, the proteins SCARF1 and

LAIR-1 were invoked as immunomodulatory receptors for C1q-

opsonized apoptotic cells, potentially explaining the role of C1q in

SLE (Son et al, 2012; Ramirez-Ortiz et al, 2013).

Following C1q-ligand binding, C1r autoactivates and subse-

quently cleaves C1s, which may then cleave C4 into the fragments

C4a and C4b (Fig 1A). The nascent C4b can be covalently bound to

the activator via an exposed internal thioester leading to irreversible

tagging of the activator. C2 binds activator-bound C4b and is

cleaved by C1s to generate the active serine protease C2a bound to

C4b resulting in the CP C3 convertase C4b2a (Muller-Eberhard et al,

1967). The C3 convertase cleaves C3 into the anaphylatoxin C3a

and the major opsonin of the complement system, C3b, which like

C4b, becomes covalently coupled to the activator through its

exposed thioester (Law & Dodds, 1997).

Activation of the lectin pathway (LP) is initiated by the collectins

MBL and CL-LK or one of the three ficolins (Fig 1A). MBL and

CL-LK harbor Ca2+-dependent carbohydrate-recognition domains

(CRDs) and collagen-like regions through which they trimerize.

Such trimers oligomerize in larger complexes (Figs 1A and 2A),

allowing high-avidity binding (KD � 10�9 M) based on multiple

low-affinity interactions of their CRDs (KD � 10�3 M) (Kawasaki

et al, 1983; Degn & Thiel, 2013). Ficolins are structurally similar to

collectins, but instead of C-type lectin domains they possess fibrino-

gen (FBG)-like domains for PAMP recognition (Matsushita, 2013).

Ficolins recognize motifs containing acetylated groups, including

non-sugars such as N-acetyl-glycine, N-acetyl-cysteine, and acetyl-

choline. Besides conferring avidity, the oligomerization of collectins

and ficolins allows these PRMs to discriminate not only specific

monosaccharides or acetylated groups but more importantly, in an

immunological sense, also specific patterns of sugars and acetyl

groups characteristic to pathogens.

The LP PRMs recognize the sugar moieties and acetyl groups of a

variety of foreign glycoproteins and glycolipids. A plethora of physio-

logical microbial targets of MBL have been defined, encompassing

Gram-positive and Gram-negative bacteria, viruses, fungi, and

protozoa (Kjaer et al, 2013). The second collectin CL-LK is a hetero-

complex of two polypeptide chains, CL-L1 and CL-K1 (Henriksen

et al, 2013a). CL-LK has been reported to bind mannan slightly less

efficiently than MBL but DNA more efficiently (Henriksen et al,

2013b). However, rather few studies on the specificity of plasma

CL-LK have been published since plasma components seem to

inhibit most binding (Henriksen et al, 2013a), but recombinant

CL-K1 shows binding to mannan (i.e., carbohydrate structures on

yeast surfaces), to strains of Escherichia coli, Candida albicans, and

Pseudomonas aeruginosa (Selman & Hansen, 2012), and also to

various oligonucleotides (Henriksen et al, 2013b). Binding of CL-L1

to mannose-coated beads has been observed (Axelgaard et al,

2013). H-ficolin is reported to bind to strains of Mycobacteriae, Aero-

coccus viridans (Tsujimura et al, 2001), and Hafnia alfvei (Swierzko

et al, 2012), Salmonella typhimurium, Salmonella minnesota, and

E. coli (Sugimoto et al, 1998). L-ficolin displays a very promiscuous

binding to several bacteria (Krarup et al, 2005) including strains of

S. typhimurium, E. coli, Staphylococcus aureus, and Streptococcus

pneumoniae. M-ficolin binds to specific strains of Streptococcus

agalactiae and S. pneumoniae (Kjaer et al, 2011). In addition to

recognizing foreign glycoproteins and glycolipids, the LP has been

shown to recognize host organelles, mitochondria, and cause their

opsonization by C4 and C3 activation products. However, the

immune handling of opsonized mitochondria was not accompanied

by inflammation (Brinkmann et al, 2013). These observations

further corroborate complement as a mediator of non-inflammatory,

homeostatic clearance of DAMPs as mentioned above. Conversely,

MBL binding to natural IgM recognizing autoantigenic neoepitopes

exposed on apoptotic or necrotic cells following, for example,

ischemia–reperfusion (IR) injury, can lead to untoward activation

and tissue damage (Zhang et al, 2006). A long-standing observation

regarding the LP is that a small subset of lupus patients also harbor

anti-H-ficolin antibodies (Yoshizawa et al, 1997). Indeed, H-ficolin

was first identified as an autoantigen in SLE and dubbed the Hakata

antigen, and based on our recent elucidation of the clustering-based

activation mechanism of the lectin pathway (see later), it is tempt-

ing to speculate that antibody-driven cross-linking of H-ficolin:

MASP complexes may drive aberrant complement activation (Degn

et al, 2014b). An observation of the cell surface association of

M-ficolin by tethering through recognition of membrane-associated

sialic acids by the fibrinogen-like (FBG) domain of M-ficolin implies

its potential role in cell clearance (Honore et al, 2010).

The LP PRMs form complexes with MBL-associated serine

proteases (MASPs), which are always present as dimers (Fig 2A).

Figure 1. Molecular view of complement activation, amplification, and regulation.
(A) Pattern recognition molecules sense the presence of pathogens and altered self. In the classical pathway, C1q (within the C1 complex) recognizes PAMPs
(pathogen-specific proteins, lipopolysaccharide (LPS), lipoteichoic acid (LTA), peptidoglycan) or DAMPs (DNA, phosphatidylserine, oxidized lipids, lysophosphatidylcholine
(LPC)) either directly or antibody-bound. This recognition induces autoactivation of C1r, which subsequently activates C1s. This is followed by cleavage of C4 and C2
by C1s and the subsequent formation of the CP C3 convertase C4b2a. Cleavage of C4 exposes an internal thioester, which causes C4b to become covalently attached to the
activator surface, in turn tethering the convertase activity to the activator. In the lectin pathway, patterns of glycans are detected via MBL, CL-LK, or ficolins leading
to activation of MASPs and formation of the same C3 convertase, C4b2a. C3 convertases cleave C3 into C3b, which also becomes covalently attached to the activator
surface. Surface-associated C3b recruits FB, which leads to FB activation and the formation of C3bBb, the AP C3 convertase, which cleaves more C3 and amplifies
complement activation. In addition to the surface-bound C3 convertase, a fluid-phase convertase can be formed by association of water-reacted C3, termed C3(H20), to FB
thus constantly maintaining a low level of complement activation in solution (tick-over). Both of the surface-bound C3 convertases can bind a C3b molecule whereby the C5
convertases are formed. These cleave C5 into C5a and C5b, thus initiating the terminal pathway and leading to formation of the membrane attack complex (MAC).
Complement opsonins and PRMs are shown in purple, whereas the proteolytically active complexes are shown in light pink. (B) Complement activation and amplification are
attenuated on host surfaces. The healthy cells express membrane-bound or attract soluble regulators that irreversibly dissociate convertases (DAF, CR1, FH, C4BP) and act as
cofactors for FI-mediated degradation of C3b and C4b (MCP, FH, CR1, C4BP) or prevent MAC assembly (CD59). Soluble regulators also prevent formation of the MAC (clusterin,
vitronectin). Recently, it was discovered that complement mediates a potent intracellular immune response to non-enveloped viruses. Deposition and covalent attachment of
C3 onto pathogens in the extracellular environment serve as a marker of cellular invasion because C3 products in the cytosol are detected by an as yet unidentified receptor.
This receptor signals through MAVS and induces an antiviral state by triggering the transcription of pro-inflammatory cytokines. Intracellular complement immunity is
independent of professional immune cells and is conserved in mammals.
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MASP-1 and MASP-2 are structural and functional homologs of C1r

and C1s from the CP, but there are important differences between

PRM–protease complexes from the two pathways. Whereas the C1

complex has a defined stoichiometry (a hexamer of the heterotri-

meric C1q subunit in complex with a C1r2s2 tetramer), the LP PRMs

are polydisperse oligomers of trimers. For MBL, a tetramer is the

most abundant oligomer and this carries only a single MASP-1 or

MASP-2 dimer (Fig 2A), but the more rare, larger oligomers may

simultaneously carry both dimers (Dahl et al, 2001; Teillet et al,

2005; Degn et al, 2013a). MASP-1 in complex with an activator-

bound PRM autoactivates and cleaves MASP-2 as well as C2,

whereas activated MASP-2 cleaves C4 (Fig 2B) and C2 resulting in

the same C3 convertase as in the CP, that is, C4b2a (Matsushita

et al, 2000; Rossi et al, 2001; Chen & Wallis, 2004). An efficient
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Figure 2. Large macromolecular complexes of complement proteins assembled upon complement activation.
The order of panels (A–F) reflects the order of appearance starting from activation in the LP and ending with MAC assembly in the TP. (A) SAXS model of the
MBL:MASP-1 complex with MBL (green) associated with a MASP-1 homodimer with its serine protease domains (orange) protruding away from the MBL collagen stems in
agreement with an intercomplex activation mechanism. (B) Crystal structure of the C4:MASP-2 complex (RCSB ID 4FXG) with the substrate (C4, blue with the
anaphylatoxin domain in yellow) making contacts at two distinct sites; the CCP domains (gray) and the SP domain (orange). (C) Crystal structure of C4b (RSCB ID 4XAM) with
the TE domain colored in gray and the reactive thioester covalently bound to the membrane shown as a red sphere. (D) Crystal structure of the ternary C3bB:D complex
(RSCB ID 2XWB). FB binds C3b (green, with the TE domain in gray) via its vWA and 3 CCP domains (gray). The SP domain (orange) is in the closed state. FD (magenta) is recruited
to FB. (E) Structural model of the AP C3 convertase in complex with a C3 substrate (blue) generated by superimposing C3bBb stabilized with SCIN (RCSB ID 2WIN)
and the C5:CVF complex (RCSB ID 3PVM). The anaphylatoxin moiety (yellow) is released upon cleavage. (F) Crystal structure of the C5b6 complex (RCSB ID 4A5W) revealing
conformational rearrangements occurring upon C5 cleavage to C5b (blue), reminiscent of those observed in the C3/C4 to C3b/C4b conversion. (G) Structural model
of FH binding to C3b (green) generated by superimposing C3b bound to FH CCP1–4 (light yellow, RCSB ID 2WII) and TE domain bound to FH CCP19–20 (dark yellow,
RCSB ID 4ONT), CCP5–18 are not illustrated. FH also interacts with host glycans. The binding of FH prepares C3b for FI binding and cleavage. In all panels, the
red surface approximates the activator such as the surface of an LPS layer on a pathogenic bacterium. Importantly, this is separated from the cell membrane; thus, panel
(F) does not imply that C6 extends into the membrane.
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catalytic activity of the third MASP, MASP-3, is yet to be discovered.

The substrates suggested so far, insulin-like growth factor-binding

protein 5 (Cortesio & Jiang, 2006) and pro-factor D and factor B

(Iwaki et al, 2011), are all cleaved slowly at high enzyme to

substrate ratio. For example, zymogen MASP-3 cleavage of pro-

factor D occurred at 20:1 molar ratio over 1 h at 37°C (Iwaki et al,

2011).

Activation through the CP and LP results in deposition of C3b

(Fig 1A) on the activator, which recruits factor B (FB) in the first

step of the AP. The resulting proconvertase C3bB is subsequently

cleaved by factor D (FD), generating the AP C3 convertase C3bBb

(Fearon et al, 1973), which is functionally homologous to the CP C3

convertase C4b2a. A positive feedback amplification loop is now

initiated as multiple copies of C3b are deposited on the activator

leading to further assembly of the AP C3 convertase. Regardless of

the initiating pathway, up to 90% of the deposited C3b molecules

are generated through the AP (Harboe et al, 2004, 2009). This

amplification is rapidly terminated on host cells by various regula-

tors (Fig 1B) (discussed later), but proceeds vividly on pathogens

and altered host tissues lacking such regulators (Fig 1A). Impor-

tantly, the AP may initiate independently of the CP and LP and with-

out direct pattern recognition. This occurs through constitutive

generation of C3(H2O), a fluid-phase form of C3 in which the thio-

ester has reacted with a water molecule (Pangburn et al, 1981). C3

(H2O) resembles C3b and is capable of binding FB and forming a

fluid-phase C3 convertase generating more C3b, and further amplifi-

cation may now occur on nearby surfaces as described above

(Fig 1A). The spontaneous initiation mechanism of the AP is poten-

tially dangerous but is controlled through “reverse recognition” as

the AP is specifically inhibited on host cells. C3(H2O) is not long-

lived as it is rapidly inactivated by the FI protease (see below).

Properdin (FP) has been shown to be a positive complement

regulator, stabilizing the AP C3 convertase up to 60 min and thus

increasing its half-life 10-fold (Fearon & Austen, 1975) (Fig 1A).

Plasma FP oligomerizes into di-, tri-, and tetramers, or even higher

order oligomers and its properties vary as a function of its oligomer-

ization state (Agarwal et al, 2010). In addition to stabilizing already

formed C3 convertase, FP may direct fluid-phase C3b or C3(H2O) to

bind certain surfaces including activated platelets (Saggu et al,

2013), apoptotic/necrotic cells, and Chlamydia pneumoniae and in

this way function as a PRM (Cortes et al, 2012). FP was likewise

reported to bind apoptotic T cells and promote complement activa-

tion and phagocytosis, exemplifying another complement-mediated

clearance mechanism (Kemper et al, 2008). Although AP activation

may occur in their absence (Degn et al, 2014a; Ruseva et al, 2014),

it has been demonstrated that MASP-1 and/or MASP-3 cleavage

of pro-FD to FD is required for the full activity of the AP in mice

(Takahashi et al, 2010), providing an interesting link between the

lectin and the alternative pathways.

The terminal pathway (TP) of complement (Fig 1A) is initiated

when a threshold density of C3b molecules on an activator has been

reached. The C3 convertases can recruit another C3b molecule to

form C3bBb3b (Medicus et al, 1976) and C4b2a3b (Takata et al,

1987), the AP and CP C5 convertases, respectively. Through cleav-

age of C5, they generate the potent chemoattractant C5a (see below)

and C5b. The latter forms the lytic membrane attack complex

(MAC, also called C5b-9) together with C6, C7, C8, and multiple C9

molecules in membranes of pathogens lacking a protective cell

wall like Gram-negative bacteria (Fig 1A) (Laursen et al, 2012;

Berends et al, 2014). Recent crystal structures of the MAC initiating

C5b6 complex and C8 in combination with a cryo-EM reconstruction

of a soluble form of MAC have led to atomic models for the assem-

bly and structure of the entire MAC complex (Hadders et al, 2007,

2012; Aleshin et al, 2012). Exactly how the MAC elicits killing of

Gram-negative pathogens remains unsettled as it is unlikely to span

both the outer and the inner membranes simultaneously (Berends

et al, 2014). The MAC may not represent a major defense mecha-

nism in adults as evidenced by the successful systemic blockade of

C5 cleavage as a therapeutic strategy without significant increase in

infectious episodes (see below). Another aspect of the terminal

pathway is the ability of sublytic numbers of C5b-9 complexes,

assembled on host cells, to induce signal transduction resulting in

cell cycle progression instead of cell death (Tegla et al, 2011). In

recent studies, the sublytic MAC was shown to activate the NLRP3

inflammasome and trigger the secretion of pro-inflammatory cytoki-

nes IL-1b and IL-18 subsequent to caspase-1 activation (Laudisi

et al, 2013; Triantafilou et al, 2013). In an in vivo model, inflamma-

tion was substantially reduced in C6-deficient mice, strongly impli-

cating the sublytic MAC in inflammatory processes. It will be

interesting to test whether therapeutics targeting the inflammasome

or caspases would be beneficial in MAC-associated pathologies.

It has been known for decades that complement fragments can

be generated by other means besides the three canonical activation

routes, and especially, the cross talk with the coagulation system

has regained attention due to studies indicating that thrombin,

coagulation factors XIa, Xa, and IXa, and plasmin effectively

cleave C3 and C5 and generate C3a and C5a (Huber-Lang et al,

2006; Amara et al, 2010; Berends et al, 2014). C3 can also be

produced intracellularly by the CD4+ T cells. This C3 is processed

by the T-cell lysosomal protease cathepsin L, yielding biologically

active C3a and C3b (Liszewski et al, 2013). Tonic intracellular C3a

generation is required for homeostatic T-cell survival, whereas

shuttling of this intracellular C3 activation system to the cell

surface upon T-cell stimulation additionally induces autocrine

proinflammatory cytokine production. Thus, C3aR activation via

intrinsic generation of C3a appears to be an integral part of human

Th1 immunity (Ghannam et al, 2014). Thrombin slowly cleaves

C5 and generates C5a, but under conditions with normal conver-

tase activity, this is possibly not a physiologically significant reac-

tion. Clotting-induced production of thrombin instead leads to

cleavage of C5 or C5b in the CUB domain. C5a can be released

from such CUB-digested C5 by the conventional C5 convertases,

and the combined action of thrombin and convertases appears to

enhance the efficiency of the lytic pathway (Krisinger et al, 2012).

Conversely, MASP-1 has been reported to activate coagulation

(Takahashi et al, 2011; La Bonte et al, 2012) and to initiate

endothelial cell signaling via cleavage of protease-activated

receptor 4 (Megyeri et al, 2009).

Structure, assembly, and activation of the proteolytic
complexes within complement

Much attention has been devoted to understanding, at the atomic

level, how giant proteolytic complexes within complement assemble

and how they recognize their substrates and generate their products.
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Crystal structures accumulated over the last 25 years of the involved

PRMs, proteases, and their substrates have generated a very rich

structural framework for comprehending these complicated proteo-

lytic reactions. In the following, we focus on some of the larger and

more recent structures of complement proteins and their complexes.

Despite their quite different ligands, the PRMs in the CP and LP

have the same basic architecture. Their subunits form trimers

through a collagen-like region and the C-terminal ligand-binding

domains. Such trimers oligomerize through their N-terminal

regions, but whereas the C1q trimer contains three distinct chains

(A, B and C), CL-LK contains two polypeptide chains (CL-K1 and

CL-L1), and only homotrimers are found in MBL and the ficolins.

The C1r, C1s, MASP-1, MASP-2, and MASP-3 proteases associated

with these PRMs share a modular structure with their N-terminal

CUB-EGF-CUB domains (Fig 2A) mediating protease dimerization

(Teillet et al, 2008; Venkatraman Girija et al, 2013) as well as

association with the PRM collagen stems through a calcium-depen-

dent interaction with a conserved lysine residue in the collagen

region of the PRMs (Lacroix et al, 2009; Gingras et al, 2011; Bally

et al, 2013). The MASPs, like C1r and C1s of the C1 complex,

encompass the domains CUB1-EGF-CUB2-CCP1-CCP2-SP. Upon

activation of zymogen MASP (or zymogen C1r and C1s), the

polypeptide chain is cleaved between the CCP2 and the SP

domains, but the resulting A and B chains remain associated

through a disulfide bond. The C-terminal part of the serine

proteases is formed by two CCP domains followed by the catalytic

SP domain (Fig 2B).

Regardless of the paramount importance of PRM:serine protease

complexes in pattern recognition and complement activation, only

low-resolution structural information is currently available. The

prevalent model for the C1 complex, based on a combination of

negative stain electron microscopy (EM), biochemical, and biophys-

ical interaction studies (Bally et al, 2009, 2013; Phillips et al, 2009;

Brier et al, 2010), states that prior to ligand binding and activation,

the SP domains of C1r and C1s are tucked inside a large conical-

shaped void delimited by the collagen stems and the ligand-binding

domains of C1q. Ligand binding is then believed to trigger a confor-

mational change causing intramolecular activation of C1r and C1s

followed by exposure of the C1s SP domains in order to make them

accessible for the substrates C4 and the proconvertase C4b2 (Wallis

et al, 2010). C1q binds antigen-bound IgM but also single IgGs

through their Fc fragment, though with a lower affinity

(KD � 10�4 M) (Hughes-Jones & Gardner, 1979). This low-affinity

interaction is not sufficient to activate the C1 complex, thus binding

to several IgG Fc regions by a single C1q is necessary to achieve

avidity and activate C1. IgG molecules being monovalent in solu-

tion, the only way this can be achieved is through antigen-driven

IgG clustering on an activating surface (Burton, 1985). A recent

cryo-EM tomography study at 66 Å resolution revealed the structure

of the full C1 complex bound to IgG arranged in an Fc-mediated

hexamer on hapten-coated liposomes (Diebolder et al, 2014). The

N-terminal parts of the six collagen stems in C1q assemble in paral-

lel into one compact structure, whereas the C1r2s2 tetramer is

located within a flat, elongated structure centrally in C1. The cata-

lytic SP domains of C1r2s2 were not visible, but suggested to

protrude from the central axis of the molecule (Diebolder et al,

2014). The globular ligand-binding domains are seen in contact with

the CH2 domains of the Fc hexamer. Presumably this study presents

the activated C1 molecule bound to a model IgG immune complex,

although the activation status of the C1r2s2 is not described.

Based on the functional and structural homologies between

serine proteases and the PRMs from the two pathways, it was

suggested that the activation mechanism and conformation of PRM:

MASP complexes from the LP resemble those suggested for the C1

complex (Wallis et al, 2010). According to this model, binding of

PRM:MASP-1 to an activator causes a conformational change

conferring intramolecular activation of MASP-1, which may then

activate a nearby PRM:MASP-2 complex. However, a major problem

with the intramolecular activation mechanism for the LP is that it

requires extensive deviations from known crystal structures of frag-

ments encompassing the CUB-EGF-CUB domains of MASPs, in order

to place the SP domains of the proteases inside the PRM cone. We

recently challenged this concept in two different ways. We first

showed that clustering of PRM:MASP-1 without PRM ligand binding

is sufficient to initiate LP activation and that activation of MASP-1

and subsequently activation of MASP-2 are intermolecular reactions

driven primarily by juxtaposition and orientation of the PRM:MASP

complexes (Degn et al, 2014b). In a second study, we used small-

angle X-ray scattering (SAXS) and EM to demonstrate that non-

activated MBL:MASP-1 complexes have their MASP-1 SP domains

protruding from the MBL collagen stems (Fig 2A) and separated by

more than 200 Å (Kjaer et al, 2015). This is incompatible with intra-

complex MASP-1 cleavage within a PRM:MASP-1 complex but in

agreement with the intercomplex activation mechanism driven by

juxtaposition of PRM:MASP complexes (Degn et al, 2014b) and

requires no global conformational changes to accompany activation,

but is rather dependent on the concentration of PRM:MASP on the

activating surface. Future studies will show whether the concept of

intermolecular activation can be extended to the classical pathway.

The first common step in the LP and CP is the cleavage of C4 by

MASP-2 or C1s, respectively. Our recent crystal structures of C4 and

its complex with a catalytic fragment of MASP-2 (Fig 2B) provided

detailed insight into this crucial step of complement activation

(Kidmose et al, 2012). The structure of C4 demonstrated that the

protein has the same domain organization and overall structure as

C3 and C5 (Fig 2B). In the C4:MASP-2 complex, the scissile bond

region is accommodated in the MASP-2-active site as anticipated.

Furthermore, the C-terminal C345c domain of C4 was found to be in

contact with a MASP-2 exosite located between the two CCP domains

(Rossi et al, 2005; Duncan et al, 2012) and the corresponding contact

between C1s and the C4 domain was also confirmed (Kidmose et al,

2012) (Fig 2B).

A major breakthrough in the structural studies of complement

was the structure determination of C3 and C3b (Janssen et al, 2005,

2006; Wiesmann et al, 2006). The most striking observation when

comparing these structures is the overwhelming conformational

change that C3 undergoes upon release of C3a. In C3, the thioester

is concealed and solvent inaccessible, whereas in C3b it is placed

80 Å away from its C3 position and freely accessible to activator

nucleophiles. We have recently shown that an almost identical

conformational change occurs in nascent C4b resulting from C4

cleavage through the CP and LP (Fig 2C) (Mortensen et al, 2015).

Furthermore, nascent C5b undergoes a conformational change

resembling that of C3b and C4b but becomes trapped half-way due

to the association of C5b with C6 (Fig 2F) (Aleshin et al, 2012;

Hadders et al, 2012). But how are C3 and C5 actually cleaved by the
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convertases? Establishing the structure of convertases and their

complexes with substrates represents a major challenge as the

active convertases rapidly dissociate irreversibly. Furthermore, the

convertases are surface-linked enzymes and especially the C5

convertases, which depend on adjacent C3b molecules in order to

gain affinity for C5, may not be truly reconstituted as fluid-phase

enzymes. Our recent structure of C4b provides insight into the archi-

tecture of the CP C5 convertase C4b2a3b, in which the presence of

C3b shifts the specificity from C3 to C5 (Mortensen et al, 2015). By

SAXS modeling, we have shown that a conserved loop in the C4b

TED (residues 1231–1255) is exposed to the solvent. This loop

contains a conserved Ser1236 residue which may play the role of a

nucleophile and covalently link C4b to C3b through its thioester,

thus forming a covalent C4b-C3b heterodimer (Kim et al, 1992). If

indeed this loop is the main contact of C4b to C3b in the CP C5

convertase, then the longest axes of the two proteins may be

roughly parallel, positioning C3b in a way that it can no longer

establish interaction with C5. Based on these observations in combi-

nation with the structure of a factor H (FH) fragment bound to

C3b (Fig 2G) and data suggesting that the FH-binding site of C3b

within the CP C5 convertase is inaccessible (Weiler, 1989; Meri &

Pangburn, 1990), we proposed that C3b alters the conformation of

the CP C3 convertase rather than offering an additional C5-specific

binding site.

Several studies have addressed the structure of the AP C3 conver-

tase. Structures of the stable proconvertase C3bB determined by EM

and crystallography revealed how FB associates with the C-terminal

C345c domain of C3b through its von Willebrand factor type A

(vWA) domain in a Mg2+-dependent manner (Torreira et al, 2009;

Forneris et al, 2010). This proconvertase appears to adopt two

conformations, open and closed, differing by a rotation of the FB SP

domain. The structure of the ternary complex C3bBD (Fig 2D)

revealed that the scissile bond region in FB is only accessible to FD

in the open conformation. Furthermore, FD binds primarily through

a FB exosite located 25 Å from the scissile bond (Forneris et al,

2010). To determine the crystal structure of the rapidly dissociating

C3bBb complex (half-life of about 90 s at 37°C) formed after C3bB

cleavage by FD, the S. aureus protein SCIN was used to stabilize the

AP C3 convertase. The only contact between the two convertase

subunits is through the C3b C345c domain and the Bb vWA domain,

whereas the catalytic SP domain of Bb extends away from C3b

(Rooijakkers et al, 2009). Another approach to stabilize the conver-

tase for structural studies is to use FP, and a recent EM study

revealed the architecture of FP and the FP-stabilized AP C3 conver-

tase C3bBbP. The vertices of FP trimers/tetramers were found to

contact the C345c domain of C3b and the vWA domain of Bb

explaining its stabilizing effect on the AP C3 convertase (Alcorlo

et al, 2013).

Structural insight into substrate recognition by the convertases

was accomplished with our structure of C5 in complex with the C3b

homolog cobra venom factor (CVF) in the absence of FB. C5 and

CVF are in contact at two separate interfaces with the largest of

these formed between the macroglobulin (MG) 4 and 5 domains

from both proteins. The second interface involves the C5 MG7

domain and the CVF MG6 and MG7 domains (Laursen et al, 2011).

Binding to CVF requires a conformational change in C5 as compared

to the unbound protein (Fredslund et al, 2008) in order to establish

the two-point interaction. By combining the SCIN-stabilized C3bBb

structure and the C5-CVF structure, it was possible to suggest a

general model for convertase–substrate interactions (Fig 2E) appli-

cable to both CP and AP convertases in agreement with existing

experimental data (Laursen et al, 2011). This model suggests that

C4b/C3b in the CP/AP convertases recognize the substrate MG4,

MG5, and MG7 domains in a manner similar to how CVF interacts

with C5 and that the substrate undergoes an overall conformational

change upon convertase binding. As the catalytic subunits C2a/Bb

must function in both the CP/AP C3 and C5 convertases, the orien-

tation of the substrates with respect to the catalytic subunit was also

suggested to be similar in C3 and C5 convertases (Laursen et al,

2011).

Regulators of complement activation

Even healthy host cells not recognized by CP or LP PRMs may

become tagged by C3b due to the generation of C3(H2O) in the AP

or through the “bystander” effect whereby C3b generated in the

vicinity becomes attached to a host cell. It is therefore important

that the AP is tightly regulated, and a panoply of soluble and

membrane-associated complement regulatory proteins are known

(Fig 1B and Table 1). One of the most potent and best-studied

complement regulators is complement factor H (FH) (Ferreira et al,

2010). It possesses decay-accelerating activity dissociating Bb from

the AP C3 convertase, but FH also serves as cofactor for the serine

protease factor I (FI) that cleaves C3b into iC3b, unable to form C3

convertase (Fig 1B). FH is a very strong negative regulator of

complement on host surfaces, to which FH binds through sialic acid,

heparin, and sulfated glycosaminoglycans (GAGs) (Figs 1B and 3A

and B). By binding to host-specific glycans, FH is able to distinguish

between self and non-self, thus preventing complement activation

on host surfaces. On microorganisms lacking these protective

patterns, FH is absent and complement activation is thus allowed to

proceed (Makou et al, 2013). FH consists of 20 repeating units of

about 60 residues designated as short consensus repeats (SCRs) or

complement control protein repeats (CCPs) (Fig 3A). Owing to its

modular, flexible structure, full-length FH is recalcitrant to high-

resolution structural studies. CCPs 1–4 of FH bind C3b and display

decay-accelerating activity by dissociating Bb from C3 convertases.

In addition, FH possess cofactor activity (Figs 1B and 3B) probably

by inducing a substrate conformation of C3b susceptible to FI-

mediated degradation (Gordon et al, 1995; Kuhn & Zipfel, 1996;

Barlow et al, 2008) and by providing a binding platform for FI

(Roversi et al, 2011). The C3b:FH CCP1–4 crystal structure provides

insight into the molecular basis of these FH functions (Wu et al,

2009). The four FH CCP domains are in contact with C3b, spanning

over 100 Å in a linear fashion with a kink between CCP3 and CCP4

giving it an overall L-shaped form (Fig 2G). The FH-binding site in

C3b is formed by its a0 N-terminal region, the MG1, 2, 6, 7, CUB,

and thioester (TE) domains. As the positions of the CUB and TE

domain are dramatically different in C3 and C3b, the structure

explains the selectivity of FH for C3b. A comparison of the struc-

tures of the C3b:FH CCP1–4 (Fig 2G) and C3bBb (Fig 2E) complexes

identifies the competing interfaces on C3b, thus explaining the FH

decay-accelerating activity.

The FH CCP6–8 are involved in association with self-surfaces

since they bind to heparin, a model for highly sulfated GAGs
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(Blackmore et al, 1996), whereas FH CCP19–20 interact with both

C3b and host surface glycans (Schmidt et al, 2008) (Fig 3A and B).

These C-terminal modules are crucial for distinguishing self from

non-self, and recombinant FH CCP19–20 competitively inhibit full-

length FH deposition on cell surfaces (Ferreira et al, 2006). Further-

more, in the presence of anti-CCP20 blocking antibody, FH is unable

to bind endothelial cells (Oppermann et al, 2006). The recent

co-crystal structure confirmed that discontinuous patches on FH

CCP19–20 interact with a contiguous stretch on the C3b TE domain

(Morgan et al, 2011). The FH CCP19–20 interaction site is not

overlapping with the CCP1–4 site (Fig 2G), consistent with the

cooperativity of CCP1–4 and CCP19–20 in C3b binding (Schmidt

et al, 2008). A recent study that assayed the binding of FH to a vari-

ety of sialosides by NMR spectroscopy (Blaum et al, 2015) showed

that FH CCP20 binds specific structures present on host surfaces,

and not simply polyanions as previously postulated, as exemplified

by the binding to Siaa2-3Galb1-3GalNAc in contrast to lack of bind-

ing to Siaa2-6Galb1-4GalNAc. CCP6–8 and CCP19–20 cooperate in

binding to host surfaces since separately they bind to heparin with a

KD � 5–10 lM, whereas the affinity increases to as high as

KD � 30 nM for intact FH (Khan et al, 2012; Zaferani et al, 2012).

For recent comprehensive reviews concerning FH binding to host

surfaces, see Makou et al (2013) and Perkins et al (2014).

There are six other proteins related to FH: the product of CFH

alternative splicing, complement factor H-like protein (FHL-1), and

complement factor H-related proteins (CFHRs) 1–5 (Jozsi & Zipfel,

2008). The CFHRs are encoded by separate genes and are

composed of different number of CCP domains (Table 1 and

Fig 3A). CFHR1 is able to regulate the terminal pathway of

complement, but it lacks decay and cofactor activities (Timmann

et al, 1991; Heinen et al, 2009). CFHR1 binds to several microbes,

and since it can compete with FH for the same binding sites, it is

believed that it can act as a decoy preventing complement subver-

sion by certain pathogens (Haupt et al, 2007; Kunert et al, 2007).

CFHR2 regulates complement by inhibiting the AP C3 convertase,

but it does not compete with FH for C3b binding (Eberhardt et al,

2013). CFHR3 competes with FH for C3b binding, but its role as

cofactor remains debated (Hellwage et al, 1999; Fritsche et al,

2010). C3b is also bound by CFHR4, which can apparently stabi-

lize the AP C3 convertase and prevent its decay by FH (Hebecker

& Jozsi, 2012). CFHR5 binds C3b, CRP, and heparin, but its possi-

ble role as a cofactor is rather poorly supported by the data.

Although not a potent complement regulator, CFHR5 associates

with C3 activation products and localizes to complement deposits

of diseased kidney glomeruli (Murphy et al, 2002). CFHR1,

CFHR2, and CFHR5 can form homo- and heterodimers due to the

conserved dimerization interface (Fig 3C) (Goicoechea de Jorge

et al, 2013). Furthermore, because of their conserved C3b/C3d

binding interface and the avidity conferred by their dimerization,

CFHRs can effectively compete with FH and interfere with comple-

ment inhibition even though their relative plasma concentrations

are lower than that of FH [FH 0.7–3.6 lM (Esparza-Gordillo et al,

2004); CFHR1 1.7–2.5 lM (Heinen et al, 2009); CFHR5 0.05–

0.09 lM (McRae et al, 2005)]. Considering that FH levels in the

blood are not actively regulated, it is reasonable to assume that

altering CFHR levels and the composition of the different dimeric

species could provide an intricate way of controlling complement

activation. However, additional studies are needed to fully under-

stand the role of CFHRs in health and disease. Genetic variations

of CFH and some of the CFHR genes have been associated with

chronic inflammatory diseases such as age-related macular degen-

eration (AMD) and atypical hemolytic uremic syndrome (aHUS)

(discussed later).

C4-binding protein (C4BP) is a fluid-phase regulator of the CP

and LP similar to FH in its regulatory properties, but directed at

C4b. It is a large glycoprotein consisting of seven a- and one

b-chain, both made of CCP modules, and with a spider-like appear-

ance (Fig 1) (Blom et al, 2004; Hofmeyer et al, 2013). C4BP is both

Table 1. Complement regulators.

Regulator Ligand Function

Soluble regulators

Factor H (FH) C3b, C3d AP C3 convertase decay
and cofactor

FHL-1 C3b AP C3 convertase decay
and cofactor

CFHR1 C3b, C3d, C5
convertase

Inhibits C5 convertase,
competes with FH, acts
as decoy for certain
pathogens

CFHR2 C3b, C3d, AP C3
convertase

AP C3 convertase
decay, competes with
FH

CFHR3 C3b, C3d Competes with FH

CFHR4 C3b AP C3 convertase decay

CFHR5 C3b, C3/C5
convertase?

Competes with FH

Factor I (FI) Cofactor bound
C3b and C4b

Serine protease,
degrades C3b, iC3b,
C4b, and iC4b

Properdin (FP) C3b, C3bB, C3bBb,
GAGs

Stabilizes AP
convertases

C4BP C4b, S protein CP C3 convertase decay
and cofactor

C1-INH C1r, C1s, MASPs Serine protease
inhibitor

MAp19 MBL and ficolins Competes with MASP-2
in vitro

MAp44 MBL and ficolins Blocks MASP
transactivation

Clusterin C7, C8, C9, MAC Inhibits MAC

Vitronectin C5b-C7, MAC,
GAGs

Inhibits MAC

Membrane-associated and transmembrane regulators

MCP (CD46) C3b, C4b Cofactor activity, T-cell
differentiation and
activation

DAF (CD55) C3b, C4b, AP and
CP C3 convertase

AP and CP C3
convertase decay

CD59 C8, MAC Inhibits MAC

CR1 C3b, C4b AP and CP C3
convertase decay and
cofactor
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a decay-accelerating factor dissociating C2a from the CP C3 conver-

tase and a cofactor, promoting FI-mediated cleavage into iC4b and

further to C4c and C4d (Fig 1B). Another regulator of the CP and LP

is C1 inhibitor (C1-INH), a member of the serine protease inhibitor

(serpin) family. It irreversibly blocks C1r and C1s in the C1 complex

as well as MASP-1 and MASP-2 (Davis, 1988; Degn et al, 2013b)

(Fig 1B). Two splice variants of the MASP2 and MASP1 genes,

respectively, MAp19 and MAp44 lacking the SP domain regulate the

LP (Degn et al, 2009; Skjoedt et al, 2010) (Fig 1B). MAp44 has been

shown to inhibit complement by preventing MBL:MASP co-complex

formation, thereby precluding MASP transactivation (Degn et al,

2013a). MAp19 has been reported to compete with MASP-2 for bind-

ing to MBL and prevent cleavage of C4, thus downregulating

complement activation (Iwaki et al, 2006). This finding has recently

been disputed (Degn et al, 2011) as it was found that MAp19

possessed 10-fold lower affinity toward MBL compared to MASP-2.

Taking into account the similar physiological abundance of MASP-2

(at 7 nM) and MAp19 (at 11 nM) and the fact that other molecules

associate more strongly with MBL, it is unlikely that MAp19 can

serve as a complement inhibitor under physiological conditions,

unless unique conditions are present at specific sites of the body.

Other soluble complement regulators include clusterin and vitro-

nectin, both regulating complement by inhibiting MAC assembly or

insertion into membranes within the terminal pathway (Fig 1B).

Clusterin prevents C9 from binding the C5b-8 complex, whereas

vitronectin inhibits the association of C5b-7 with membranes. Upon

binding of C8 and C9 to the soluble C5b-7 complex, a fluid-phase

MAC complex is formed instead, also known as soluble MAC

(sMAC) (Podack et al, 1978; Tschopp & French, 1994; Moskovich &

Fishelson, 2007).

CFHR1–CFHR1 CFHR2–CFHR2

CFHR1–CFHR2 CFHR1–CFHR5

C3b binding
TED/GAG 

bindingGAG binding

FH 87654321 9 10 11 12 13 14 15 16 17 18 19 20

54321
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321

7 8 9

21 3 7654 8 9

CFHR1
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7654321FHL1
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CFHR1–CFHR1
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Figure 3. Complement factor H family regulators.
(A) Domain organization of complement factor H (FH). C3-binding domains are highlighted in yellow and glycosaminoglycan (GAG)-contacting domains in blue. Complement
factor H-like 1 (FHL1) and complement factor H-related (CFHR) proteins are represented below according to their sequence similarity to FH. CFHRs share high
sequence similarity with each other and with FH. All CFHRs contain domains homologous to the FH GAG- and TED-binding domains but lack the domains homologous
to the FH N-terminal CCP1–4. (B) Models of FH recruited to non-activating surfaces. FH may be recruited to the self-surface-bound C3b and establish bivalent
contacts with one C3b molecule. Owing to its flexible structure, FH may bind two surface-bound C3b molecules (or iC3b and C3d). (C) CFHRs form homo- and heterodimers.
The N-terminal CCP1–2 domains of CFHR1 crystallize as head-to-tail dimers (RSCB ID 3ZD2). Due to the high sequence identity between the CCP1–2 of CFHR1, 2, and 5,
the three proteins are able to form homo- and heterodimers in the serum and thus modulate complement activation in a more complex manner.
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Host cells express transmembrane and membrane-associated

factors that protect them from complement activation (Fig 1B and

Table 1). Membrane cofactor protein (MCP or CD46) is a ubiqui-

tously expressed CCP module-based protein (absent only on

erythrocytes) that serves as cofactor for FI cleavage of C3b and C4b

(Andrews et al, 1985) (Fig 1B). CD59 and decay-accelerating factor

(DAF or CD55) are glycosylphosphatidylinositol (GPI)-anchored

complement regulators. CD59 is a small (20 kDa), widely expressed

glycoprotein that blocks C9 from incorporating into the C5b-8

complex as well as C9 polymerization in a preformed C5b-9

complex (Meri et al, 1991; Morgan et al, 2005) (Fig 1B). DAF, a

70-kDa CCP-based glycoprotein, accelerates the decay of both the

C3 and C5 AP and CP convertases by binding to C3b and C4b

(Medof et al, 1984) (Fig 1B).

Complement receptors

The anaphylatoxins C3a and C5a, released when the convertases

cleave C3 and C5, exert their biological functions upon binding to

seven-transmembrane domain (7TM) receptors in the membranes of

host cells. Two of these receptors, C3aR and C5aR1 (CD88), are G

protein-coupled receptors (GPCR), whereas the third, C5aR2 (previ-

ously known as C5L2), is structurally similar to C5aR1 but does not

couple to heterotrimeric G proteins (Li et al, 2013). C5aR2 was first

considered as a decoy receptor, limiting the availability of the C5a

and C5adesArg ligands to C5aR1. Decoy receptors do not undergo

ligand-induced internalization but are rather continuously recycled

between the cell membrane and the intracellular compartments,

thereby removing their extracellular ligand (Weber et al, 2004).

Thus, it has been suggested that C5aR2 may reduce the cellular

responses to pro-inflammatory molecules and thereby actively regu-

late inflammatory processes (Rittirsch et al, 2008). Additionally,

some studies report concerted action of C5aR1 and C5aR2 in adipo-

cyte metabolism and immunity as well as formation of C5aR1/

C5aR2 heterocomplexes (Bamberg et al, 2010; Poursharifi et al,

2014).

Signaling through C3aR and C5aR1 triggers chemotaxis, oxidative

burst, histamine release, and leukotriene and interleukin synthesis

(Klos et al, 2009). Through such pro-inflammatory properties,

anaphylatoxins play an important role in chronic inflammatory

diseases including rheumatoid arthritis, inflammatory bowel

disease, as well as in asthma and allergy (Linton & Morgan, 1999;

Woodruff et al, 2003; Hawlisch et al, 2004). However, C3a may

instead elicit an anti-inflammatory response depending especially

on the cell type activated through C3a–C3aR signaling and the phase

of inflammation (Coulthard & Woodruff, 2015). In addition, anaphy-

latoxins are implicated in tissue regeneration and development

(Mastellos et al, 2001; Strey et al, 2003; Hillebrandt et al, 2005). In

the liver, C3a induces STAT3 activation and an increased IL-6

production (He et al, 2009). In the eye, C3a signaling also activates

STAT3 and promotes retinal regeneration (Haynes et al, 2013). In

addition, C3a is implicated in neural stem cell migration and regen-

eration (Shinjyo et al, 2009). An interesting study recently impli-

cated C3aR in alloreactivity (Asgari et al, 2013). By examining renal

allograft rejection patients, the authors reported increased C3a

generation and thus C3aR stimulation. Upon C3aR activation, phos-

phorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2)

and increased efflux of ATP were observed in monocytes. Subse-

quent caspase-1 activation led to IL-1b secretion, thus linking C3aR

potentiation to Th17 responses. Lately, C3a has been suggested to

act as a secretagogue on islets stimulating insulin secretion by

pancreatic b-cells in mice (Lo et al, 2014). Activation of C3aR on

b-cells leads to an intracellular increase in ATP, mitochondrial respi-

ration, and an elevated Ca2+ flux. Islets in FD knockout mice with a

resulting lower AP activity therefore secrete less insulin under high

glucose conditions. Furthermore, type 2 diabetes patients with b-cell
failure were observed to express less FD (also known as adipsin)

than patients without b-cell failure (Lo et al, 2014). C5a has been

shown to offer neuroprotection against glutamate-mediated cell

death (Mukherjee et al, 2008). It is widely accepted that C5a harbors

a higher pro-inflammatory potency, as compared with C3a (Guo &

Ward, 2005), which may correlate with the findings that implicate

C5a in pathogenesis of sepsis, rheumatoid arthritis, ischemia–

reperfusion injury, allergy, and asthma (Guo & Ward, 2005; Klos

et al, 2009). The biological activity and potency of anaphylatoxins

are regulated by carboxypeptidases that cleave off the C-terminal

arginine residue yielding C3adesArg and C5adesArg (Bokisch &

Muller-Eberhard, 1970; Matthews et al, 2004). C3adesArg does not

signal through C3aR, whereas C5adesArg retains up to 10% of C5a

activity (Wilken et al, 1999; Sayah et al, 2003). A role of C3adesArg

(acylation-stimulating protein) in triglyceride synthesis (Cianflone

et al, 2003) mediated by its binding to C5aR2 (Cui et al, 2009) has

been suggested though strongly disputed (Klos et al, 2009).

From a structural perspective, anaphylatoxins are small, cationic

peptides (74–79 amino acids) possessing an all-a-helical fold stabi-

lized by disulfide bridges. Despite the major differences in biological

activity, C3a and C3adesArg present no significant structural dif-

ferences (Fig 4A) (Bajic et al, 2013a). In contrast, human C5a and

C5adesArg are structurally flexible; they seem to oscillate between

four- and three-helix bundle conformations, whereas their murine

counterparts adopt only the four-helix bundle conformation

(Fig 4A) (Cook et al, 2010; Schatz-Jakobsen et al, 2014). With

respect to receptor binding, numerous mutagenesis studies have

been performed for C5a, unlike for C3a. The studies demonstrated

that basic residues on C5a are involved in C5aR1 binding (Huber-

Lang et al, 2003) (Fig 4A). This observation is reinforced by the fact

that C5aR1 bears N-terminal sulfotyrosine residues essential for

ligand binding (Farzan et al, 2001), thus suggesting that charge–

charge interactions drive the binding. The C-terminally truncated

version of the human C5a (residues 1–70) binds C5aR1 with lower

affinity than the full C5a but does not activate receptor signaling

(Chenoweth et al, 1982). Therefore, it has been suggested that the

C5a core is necessary for the receptor binding, but the C-terminus

dictates the signaling [for review, see Klos et al (2013)].

The central effector function of C3b and its degradation products

is underscored by the presence of five known receptors on the

surface of especially immune cells. Complement receptor 1 (CR1,

CD35) is a large CCP module-based glycoprotein expressed on

almost all peripheral blood cells except NK and T cells (Fearon,

1980; Tedder et al, 1983). CR1 binds C3b and C4b with high affinity

and iC3b and C3d with a lower affinity (Reynes et al, 1985). CR1 on

erythrocytes may bind C3b-containing immune complexes as part of

removal processes, whereas on phagocytic cells it promotes C3b/

C4b-coated particle uptake. CR1 also plays an important role in the

germinal centers of lymph nodes where it is found on follicular
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Figure 4. Structural characterization of anaphylatoxins and the role of CR3 and CR2 in antigen trafficking in the lymph node.
(A) Structure of C3a and C5a anaphylatoxins. The overall structure of human C3a (RCSB ID 4HW5) indicates a four-helix bundle fold (a-helices are indicated)
stabilized by three disulfide bridges (yellow sticks, cysteine numbering is indicated). Underneath is shown a superimposition of the C5a moiety from the intact C5 (light blue,
RSCB ID 3CU7) with C5asdesArg (teal, RSCB ID 3HQB), and the C5aA8 antagonist (dark blue, RSCB ID 4P39). The swing-out motion of the a1-helix is indicated with an
arrow. C5a residues involved in C5aR1 binding are indicated in red sticks. (B) Atomic model of the CR3 (yellow) and CR2 (light blue) co-ligation to C3d (purple) generated
by superimposing the CR3 I domain:C3d (RCSB ID 4M76) and CR2 CCP1-2:C3d (RSCB ID 3OED) complexes. A ternary complex between a C3 opsonized antigen, CR2,
and CR3 could be of physiological relevance, see the next panel. (C) Complement-dependent antigen transport, uptake, recycling, and presentation occur in the lymph node. 1)
Immune complexes (IC) containing complement-opsonized antigens drain with the afferent lymphatics into the subcapsular sinus (SCS). 2) Complement-opsonized
antigen is taken up by subcapsular sinus macrophages (SSM) via complement receptor 3 (CR3) and shunted across the subcapsular sinus floor. 3) The antigen is handed off to
non-cognate B cells via complement receptor 2 (CR2), which transport it into the follicle. 4a) Antigen is delivered to follicular dendritic cells (FDCs) via CR1 and CR2.
FDCs are subsequently able to retain antigen for long periods of time in a recycling compartment. 4b) Low-molecular-weight antigen is delivered directly into the follicle
through conduits. 5) Cognate B cells can probe antigen arrayed on the surface of FDCs, and BCR signaling is enhanced by co-ligation of CR2 by IC-associated complement
fragments. The color coding is consistent with panel (B).
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dendritic cells (FDCs) capturing complement-opsonized antigens

that serve to stimulate B cells (Heesters et al, 2013) (Fig 4B and C).

CR2 (CD21), also possessing a CCP architecture, is primarily present

on B cells and FDCs. It is important in trapping of C3-opsonized

antigens by FDCs in the germinal centers and stimulating B cells for

affinity maturation, isotype switching, and memory (Fang et al,

1998; Carroll, 2000) (Fig 4B and C). CR2 binds C3b, iC3b, and C3d

with the same affinity in agreement with the crystal structure of the

CR2-C3d complex revealing recognition of a surface patch on the TE

domain accessible in all three ligands but concealed in C3 prior to

cleavage (Fig 4B) (van den Elsen & Isenman, 2011).

CR3 and CR4 are integrin-type heterodimeric receptors (CD11b/

CD18 and CD11c/CD18) having distinct a-chains, aM and aX,
respectively, but sharing a common b2-chain. Both are phagocytic

receptors expressed on myeloid leukocytes and NK cells and share

iC3b as ligand (Metlay et al, 1990; Ross, 2000). However, structural

studies indicate that the receptors bind to different epitopes of iC3b.

CR3 was shown to recognize the TE domain of iC3b (Bajic et al,

2013b) (Fig 4B), whereas CR4 binds quite far from this in the C3c

moiety of iC3b (Chen et al, 2012). Interestingly, CR3 and CR2 may

bind simultaneously to the iC3b TE domain (Bajic et al, 2013b), and

since CR3 is expressed on subcapsular sinus macrophages (SSMs), it

is plausible that complement-bearing immune complexes could be

conveyed from CR3-positive SSMs to CR2-positive naı̈ve B cells

within lymph nodes (Phan et al, 2007; Bajic et al, 2013b; Heesters

et al, 2014) (Fig 4B and C). Of note, SSM are poorly endocytic, and

appear to retain ICs on their surface during the IC shuttling from the

sinus-lining to the follicular side (Phan et al, 2009). The fifth C3b

receptor is CRIg (VSIG4), an immunoglobulin-type receptor

expressed on liver-resident macrophages (Kupffer cells), which

plays an important role in the clearance of pathogens from the

circulation through interaction with surface-bound C3b and iC3b

opsonins (Helmy et al, 2006). The binding of CRIg to C3b selectively

inhibits the interaction of C3 and C5 with the AP, but not with the

CP convertases.

An exciting new development is the discovery of a pathway

involving an as yet unidentified intracellular complement receptor

(Tam et al, 2014). C3b (or its degradation products) is deposited

onto viruses or bacterial pathogens such as Salmonella extracellu-

larly and then transported into host cells upon pathogen invasion

(Fig 1B). Pathogen-bound C3 fragments are recognized in the

cytosol by an unidentified receptor that signals through the mito-

chondrial protein MAVS. Subsequently NF-jB, AP1, and IRF3/5/7

transcription pathways are activated and pro-inflammatory cytoki-

nes such as interferon-b are produced. This intracellular sensing is

conserved in mammals and present in non-immune cells. Thus, the

induction of an antiviral state may be independent of professional

immune cells. Interestingly, some pathogens such as picornaviruses,

including rhinovirus and poliovirus, are able to subvert this detec-

tion system by expression of 3C protease that cleaves C3 and thus

prevents interferon and proteasome induction (Tam et al, 2014).

Structural basis for complement-associated disease

Some of the major players of the complement system, such as C3,

FH, and FB, have long been known to be polymorphic. The first

C3 polymorphism was described in the late 1960s (Wieme &

Demeulenaere, 1967), and the most common FB variants were

identified in the early 1970s (Alper et al, 1972). More than a

decade later, the most prominent disease-related FH polymorphism

Y402H was reported (Rodriguez de Cordoba & Rubinstein, 1984).

All these discoveries were made on the protein level. Mutations in

complement genes resulting in more potent activation of comple-

ment (i.e. C3, FB) or mutations yielding less active regulators (i.e.

FH, FI, MCP) increase the activity of the AP and the inflammatory

response triggered upon complement activation. Here, we will

focus on some of the most prominent polymorphisms giving rise

to complement dysregulation and thus resulting in pathological

conditions. By mapping them onto structures of complement

proteins, we provide a molecular rationale for complement-

associated diseases.

A developmental phenotype arising from a complement defect is

the so-called 3MC syndrome, a conglomerate diagnosis encompass-

ing the Michels, Malpuech, Mingarelli, and Carnevale syndromes.

The four syndromes were initially aggregated based on clinical over-

lap and similarities, and this was subsequently cemented by two

independent reports identifying the etiological basis as inherited

deficiency of either MASP-3 or CL-K1 (Sirmaci et al, 2010; Rooryck

et al, 2011). Patients with 3MC syndrome exhibit a spectrum of

developmental defects, including developmental delay, growth, and

mental retardation, characteristic facial dysmorphism, skeletal

anomalies with radioulnar synostosis, and several other defects. It

seems plausible that the basis of the observation of causative muta-

tions in both CL-K1 and MASP-3 is based in a physiologically rele-

vant complex of the two proteins, but the exact nature and role of

such a complex, and the relevant substrate of MASP-3 still remains

unclear. However, a recent structure of the catalytic domain of

zymogen MASP-3 indicates that some of the 3MC associated muta-

tion perturbs the structure of the catalytic site of this protease

(Yongqing et al, 2013) (Fig 5A–C), suggesting that active MASP-3 is

a prerequisite for normal development.

Age-related macular degeneration (AMD) is the most frequent

cause of blindness in the western civilization affecting elderly

persons, with as many as 30 million people affected worldwide. The

disease leads to accumulation of immune deposits between the

Bruch’s membrane and retinal pigment epithelial cells, called

drusen, which contain several complement components and regula-

tors suggesting that complement activation is involved in AMD

pathogenesis (Zarbin, 2004). In accordance, mutations in FH, FI,

and C3, among others, predispose to development of AMD (Zipfel

et al, 2010; Seddon et al, 2013; Zhan et al, 2013). Genotyping stud-

ies have revealed numerous single nucleotide polymorphisms

(SNPs) within the CFH gene and their correlation with susceptibility

to AMD (Li et al, 2006). The major SNP variant Y402H increases the

risk of developing AMD up to fourfold in heterozygotes and up to

sevenfold in homozygotes. A main component of drusen is malondi-

aldehyde (MDA), a common lipid peroxidation product accumulat-

ing in many pathophysiological processes. In animal models, FH

was found to be able to block MDA-induced pro-inflammatory

effects. In contrast, the polymorphism Y402H markedly reduced the

ability of FH to bind MDA, indicating a causal link to disease etiol-

ogy (Weismann et al, 2011). The crystal structure of FH CCP6–8

402H variant in complex with a sulfated sugar as a GAG model has

suggested how this FH mutation contributes to AMD pathogenesis

(Prosser et al, 2007) (Fig 5D). The histidine directly contacts the
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sulfated sugar whereas a tyrosine, present in FH 402Y, is incompati-

ble with this contact, suggesting that an altered GAG recognition

underlies the increased risk for AMD. Nevertheless, the normal

402Y variant is not devoid of GAG binding as such, in fact it binds

even more tightly than the 402H to some GAG types (Clark et al,

2006; Herbert et al, 2007). Additionally, the structure also revealed

GAG subsites in CCP6 and CCP8, suggesting that the three CCP

modules bind GAGs simultaneously (Fig 5D).

Atypical HUS (aHUS) is caused by chronic, uncontrolled activa-

tion of the AP, and is characterized by systemic thrombotic

microangiopathy and thrombocytopenia that lead to renal failure

(Noris & Remuzzi, 2009). It can be caused by rare genetic deficiency

or defects within complement components or regulators of the alter-

native pathway (e.g. FH, CFHR1, CFHR3, MCP, FI, FB, C3) but may

also be due to the acquisition of neutralizing autoantibodies against

complement proteins, for example, anti-FH antibodies. Mechanical

hemolysis in the microvasculature of the kidney leads to release of

free heme, which reacts with C3 leading to AP activation on

endothelial cells and in addition induces expression of the C3b bind-

ing P-selectin, thereby further supporting AP activity (Frimat et al,

2013). Mutations in genes encoding FH, FI, FB, and C3 have been

found in about 60% of aHUS patients. As already mentioned, FH

CCP19–20 are also involved in GAG binding and SNPs within these

modules predispose to aHUS (Manuelian et al, 2003; Dragon-Durey

et al, 2004). The recent crystal structure of the ternary complex FH

CCP19–20:C3d:30 sialyl lactose (Fig 5E) offers a molecular rationale

for why carriers of FH SNPs are predisposed to aHUS (Blaum et al,

2015). Some mutations directly impair FH binding to the sugar

moiety by removing hydrogen bond and hydrophobic stacking inter-

actions, while others are suggested to interfere with the geometry of

the GAG-binding site.

Functional studies of 15 FB mutants identified in aHUS patients

showed that only six of these are related to pathogenesis. However,

the results of functional studies with these six FB mutants could be

rationalized by mapping them to structures of the C3b:FH and the

C3bBb complexes (Fig 5G). All gain-of-function mutations were

located either close to the C3b-binding site or at a location in Bb

close to the C3b-binding site for FH CCP3 (Marinozzi et al, 2014). In

the latter case, the increased convertase stability (less FH decay

activity) is likely to result if the mutant Bb is less susceptible to FH

competition. A similar approach was very recently employed to

characterize a large panel of 23 mutations in C3 identified in aHUS

patients (Schramm et al, 2015) (Fig 5F). Functional assays showed

that 17 of these had lower affinities for MCP and FH, which in many

cases translated into decreased cofactor activity, and all mutations

conferring these defects were part of the FH-binding site or close to

it. Interestingly, there was good correlation between how FH and

MCP activity was affected by the various C3 mutations, suggesting

that the two regulators have overlapping interaction areas on the

C3b surface (Fig 5F). In contrast, the cofactor activity of CR1 was

much less affected with this panel of C3 mutants suggesting a some-

what different mode of interaction with C3b.

Paroxysmal nocturnal hemoglobinuria (PNH) is an intravascular

hemolytic anemia caused by complement-mediated destruction of

red blood cells. Both DAF and CD59 are tethered to the cell surface

through a GPI anchor. Rare somatic mutations (1 in 1,000,000) in

the PIGA gene on the X chromosome, encoding phosphatidyl-

inositol glycan class A, which is involved in GPI production, lead to

loss of the two regulators and hence uncontrolled alternative path-

way amplification and terminal pathway activation on erythrocytes.

PNH is induced if PIGA mutations lead to GPI deficiency in

hematopoietic stem cells, which subsequently acquire clonal domi-

nance. The disease is chronic as a consequence of the constitutive

activation of the AP, and patients suffer from anemia, thrombosis,

and smooth muscle dystonia (Brodsky, 2014). PNH is effectively

treated with the C5 antibody eculizumab that binds to the MG7

domain in C5, thus preventing cleavage by the C5 convertase

(Fig 5H). The presence of a mutation of a single residue in C5

Arg885 to either histidine or cysteine causes the carrier to be non-

responsive to eculizumab. The Arg885His mutation is present in

3.5% of the Japanese population; however, it has not been reported

in Caucasians (Nishimura et al, 2014). The observed effects are

explained by our model of the C5-convertase complex (Laursen

et al, 2011) since Arg885 is located within the patch on the C5 MG7

domain predicted to be recognized by C3b and C4b in the AP and

CP C5 convertases, respectively (Fig 5H). C5 Arg885His/Cys is not

bound by eculizumab (Nishimura et al, 2014), and the mutated C5

can be cleaved by the convertases.

Conclusion and perspectives

For more than a century, complement has been recognized as a

central component of the humoral immune system, and it has

remained a field of intense study. Yet recent research has continued

to uncover intriguing and fundamental new functions and structural

▸Figure 5. The molecular basis of complement-associated disease.
(A) Crystal structure of the zymogen mutant G666E (red sticks) of the MASP-3 CCP1-CCP2-SP fragment (RCSB ID 4KKD). The SP domain polymorphisms associated
with the 3MC syndrome (H497Y, C630R, G666E, and G687R) are indicated. (B) Zoom-in on the active site of the zymogen mutant G666E of MASP-3. E666 is making multiple
polar contacts (dashed black lines) with the a-turn of the active site restraining the peptide chain in a locked position that keeps the catalytic residues S664 and H497
too far apart. (C) Zoom-in on the catalytic pocket of the MASP-1 SP domain (RCSB ID 4IGD). The equivalent of MASP-3 E666 is G648 in MASP-1, that makes only a single
hydrogen bond, which is insufficient to restrain the catalytic S646 away from the catalytic H490. (D) Crystal structure of FH CCP6–8 in complex with sulfated glycans (RSCB ID
2UWN). All 3 CCP domains interact with host glycans. The carbohydrate-binding residues are colored in blue. The H402 risk variant is highlighted in green. (E) FH CCP19–20 in
complex with host-specific glycans (RSCB ID 4ONT). The FH residues in contact with the TE domain of C3b, iC3b, or C3d is shown in pink; glycan-interacting residues
are shown in blue; aHUS-associated mutations are shown in yellow; and aHUS-associated mutations overlapping with glycan-binding residues are highlighted in
green. (F) Mapping of the aHUS-associated C3 polymorphisms on C3b responsible for decreased cofactor activity of FH (green dot), MCP (pink dot), and both FH andMCP (light
blue dot). Mapped is also the FH interaction area (yellow) explaining why aHUS is triggered when the polymorphisms occur on this C3b interface. (G) The C3b
interaction area (cyan) is mapped on the surface of Bb (orange). aHUS-associated polymorphisms of FB are highlighted with yellow dots. (H) Crystal structure of the CVF:C5
complex (RCSB ID 3PVM). The CVF interaction area (mapped in green) on C5 (blue) overlaps with that of the C5 convertase. Eculizumab prevents C5 recognition by
the C5 convertases and is used in treatment of PNH. The red dot indicates the position of C5 Arg885, a polymorphism associated with the lack of response to eculizumab
treatment of certain PNH patients. The eculizumab epitope comprises the Arg885 and thus overlaps with the putative convertase binding area.
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details of this ancient network of PRMs, proteases and their

substrates, regulators, and immune receptors. As discussed here,

recent studies have uncovered a central role of MASP-3, as well as

the PRM CL-K1, in human fetal development, underlying the etiol-

ogy of the 3MC syndrome. Furthermore, early classical pathway

components have been deemed central for correct synaptic pruning

in the developing brain. It appears that the molecular recognition

complexes, proteolytic activities, and associated signaling pathways

including specific receptors can double up and function in both

development and tissue remodeling and host defense. Considering

that the associated host defense functions, if activated improperly or

excessively, can cause host tissue damage, their functions during
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development may similarly be envisioned to contribute to untoward

reactions during, for example, age- and disease-associated neuro-

degeneration. These are areas of active investigation.

As discussed earlier, the common polymorphisms in complement

proteins affect the extent of complement activation in an individual

and their susceptibility to untoward inflammation or infection. The

list of polymorphisms in complement genes is growing, and the

implication in pathologies as well as the intricate way in which the

combined effect of these polymorphisms may create a unique

complement setting is becoming increasingly appreciated. There-

fore, the analysis of an individual’s genetic predisposition to

complement-associated diseases may prove essential in the preven-

tion, management, and treatment of inflammatory and infectious

diseases. Although significant insight into the molecular mecha-

nisms of complement activation and regulation has been provided

by the rapidly increasing number of crystal structures of comple-

ment proteins, a full molecular understanding of how such poly-

morphisms in complement proteins translate into disease requires

high-resolution structures of very large surface-associated macro-

molecular complexes with the convertases and the C1 complex

being prominent examples. The recent revolution in single particle

cryo-EM will significantly promote future studies of large, rare, and

unstable complexes of complement proteins. The ultimate goal will

be the visualization of the complement response onto bacteria or

even human cells with cryo-EM tomography as pioneered with the

recent liposome-bound C1 structure.

Finally, complement research appears to uncover ever-expanding

roles of the system in the traditional domain of host defense. Two of

the most striking recent observations are the roles of complement in

shaping T-cell immunity and the function of complement as a

sensor of extracellular to intracellular translocation of invading

bacteria and viruses. In this light, undoubtedly, many more exciting

discoveries lie ahead.
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