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Focus: Study Design & Statistical Analysis

Statistical relevance—relevant statistics,
part I
Bernd Klaus

S tatistical analysis is an important

tool in experimental research and is

essential for the reliable interpreta-

tion of experimental results. It is essential

that statistical design should be considered

at the very beginning of a research

project, not merely as an afterthought. For

example if the sample size for an experi-

ment only allows for an underpowered

statistical analysis, then the interpretation

of the experiment will have to be limited.

An experiment cannot be reverse engi-

neered to become more statically signifi-

cant, although experiments can of course

be repeated independently to account for

biological variation (see section on techni-

cal versus biological replicates below).

Statistical methods are tools applied to

situations in which we encounter variabil-

ity, noise and uncertainty. They help

make more definitive scientific conclu-

sions, and to make better use of available

resources.

In this new EMBO Journal statistics

series, I will introduce key concepts and best

practices. The text will be short and concep-

tual in style, while the supplement will

provide examples demonstrating the intro-

duced concepts. I will use the free statistic

software R (R Core Team, 2015) to illustrate

examples, and readers can try the code on

their own data.

In this first part, I will give some guide-

lines for initial study design and analysis of

experiments. Subsequent columns will

discuss specific statistical topics in more

detail. Most of the issues touched upon in

this first column are further discussed in the

book of Ruxton and Colegrave (Ruxton &

Colegrave, 2010), which includes many

examples relevant to the analysis of

experiments for biological researchers.

Guidelines and terms for the design
and analysis of experiments

Experiment versus study

The terms experiment and study are some-

times used interchangeably, but they repre-

sent different concepts. In an experiment,

one uses highly controlled conditions to

look at a (model) system, performs specific

well-designed interventions at controlled

times and intensities, and has an efficient

assay to measure the effect of interest. You

control the “experimental units” (such as

cells, mice, and genotypes) and plan which

experiments to perform and when. This

allows for a stringent control over experi-

mental variables and to draw very specific

conclusions. However, this comes with the

inherent risk of exerting too tight control—

for example, the model system may not

be relevant and therefore not support

the hypothesis you are testing, or the

controlled conditions might not be exactly

the right ones.

On the other hand, the observations in

a study are made “in the wild”—for exam-

ple, on human subjects recruited to a

study according to certain inclusion and

exclusion criteria, but still taking into

account their individual history, genetic

makeup, and lifestyle. Likewise, an ecolo-

gist studying animals or plants encoun-

tered in the field does not have full control

over their environment or other potentially

important variables. Generally, a study

requires much bigger sample size than an

experiment and is more complicated to

analyze, usually requiring involvement of

a specially trained expert at some point. In

this series, I will mainly focus on the anal-

ysis of experiments.

Hypothesis-driven research

Although there are various “hypothesis-free”

exploratory experiments, such as the

sequencing of a genome or the genome-wide

binding site mapping of a transcription

factor, it is important to remember that most

biological experiments are hypothesis-

driven. This means that an experiment

should be based on a scientific question or

hypothesis—although this may sound

obvious, it is a point that is sometimes

neglected.

As a general rule, do not plan your exper-

iments as an accumulation of conditions

(e.g. “Do cells treated with drug A for 20 or

40 min express protein X but not Y?”)—

instead start with clear, single research ques-

tions, one at a time like:

• Is drug A better than drug B in inducing a

given effect?

• Is there a genetic interaction between gene

X and gene Y?

• Are transfected cells behaving differently

than control cells?

Only then should one consider important

choices such as which model, which condi-

tions, which intervention, or which readout

to use?

Controls & replicates

Imagine you want to use proteomics to

study the effect of different doses of a cyto-

kine on the phosphorylation of cellular

downstream targets over time. Further

assume that the cells used are inexpensive

and easy to culture, but the proteomic analy-

sis is expensive and time-consuming. In this

scenario, there is a tradeoff between the

number of conditions and the temporal
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resolution you can achieve. Importantly, the

expected effect size should guide the design

of the experiment: The higher the expected

effect, the lower the number of biological

replicates that are needed—in this example,

to reliably detect protein phosphorylation. If

the cytokine is known to affect its target

proteins fairly quickly, then only a few time

points and few replicates per time point are

needed. If, on the other hand, the expected

differences between the conditions are more

subtle, then more replicates per condition

might be required. In cases where a high

temporal resolution is achievable, this can

serve as a legitimate internal control: A

higher number of time points can make up

for fewer replicates, since the measure-

ments are related due to their temporal prox-

imity.

Experimental units and control categories

The choice of experimental units is a subtle

point. Very often, experimental units will

simply be the biological units used, such as

mice, yeast strains or cultured cells.

However, experimental units can also be

time periods, for example, if animals receive

a specific treatment for defined periods of

time—not the animal but rather the treat-

ment time would be the experimental unit

here.

Another important aspect when deciding

on experimental units is the choice of appro-

priate controls. The two major categories are

positive and negative controls: Positive

controls show that an experimental system

works in principle, while negative controls

represent a baseline (e.g. wild type)

condition.

For an example, let us assume we

want to knock down, using short-interfer-

ing (si) RNAs, the expression of certain

genes to study their influence on intracel-

lular protein transport. Here, a negative

control could be sequence-scrambled

siRNA applied to the cells, while a posi-

tive control for the working of the assay

system could be a siRNA against a gene

with an already known role in intracellu-

lar transport. It is furthermore advisable

to establish an “experimentalist control”

by “blinding” the experimenter to ensure

that s/he does not know which condition

the readout belongs to.

For a thorough discussion of various dif-

ferent types of controls, see Glass (2014)

(Section 3 therein).

Blocks/batches

We aim to perform experiments within a

homogeneous group of experimental units.

These homogeneous groups, referred to as

blocks, help to reduce the variability

between the units and increase the meaning

of differences between conditions (as well

as the power of statistics to detect them).

For example, it is beneficial to take

measurements for many (ideally all) experi-

mental conditions at the same time. If the

measurements are done over a more

extended period of time, then day-to-day

variability between the measurements needs

to be estimated and eliminated. If all control

conditions are measured on one day and all

treatment conditions on another day, then it

is not possible to disentangle the day effect

from the treatment effect and, in the worst

case, the data become inconclusive. As a

general rule, at least some “common condi-

tions” are essential to assess potential block

effects.

As an example, assume there are six

treatment conditions you want to apply to

mice (the experimental units), but you can

fit only five mice per cage (i.e. block). In this

case, not all treatments can be applied

simultaneously in each cage/block. You can,

however, apply four identical treatments to

each of the cages and only alternate the fifth

condition each time (see Fig 1). Now, the

“cage effect” can be estimated by computing

the mean of the differences between the four

treatments that are identical, as given by the

formula in Fig 1. A priori the conditions E

and F are not directly comparable since they

were measured on mice from two different

cages. However, the replicated treatments

allow a computation of a “cage effect”

that corresponds to the average difference

between the identical conditions measured

in the two cages. Then, the difference

between E and F can be computed as

E � F � “cage effect”.

Undiscovered block effects that strongly

influence the result of the experiments are

commonly called batch effects and they may

cloud scientific conclusions. The severe

influence of batch effects has been revealed

in high-throughput experiments (Leek et al,

2010); Importantly, batch effects also exist

in small-scale experiments, but are harder to

detect, and while they may affect the

scientific conclusions, they often remain

hidden.

In practice, drafting a plan detailing

which measurements to perform is very

helpful in order to maximize the number of

measurements within one batch, or to try to

balance the conditions of interest within the

batch. For data tables, it is a good idea to

add as much useful metadata (e.g. date,

time, and experimenter) as possible. As an

example, see Table 1.

Randomization

Even after careful identification of blocks,

other factors may still influence experimen-

tal outcome, such as mouse age and sex dif-

ferences, and different genetic backgrounds.

In order to balance out these factors,

randomization techniques are used.

Randomization reduces confounding effects
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Figure 1. Example of a simple batch effect correction.
Illustration of batches and how to correct for them. All but two treatments have been applied to mice in two
different cages (= batches). The batch/cage effect can now be computed based on the treatments that are shared
between the cages.
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by equalizing variables that influence exper-

imental units and that have not been

accounted for in the experimental design.

This requires randomly allocating the experi-

mental units to the experimental conditions.

Thus, ideally, the allocation of units to

conditions should not be predictable.

For example, if an experiment compares

the effect of a genetic modification on

tomato growth, many potentially complex

factors apart from the genetic modification

itself could influence growth: For example,

the growth chamber could be slightly

warmer on one end than the other, the qual-

ity of the compost variable, or different

irrigation techniques used. In this case, it

will be necessary to randomize the positioning

of the plants.

Replication

Replication of measurements is very impor-

tant. Without replication, it is impossible to

judge whether there is an actual difference

between conditions, or whether an observed

difference is merely due to chance.

For example, if you would like to

compare the height of two plant varieties by

only taking one plant height measurement

and observing a difference of 10 cm, it is

impossible to say whether this difference is

meaningful or due to natural variation. On

the other hand, if multiple plants of each

variety are measured, and the height dif-

ferences always turn out somewhere around

10 cm, the observed difference is less likely

due to chance, as illustrated in Fig 2. The

difference is strong relative to the variability

between the measurements.

Technical versus biological replicates

When referring to replicates, it is important

to distinguish between biological and techni-

cal replicates (see Fig 3). Technical repli-

cates refer to experimental samples isolated

from one biological sample, for example

preparing three sequencing libraries from

RNA extracted from the cells of a single

mouse; in contrast, biological replication

would mean extracting RNA from three

different mice for the comparisons of inter-

est. In other words, it is not sufficient to

merely “re-pipet” an experiment from the

same sample, as this does not constitute

biological, but merely technical replication.

In general, technical replicates tend to show

less variability than biological replicates,

thus potentially leading to false-positive

results. Technical replicates can be useful

when a new technique is reported, but, in

general, biological replicates should be

reported. Either way, this has to be clearly

labeled in a paper and technical and biologi-

cal replicates should not be integrated into a

single statistic.

Outlook

After the experimental data have been

obtained, a next step is to look at the data via

exploratory graphics. Appropriate graphics

are also very important for the final presenta-

tion of the work. In the next column, best
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Figure 2. A comparison between two groups.
Comparison of two groups. The difference is strong relative to the variability between the measurements within
each group.

Table 1. An example of a comprehensively annotated data table.

Condition Time Target MS run Technician
Signal
intensity

40 ng/ml HGF + AKTi 10 s pMEK 5567 A 5579

40 ng/ml HGF + AKTi 20 s pMEK 5567 B 3360

80 ng/ml HGF 10 s pAKT 6650 A 8836

TECHNICAL BIOLOGICAL

n=1 n=3

Figure 3. Technical versus biological replicates.
Illustration of the difference between technical and biological replicates.
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practices for the display of both numerical

and categorical data will be introduced and

suitable estimators for the mean and the

variance of the data will be discussed.
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