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Alu element-containing RNAs maintain nucleolar
structure and function
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Abstract

Non-coding RNAs play a key role in organizing the nucleus into
functional subcompartments. By combining fluorescence micro-
scopy and RNA deep-sequencing-based analysis, we found that RNA
polymerase II transcripts originating from intronic Alu elements
(aluRNAs) were enriched in the nucleolus. Antisense-oligo-mediated
depletion of aluRNAs or drug-induced inhibition of RNA polymerase II
activity disrupted nucleolar structure and impaired RNA poly-
merase I-dependent transcription of rRNA genes. In contrast, over-
expression of a prototypic aluRNA sequence increased both
nucleolus size and levels of pre-rRNA, suggesting a functional link
between aluRNA, nucleolus integrity and pre-rRNA synthesis.
Furthermore, we show that aluRNAs interact with nucleolin and
target ectopic genomic loci to the nucleolus. Our study suggests an
aluRNA-based mechanism that links RNA polymerase I and II activi-
ties and modulates nucleolar structure and rRNA production.
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Introduction

Non-coding RNAs (ncRNAs) regulate a diverse set of nuclear

activities and shape nuclear organization as an architectural factor

(Caudron-Herger & Rippe, 2012; Batista & Chang, 2013; Mercer &

Mattick, 2013; Bergmann & Spector, 2014). They are involved in

the formation of nuclear bodies (Mao et al, 2011; Shevtsov &

Dundr, 2011), establish active or repressive chromatin states

(Wong et al, 2007; Deng et al, 2009; Caudron-Herger et al, 2011;

Yang et al, 2011) and regulate gene expression (Yao et al, 2010;

Mercer & Mattick, 2013; Yang et al, 2013; Bergmann & Spector,

2014).

The nucleolus is an exemplary case for the complex network

between structure and function, demonstrating how RNA-dependent

spatial organization affects transcriptional activity (Pederson, 1998;

Carmo-Fonseca et al, 2000; Olson et al, 2000; Boisvert et al, 2007;

McKeown & Shaw, 2009). The nucleolus is highly sensitive to cellu-

lar stress, and environmental cues dynamically regulate its structure

and activity (Rubbi & Milner, 2003; Olson, 2004; Sirri et al, 2008;

Boulon et al, 2010). An important role for RNA in this process can

be inferred from experiments that perturb transcription. Although

RNA polymerase I (Pol I) transcribes nucleolar rRNA genes

(rDNAs), inhibition of RNA polymerase II (Pol II) by a-amanitin,

5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) or roscov-

itine (Chafin et al, 1995; Sirri et al, 2002) leads to disintegration of

nucleoli (Granick, 1975; Scheer et al, 1984; Chafin et al, 1995; Haaf

& Ward, 1996; Sirri et al, 2002; Burger et al, 2010). Inhibition of Pol II

transcription is accompanied by down-regulation of rRNA synthesis,

indicating that yet-to-be-identified Pol II transcripts may regulate

nucleolar organization and Pol I transcriptional activity (David-

Pfeuty et al, 2001).

Transcripts from the intergenic spacer that separates individual

rRNA genes have been linked to epigenetic regulation of Pol I tran-

scription (Mayer et al, 2006), to sequestering proteins in the nucleo-

lus upon cellular stress (Audas et al, 2012) and to remodeling of the

nucleolus (Jacob et al, 2013). A recent study identified Pol II tran-

scripts in antisense orientation to the pre-rRNA coding region, which

recruit the histone methyltransferase SUV4-20H2 to rRNA genes to

induce histone H4 lysine 20 trimethylation and chromatin compac-

tion in growth-arrested cells (Bierhoff et al, 2014). In addition, novel

functional transcripts originating from the intergenic spacer of

rDNA repeats and synthesized by Pol I have been implicated in the

nucleolar stress response to maintain cellular homeostasis (Audas

et al, 2012; Jacob et al, 2012, 2013). Finally, the association of the

NAD+-dependent deacetylase SIRT7 to nascent pre-rRNA stabilizes

the interaction of SIRT7 with Pol I, being a prerequisite for

SIRT7-dependent transcription activation (Chen et al, 2013).

However, a detailed analysis of the role of regulatory nucleolar

transcripts for the structure and activity of the nucleolus is lacking.
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Here, we combined high-resolution fluorescence microscopy and

RNA deep sequencing to address this issue. We found that Pol II

transcripts originating from intronic Alu elements (aluRNAs) play

an important role in the assembly and function of the nucleolus.

Alu repeats are the most abundant repetitive elements of primates

constituting more than 10% of the human genome (Batzer &

Deininger, 2002). Alu transcripts are synthesized by both RNA poly-

merase III (Pol III) and II. “Free Alu RNAs”, that is, RNAs tran-

scribed from Alu elements that are not embedded within genes, as

well as the related 7SL RNA, are produced by Pol III using the inter-

nal promoter of Alu elements. In contrast, “embedded Alu RNAs”

are localized within introns, transcribed by Pol II and spliced out

from pre-mRNA during mRNA maturation (Deininger, 2011). Alu

transcripts have been shown to regulate gene expression post-

transcriptionally, being involved in alternative splicing (Singer et al,

2004), RNA editing (Mattick & Mehler, 2008) and translation effi-

ciency (Capshew et al, 2012; Fitzpatrick & Huang, 2012), but have

not been linked to the functional organization of nuclear subcom-

partments. In the present study, we show that Pol II-dependent

aluRNAs regulate nucleolar structure and rRNA synthesis via inter-

action with nucleolin (NCL), a major structural and multifunctional

nucleolar protein with pivotal functions in ribosome biogenesis

(Ginisty et al, 1999). Our results uncover a novel mechanism that

links Pol I transcription levels with global Pol II activity via nuclear

aluRNA production and suggest an aluRNA-dependent mechanism

that preserves nucleolar structure and function.

Results

Functional nucleolus structure requires Pol II transcription

To address the response of nucleolar structure to the inhibition of

transcription, we treated HeLa cells for 5 h with drugs that specifi-

cally inhibit each of the three polymerases (Fig 1A). Notably, a Pol II-

specific structural phenotype was observed after inhibition of Pol II

transcription by a-amanitin (Weinmann & Roeder, 1974) or DRB

(Fig 1A and Appendix Fig S1A). Nucleoli were disrupted into small

domains, and rDNA was scattered throughout the nucleus. These

observations suggest that active Pol II transcription is needed for the

structural integrity of the nucleolus, although this nuclear compart-

ment has very little apparent Pol II activity (Roeder & Rutter, 1970;

Sirri et al, 2008). Drug-mediated perturbations of nucleolar structure

correlated with a clearly impaired nucleolar function as revealed by

strong reduction in pre-rRNA synthesis (Appendix Fig S1B and C)

(David-Pfeuty et al, 2001). Moreover, NCL, Pol I and the Pol I-specific

transcription factor UBF became dispersed throughout the nucle-

oplasm after a-amanitin treatment (Fig 1A and Appendix Fig S1D

and E). In the following, we refer to this phenotype as nucleolar

dispersion or dispersed nucleoli, which are characterized by the

dissociation of nucleoli into small nucleolar domains and the loss of

co-localization of the nucleolar components. These changes of

nucleolar structure after Pol II inhibition were clearly different from

those induced by treatment of cells with low doses of actinomycin D

(AMD), which blocks Pol I transcription elongation and causes

nucleolar segregation (Fig 1A), that is, condensation of rDNA in

nucleolar caps (Reynolds et al, 1964). Moreover, efficient inhibition

of Pol III transcription by ML-60218 (Wu et al, 2003; Di Ruscio et al,

2013) did not result in nucleolar dispersion (Fig 1A and Appendix

Fig S1F). Likewise, treatment with cycloheximide for 5 h did not

affect nucleolar structure, demonstrating that disruption of nucleoli

after a-amanitin treatment was not due to abrogation of protein

synthesis (Appendix Fig S1G). Thus, the absence of a nucleolar

dispersion phenotype after specific inhibition of Pol I, III or protein

synthesis demonstrates that Pol II transcription is needed to main-

tain the structure of the nucleolus and the efficient production of

pre-rRNA by Pol I.

Nucleolar RNA partially rescues a-amanitin-mediated disruption
of nucleoli

Our results obtained after a-amanitin treatment do not distinguish

whether Pol II transcription per se or Pol II transcripts are required

for maintaining nucleolar structure. If Pol II transcripts stabilize

nucleoli, Pol II transcripts should be present in nucleoli. To test this,

we isolated RNA from purified nucleoli that were devoid of

substantial contaminations by cytoplasmic or nucleoplasmic RNA

(Appendix Fig S2). Small nucleolar RNAs (snoRNA) displayed

strong enrichment in the nucleolar RNA fraction (Richard et al,

2003). In contrast MALAT1, a highly abundant ncRNA that localizes

to nuclear speckles (Hutchinson et al, 2007), was absent as

compared to total RNA and the nucleoplasmic fraction. Consistent

with a small fraction of Cajal bodies being associated with nucleoli

(Raska et al, 1990), Cajal body-specific RNAs (scaRNAs) were

present in the nucleoplasmic and nucleolar fractions.

Next, we tested the capability of the purified nucleolar RNA to

rescue the disrupted nucleolar phenotype observed upon the inhibi-

tion of Pol II transcription. As reported above, a-amanitin treatment

induced dispersion of nucleoli into smaller nucleolar domains. This

process was quantified by a more than two-fold increase in their

number from n = 3.3 � 0.3 to n = 8.1 � 1.0 with an average size of

1.1 � 0.1 lm2 (Fig 1B). Microinjection of RNA from purified nucleoli

but not from total RNA was capable of rescuing nucleolar perturba-

tion caused by a-amanitin treatment. As shown in Fig 1B, larger and

fewer nucleolar domains (n = 4.7 � 0.4 with an average size of

2.3 � 0.3 lm2) were observed after microinjection of nucleolar RNA

into a-amanitin-treated HeLa cells. This indicates that the nucleolar

RNA fraction contains RNA transcripts that counteract the a-amanitin-

mediated segregation of active nucleolus organizer regions.

Alu element-containing Pol II transcripts are enriched in
the nucleolus

To identify the RNA transcripts that stabilize nucleolar structure,

we looked for transcripts that were specifically enriched in the

nucleolar RNA fraction. We performed RNA-seq and a comparative

bioinformatic analysis of data sets obtained from nucleolar and

nucleoplasmic RNA fractions as well as total RNA. Nucleolar RNA

was markedly enriched in reads mapping to “intronic-only”

sequences, that is, sequences not associated with exonic parts of

the corresponding primary transcripts (Appendix Table S1). The

nucleolar “intronic-only” sequences were enriched in Alu repeat

elements as compared to the total RNA or nucleoplasmic RNA frac-

tions. We here refer to these Alu repeat-containing transcripts that

are overrepresented in nucleolar RNA as aluRNAs. Generally,

intron-encoded aluRNAs clustered into transcripts covering either
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the whole Alu sequence or only a truncated left (aluRNAL) or right

(aluRNAR) arm in either forward or reverse orientation within the

primary transcript (Fig 2A). In the total RNA fraction, most

aluRNAs were found in long primary transcripts (> 2,000 nt)

(Appendix Table S2). In the nucleolar RNA fraction, however,

isolated aluRNA sequences lacking flanking sequences were

markedly enriched and, on an average, about 100-fold more abun-

dant than in total RNA or nucleoplasmic RNA (Fig 2B and C,

Appendix Tables S2 and S3). The most abundant nucleolar

aluRNAs were about 250 nt in length and corresponded to a

forward aluRNAR sequence that lacked the box A and box B

element (Fig 2A and B, Appendix Figs S3 and S4). The level of most

nucleolar aluRNAs was decreased after a-amanitin treatment,

whereas the inhibition of Pol III transcription did not affect the

abundance of nucleolar aluRNAs (Fig 2D), confirming that Pol II

synthesizes nucleolar aluRNAs.

To corroborate that aluRNA sequences were enriched in nucle-

oli, we conducted RNA FISH experiments with probes that hybri-

dize to nucleolar aluRNA in forward or reverse orientation. The

results confirmed that both types of aluRNAs accumulated in the

untreated α-amanitin AMD ML-60218
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Figure 1. Pol II transcription is essential for nucleolar structure and function.

A Confocal laser scanning fluorescence microscopy (CLSM) images showing DNA staining (blue in the merged images), rDNA FISH (green) and NCL immunofluorescence
(red) in untreated HeLa cells or in cells treated with a-amanitin (50 lg/ml), AMD (50 ng/ml) or the Pol III inhibitor ML-60218 (200 lM) for 5 h.

B CLSM images of propidium iodide-stained RNA after microinjection of buffer or nucleolar RNA into a-amanitin-treated HeLa cells. Nucleoli were visualized by
immunofluorescence of nucleophosmin (NPM). The graph represents the average number of nucleolar domains (� 95% CI) based on the analysis of 90, 87, 80 and 86
cells, respectively. **P-value < 0.01, t-test.

Data information: Scale bars, 10 lm.
See also Appendix Figs S1 and S2.
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Figure 2. Nucleolar RNA is enriched in specific intron-encoded aluRNAs.

A Left: Scheme illustrating the origin of forward or reverse intronic aluRNA and processing into left arm aluRNAs (aluRNAL) and right arm aluRNAs (aluRNAR). Right:
Heatmaps of read density of forward and reverse intronic Alu RNA species present in the total RNA sample.

B Top: Heatmaps of read density of intronic Alu repeats in the nucleolar RNA fraction. For each aluRNA variant, the percentage over all transcribed intronic Alu repeats
is indicated. Bottom: Ratio of nucleolar versus total RNA from higher (red) to lower (green) read density.

C View of nucleolus-enriched Alu elements exemplified at two genomic loci. Mapping of normalized reads from total (red), nucleoplasmic (orange) and nucleolar (blue)
RNA to intron #5 of DCP1A and intron #22 of UBE4B.

D Heatmaps of total RNA read density ratios between untreated (control) and a-amanitin- or ML-60218-treated HeLa cells.

See also Appendix Figs S3 and S4, Appendix Tables S2 and S3.
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nucleoli (Fig 3A and Appendix Fig S5A–C). Furthermore, a North-

ern blot analysis of total RNA revealed the presence of aluRNA-

containing long primary transcripts (< 2,000 nt) in addition to

transcripts of about 300 nt and 90 nt (Appendix Fig S5D). This

finding is consistent with the aluRNA length distribution of nucleolar

aluRNA as inferred from the RNA-seq data (Appendix Fig S4). Thus,

we conclude that Pol II-dependent aluRNAs are largely over-

represented in nucleoli.

Changes in aluRNA levels affect nucleolar structure and
rRNA synthesis

Next, we tested whether ectopic aluRNA was capable of rescuing

a-amanitin-induced perturbation of nucleolar organization. Indeed,

microinjection of in vitro transcribed aluRNAs triggered reassembly

of nucleolar bodies after a-amanitin inhibition of Pol II (Fig 3B).

The forward aluRNA variant was more efficient in rescuing nucleo-

lar dispersion than the reverse aluRNA or an L1-repeat RNA

transcript (Fig 3B and Appendix Table S4).

To further investigate the functional relevance of aluRNAs for

nucleolar structure and function, we depleted aluRNA with different

specific antisense oligonucleotides (ASOs) (Ideue et al, 2009) corre-

sponding to 20 nucleotides of the nucleolar aluRNA consensus

sequence (Appendix Fig S3 and Appendix Table S4). The ASOs,

which were transfected into the cell via transfection reagent,

hybridized to the target RNAs that were subsequently cleaved by

endogenous RNase H. Knockdown of aluRNA, as measured from

RNA-seq analysis (Appendix Fig S6A and B), preserved the level of

housekeeping genes (Appendix Fig S6C) (Eisenberg & Levanon,

2013) but produced a phenotype resembling that observed after

a-amanitin treatment: dispersion of nucleoli and the nucleolar

marker protein NPM (Fig 4A and Appendix Fig S1D and E), reduc-

tion in aluRNA FISH signal (Fig 4B and Appendix Fig S6D) and

repression of pre-rRNA synthesis (Fig 4C and D and Appendix

Fig S1B and C). In addition, a-amanitin treatment induced a particu-

lar strong reduction in intronic Alu repeat-containing transcripts

(Appendix Fig S6E), which were included in the sequences targeted

by the aluRNA ASOs. Furthermore, ASO-mediated knockdown of

aluRNA triggered the dispersion of nucleolar marker proteins such

as NCL, NPM and Pol I (Fig 4A and B and Appendix Fig S7A). This

phenotype was not observed in cells treated with ASOs targeting the

highly abundant L1-repeat or 7SL RNA families (Appendix Table S4

and Appendix Fig S7B and C), for which cells showed a phenotype

similar to the control ASO-treated cells. Notably, dispersion of

nucleoli upon depletion of aluRNA was not restricted to HeLa cells

but also observed in human keratinocytes or fibroblasts (Appendix

Fig S7B and C). We conclude from these results that a reduction of

aluRNA levels induced strong perturbations in nucleolar structure

and rRNA synthesis.

Time course analysis by immunofluorescence microscopy

revealed that dispersion of nucleoli after aluRNA knockdown

occurred in two steps. First, the size of nucleoli increased within

1–3 h after a-amanitin treatment or 6–10 h after knockdown of

aluRNA (Appendix Fig S8A and B). When nucleoli reached a critical

size, they dispersed into smaller particles. Swelling of nucleoli and

formation of numerous small ectopic NPM-containing particles were

also observed in cells treated with LNA antisense “blocker” probes

that were designed to hybridize to aluRNAs without inducing their

degradation (Appendix Fig S8C). A control LNA blocker directed

against L1-repeat transcripts did not disturb nucleolar structures

(Appendix Fig S8D).
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Figure 3. aluRNA is localized to nucleoli and partially rescues
a-amanitin-induced nucleolar dispersion.

A CLSM images showing nucleolar co-localization of NCL
(immunofluorescence) with aluRNA (RNA FISH) but not with L1-repeat RNA.
Cells were pre-treated in situ with RNase A or an RNase inhibitor. Nuclei
were counterstained with DAPI. The signal intensity of nucleolar aluRNA
was two-fold higher compared to nucleoplasmic signal (n = 92,
P-value < 0.05, t-test).

B Graphs representing the average number of nucleolar bodies after
microinjection of in vitro transcribed RNA into HeLa cells that were pre-
treated with a-amanitin (50 lg/ml) for 5 h or left untreated (control)
(� 95% CI. **P-value < 0.01, n = 90, 87, 86, 83 or 86 cells, respectively).
Representative CLSM images of propidium iodide-stained RNA are shown
on the right side.

Data information: Scale bars, 10 lm.
See also Appendix Fig S5, Appendix Table S4.
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A CLSM images showing NPM (immunofluorescence, red) in HeLa cells transfected with control ASO, aluRNA ASO, or treated with transfection reagent only (mock).
Nuclei were counterstained with DAPI (blue). A fraction of 80 � 8% of the cells treated with aluRNA ASO (n = 143) showed irregular nucleoli or dispersed nucleoli
(53% of the cells). Only 26 � 9% of the cells treated with control ASO presented abnormal nucleoli, with none of them showing a dispersion of nucleolar domains
(n = 123), P-value < 0.01, t-test.

B CLSM images showing NCL localization (immunofluorescence), aluRNA (RNA FISH) and DNA (DAPI). Transfection of HeLa cells was done as in (A).
C HeLa cells were transfected as in (A), and nascent RNAs were visualized by pulse labeling with ethynyl uridine (EU) for 30 min. Nuclei were counterstained with DAPI

(DNA).
D Levels of 47S pre-rRNA in mock-, control ASO- and aluRNA ASO-treated HeLa cells. Top: Northern blot. Center: Agarose gel electrophoretic analysis of RNA. Bottom

panel: Quantification from RT–qPCR levels of 47S pre-rRNA normalized to 18S rRNA. Error bars represent the standard deviation (n = 6). **P-value < 0.01, t-test.

Data information: Scale bars, 10 lm. See also Appendix Figs S1C, S6, S7 and S8, Appendix Table S4.

Source data are available online for this figure.
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To examine whether overexpression of aluRNA would increase the

size of nucleoli, we transfected cells with a plasmid that simultane-

ously expresses GFP from a Pol II CMV promoter and RNAs from a

Pol III U6 promoter. As shown in Fig 5A, the size of nucleoli increased

by 30% upon overexpression of forward aluRNA, as quantified by 3D

measurements of imaging stacks. In contrast, overexpression of an

L1-repeat transcript had no significant effect. This finding was

confirmed by tracing single living cells over time using an RFP-tagged

NCL as nucleolar marker. Clearly, overexpression of the forward

aluRNA sequence resulted in an enlargement of nucleoli within a

single cell over a time period of 10 h (Fig 5B). In addition, RNA pulse

labeling of nascent RNA under the same conditions revealed an

increase in nucleolar activity by 27% in the presence of ectopic

aluRNA, but not of L1-repeat RNA, based on measuring the nucleolar

RNA fluorescence signal intensity (Fig 5C and D). Thus, both the

loss-of-function and the gain-of-function experiments showed a

consistent correlation between aluRNA levels, nucleoli size and rRNA

production.

B1-containing RNAs maintain nucleolar structure in mouse cells

We observed that the structure of nucleoli was also disrupted in

mouse NIH 3T3 cells upon Pol II inhibition in a manner very similar

to what we found in human cells (Fig 6A) (Caudron-Herger et al,
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Figure 5. aluRNA overexpression induces an increase in nucleolar volume and activity.

A HeLa cells were transfected with an empty vector or plasmids expressing aluRNA or L1-repeat RNA and GFP from a separate promoter. Transfected cells were
identified by GFP fluorescence, and nucleoli volumes were evaluated based on the immunofluorescence signal of the nucleolar marker NPM. The graphs show that
the volume of nucleoli is increased by 30% in the presence of ectopic aluRNA (� 95% CI, n = 20). **P-value < 0.01, t-test. Scale bar, 10 lm.

B CLSM live-cell imaging of RFP-NCL in cells transfected with a plasmid expressing aluRNA and imaged for 10 h. The arrows indicate nucleolar domains displaying
time-dependent increase in the nucleolar size or fusion of two domains into one. Scale bars, 10 lm.

C HeLa cells were transfected as in (A) and incubated for 24 h. Nascent RNA was pulse-labeled for 30 min, and nucleoli were visualized by immunofluorescence of
NPM. Scale bars, 10 lm.

D Graphs represent the intensity of nucleolar fluorescence signals as percentage of the intensity of nuclear signals and reveal a 27% increase in the presence of ectopic
aluRNA (� 95% CI, n = 30). **P-value < 0.01, *P-value = 0.01, t-test.
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2011). Accordingly, we investigated whether this phenotype could

be assigned to a specific type of RNA transcripts in this organism.

Alu elements are primate specific (Liu et al, 2009), but the closely

related B1 repeats are present in the mouse genome (Nishihara

et al, 2002). We hypothesized that transcripts from B1 elements

could represent the functional equivalent of human aluRNAs. This

assumption was validated by our observation that treatment with

ASOs against B1-containing RNA transcripts (Appendix Table S4)

induced a significant 30% reduction of B1-containing RNA levels

(P-value = 0.04, n = 3) and nucleolar dispersion in NIH 3T3 cells

(Fig 6B), similar to that revealed in human cell lines (Fig 4A and

Appendix Fig S7B and C). As expected, the human aluRNA ASO had

no effect on nucleolar structure in the mouse fibroblast cell line

demonstrating specificity. Thus, B1-containing RNA transcripts are

important to maintain nucleolar structure in mouse cells.

aluRNA interacts with NCL and targets genomic loci to
the nucleolus

To further investigate the link between aluRNA and nucleolar

organization, we conducted a set of experiments with forward

aluRNA fused to MS2 stem-loop hairpins (MS2-aluRNA). First, we

observed that ectopically expressed MS2-aluRNA was enriched in

nucleoli (Fig 7A) as compared to a control RNA sequence. This

supports our previous conclusion of aluRNA being enriched in the

nucleolus that was based on the analysis of endogenous aluRNAs

by deep sequencing (Fig 2C) and by RNA FISH (Fig 3A). Next, we

made use of a U2OS cell line (F4IIB8) containing a stably integrated

lacO array at a single genomic locus (Jegou et al, 2009). We used a

lac repressor (LacI) protein construct fused to the MS2 stem-loops

binding protein (Shevtsov & Dundr, 2011) to recruit MS2-RNAs to

the lacO array (Fig 7B). Notably, we observed that MS2-aluRNAR

induced recruitment of NCL to the lacO array (Fig 7B). Further-

more, tethering of both MS2-aluRNA and MS2-aluRNAR variants to

these sites significantly increased the number of lacO arrays localiz-

ing in nucleoli (Fig 7C). These observations suggest that aluRNA

interacts with NCL and can target genomic loci to nucleoli.

Nucleolin and nucleophosmin interact with aluRNA and target
genomic loci to the nucleolus

To elucidate the mechanism by which aluRNA targets genomic

loci to the nucleolus, we investigated the interaction of aluRNAs

with specific nucleolar proteins. We analyzed the association of

aluRNA with NCL and NPM, abundant nucleolar proteins that

interact with RNA and are important for the structure of nucleoli

(Ugrinova et al, 2007; Amin et al, 2008) using a U2OS cell line

(F6B2) that contains three lacO array integrations at different chro-

mosomes (Jegou et al, 2009). To visualize recruitment of GFP-

tagged proteins to the lacO arrays, a previously described fusion

construct of LacI with a GFP-binding protein was used (Chung

et al, 2011) (Fig 8A). Analysis of the localization of aluRNA by

RNA FISH revealed that aluRNA was enriched at lacO arrays that

were associated with GFP-tagged NCL or NPM (Fig 8A and

Appendix Fig S9A). Interestingly, GFP-tagged fibrillarin, involved

in the site-specific 20-O-methylation of ribose (Reichow et al,

2007), was also recruiting aluRNA at the lacO arrays (Appendix

Fig S9A). In contrast, only background levels of aluRNA were

found at lacO arrays associated with GFP or the RNA-binding

domain of TIP5, a subunit of the nucleolar remodeling complex

NoRC (Fig 8A) (Mayer et al, 2006). Moreover, recruitment of NCL

to lacO arrays was accompanied by enrichment of UBF and NPM

(Appendix Fig S9B), confirming previously reported interactions

between NCL, UBF and NPM (Li et al, 1996; Hisaoka et al, 2010).

Next, we evaluated the localization of the lacO arrays upon teth-

ering of tagged NCL, NPM or fibrillarin. We found that NCL or NPM

targeted 60–70% of the megabase-long lacO arrays to nucleoli

(Fig 8B and Appendix Fig S9C). In contrast, GFP or GFP-tagged

fibrillarin failed to promote the translocation of the lacO arrays to

nucleoli (Fig 8B and Appendix Fig S9C). Moreover, deletion of the

RNA-binding domains and the C-terminal GAR domain of nucleolin

(NCL-ΔRNA) abolished its nucleolar enrichment, interaction with

NPM and, importantly, nucleolar targeting of the lacO arrays (Fig 8B

and Appendix Fig S9D).
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Figure 6. Nucleoli disruption in mouse cells by depletion of B1-
containing RNAs.

A CLSM images of UBF immunofluorescence in mouse NIH 3T3 cells treated for 5 h
with a-amanitin to inhibit Pol II transcription show the dispersion of nucleoli, as
previously also imaged via RNA staining (Caudron-Herger et al, 2011).

B CLSM images showing the localization of NPM (immunofluorescence, red)
in mouse NIH 3T3 cells treated with ASO as indicated and counterstained
with DAPI (blue).

Data information: Scale bars, 10 lm.
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The interaction of NCL with aluRNA variants was further con-

firmed by pull-down assays using nuclear extracts and biotinylated

aluRNA transcripts immobilized to streptavidin beads (Appendix

Fig S9E). Even when raising the salt concentration up to 450 mM, a

stable NCL–aluRNA interaction was found in the pull-down

(Appendix Fig S9F). However, under the same experimental condi-

tions and even at lower salt concentrations, no interaction between

NPM and aluRNA was observed (Appendix Fig S9G).

In support of our conclusion that aluRNA interacts with NCL

and may indirectly involve NPM to maintain the structure of nucle-

oli, simultaneous siRNA-mediated knockdown of NCL and NPM

yielded a phenotype very similar to that observed after a-amanitin

treatment or aluRNA knockdown. Notably, dispersion of nucleoli

and redistribution of rDNA throughout the nucleoplasm were more

pronounced in cells depleted of both, NPM and NCL, compared to

cells depleted of one of the two proteins only (Fig 8C and Appendix

Fig S9H and I). Together, these results demonstrate that tethering of

NCL, NPM and aluRNA to chromatin is sufficient to target large

genomic regions to the nucleolus and strongly suggest that the

interaction of NCL with aluRNA, and co-recruitment of NPM, is

important to build up a functional nucleolus.

Discussion

In previous studies, it has been shown that number, size and

morphology of nucleoli are closely related to rRNA production

and the activity of chromatin modifiers (Laferte et al, 2006;

Boisvert et al, 2007; Hernandez-Verdun et al, 2010; Pontvianne

et al, 2013). Through its dynamic structural properties, the nucle-

olus can act as a cellular stress sensor (Rubbi & Milner, 2003;

Olson, 2004; Sirri et al, 2008; Boulon et al, 2010). Here, we were

able to link a fraction of intronic Alu element-containing Pol II

transcripts termed aluRNA with an essential role for maintaining

nucleolar structure and function. These RNAs are part of the

large fraction of about 50% of the total pool of genomic Alu

repeats that reside in introns (Deininger, 2011). Loss of aluRNAs

due to Pol II inhibition or ASO knockdown led to dispersion of

nucleoli into smaller domains and reduction in rDNA transcrip-

tion (Figs 1A and 4 and Appendix Fig S1B and C). In contrast,

microinjection of in vitro transcribed aluRNA promoted nucleolar

(re)assembly (Fig 3B). These activities were most pronounced for

the forward aluRNA-type sequence, which was highly enriched in
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Figure 7. Ectopically expressed aluRNA accumulates in the nucleolus
together with associated genomic loci.

A CLSM images of MS2-tagged aluRNA or MS2-tagged control RNA (a
fragment from the transcript of the CDV3 gene). MS2-loop-containing RNAs
were visualized by RNA FISH using MS2-loop-specific FISH probes (green);
nucleoli were visualized by immunofluorescence of NCL (red).

B The top panel depicts the experimental approach used to tether MS2-
loop-containing RNAs to lacO arrays via a GFP-tagged LacI-MS2 coat
fusion protein. The lacO arrays were stably integrated in the genome of
U2OS cells. In the bottom panel, CLSM images of U2OS cells are shown
that were transfected with MS2-aluRNAR. They reveal the localization of
LacI-GFP-MS2 and NCL (immunofluorescence, red). The arrow indicates
the lacO array, which is associated with a nucleolar domain.

C MS2-loop-containing forward aluRNA or aluRNAL or aluRNAR were recruited
to the single stably integrated lacO array in the U2OS F4IIB8 cell line. The
propensity for nucleolar localization was evaluated as the average number
of lacO arrays with tethered RNA detected in nucleoli (� 95% CI) and is
plotted in the bar chart. Calculations are based on analysis of more than
100 cells. **P-value < 0.01, t-test, from the analysis of two independent
biological replicates. As controls, transcripts of the MS2 loops only, the
MS2-CDV3, MS2-RepA, MS2-STARD7 and MS2-CORO1C RNAs were used. The
inset shows a CLSM image with MS2-GFP-LacI (green) and NPM (red,
immunofluorescence) after recruitment of MS2-aluRNA.

Data information: Scale bars, 10 lm.
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the nucleolus as shown by RNA-seq (Fig 2) and RNA FISH

(Fig 3A). Based on the RNA-seq (Appendix Fig S4) and Northern

blot analysis (Appendix Fig S5D), we conclude that relatively

short Alu element-containing RNAs of 100–300 nt in size are

stably present in the cell. This finding is consistent with a

previous study that identified a class of intron-encoded Pol II

Alu-related transcripts of 100–200 nt in length termed AluACA

RNAs in the nucleus (Jady et al, 2012). We found no evidence

that the expression of aluRNAs was also related to Pol III tran-

scription although Alu elements contain an internal Pol III

promoter in their left arm (Dieci et al, 2007). Consistently, Pol III

inhibition was neither associated with nucleolus dispersion nor

with the reduction in pre-rRNA synthesis (Fig 1A and Appendix

Fig S1B and C). It is noted that the internal Pol III promoter,

which differs from the original sequence found in the 7SL

RNA, is relatively weak and subject to additional silencing
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Figure 8. NCL and NPM interact with aluRNA and target genomic loci to the nucleolus.

A Top: Scheme illustrating the experimental approach used to tether GFP-tagged LacI fusion proteins via a GFP-binding protein (GBP) to lacO arrays. The lacO arrays are
stably integrated in the genome of U2OS cells. Bottom: CLSM images showing the localization of GBP-LacI-RFP, GFP-NCL, GFP-NPM or GFP-TIP5-RBD fusion proteins
relative to aluRNA that was visualized by RNA FISH. The insets contain an enlarged image of one of the lacO loci.

B CLSM images showing GBP-LacI-RFP and GFP-NCL (green) recruited to lacO arrays as indicated by arrows. Immunofluorescence of endogenous NPM (red) marks
nucleoli. The inset shows decondensation of lacO arrays in the nucleolus. The graph at the bottom depicts the average number of lacO loci tethered to nucleoli (� 95%
CI) by the indicated proteins (n = 72). NCL-ΔRNA is an NCL deletion mutant lacking the RBD and GAR domains required for RNA binding. **P-value < 0.01, t-test.

C CLSM images of UBF (immunofluorescence, green) or rDNA (DNA FISH, green) and DNA (DAPI, blue) after knockdown of NCL and NPM by siRNA in HeLa cells.

Data information: Scale bars, 10 lm.
See also Appendix Fig S9.
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mechanisms (Li & Schmid, 2001; Hasler & Strub, 2006).

Accordingly, Alu repeat expression in general is dependent on

promoters located in their flanking regions (Roy et al, 2000). We

conclude that maintenance of nucleolar structure is related to

Pol II activity by spliced out aluRNAs from Pol II transcripts. In

turn, this affects rRNA synthesis since Pol I transcriptional

activity is intrinsically linked to nucleolar structure and suggests

that the amount of Pol II-produced aluRNA modulates Pol I

transcription levels.

In agreement with a role of aluRNA in promoting nucleolar

domain assembly, we observed that overexpression of aluRNA

induced an increase in nucleolus size as well as an enhanced

nucleolar transcriptional activity (Fig 5). Accumulation of Alu

repeat-containing RNA transcripts beyond a critical level can also

become cytotoxic for the cell as reported previously for retinal

pigmented epithelium (Kaneko et al, 2011). This phenotype was

linked to a deficit in DICER, a component of the RNA-induced

silencing complex (Kaneko et al, 2011). Interestingly, a significant

increase in nucleolar size was observed in cells depleted of DICER

(Liang & Crooke, 2011). These previous studies suggest that Alu

repeat-containing RNA levels are also subject to post-transcriptional

regulation. Furthermore, they corroborate our own observation

that overexpression of aluRNA induces the formation of larger

nucleoli.

Our analysis suggests that aluRNA exerts its nucleolar mainte-

nance activity via interaction with nucleolar proteins. Using the

lacO array recruiting system (Figs 7 and 8), we detected binding

of aluRNA to NCL and NPM in living cells. Our additional pull-

down experiments confirmed an efficient interaction of NCL with

aluRNA but also with other RNAs (Appendix Fig S9E) in addition

to the previously reported NCL–rRNA interaction (Tajrishi et al,

2011). It is noted that the concentration of a given NCL–RNA

complex will be proportional to the product of the association

constant and respective RNA binding site concentration. Given

that aluRNAs are highly abundant, this would favor their NCL

binding over that of other RNA species to some extent. Neverthe-

less, it appears likely that the ~100-fold enrichment of aluRNA in

the nucleus cannot be explained solely by binding to soluble NCL

in the nucleoplasm but involves additional interactions with other

nucleolar proteins, RNAs or DNA components within the nucleo-

lus. Furthermore, our data suggest that a possibly indirect NPM–

aluRNA recruitment occurs in the cell as detected in the lacO

experiments. It might contribute to the aluRNA enrichment

directly in the nucleolus, where NPM can additionally interact

with UBF and rRNA (Hisaoka et al, 2010).

In support of aluRNA promoting nucleolar assembly, recruit-

ment of aluRNA and/or NCL and NPM to lacO arrays led to a

significantly increased nucleolar localization of these arrays. This

raises the question how intron-encoded nucleolar aluRNA exerts

such an activity. A possible mechanism is related to the

physico-chemical properties of RNA–protein interactions (Weber

& Brangwynne, 2012). According to the liquid-drop model of the

nucleolus proposed previously, unmixing of nucleolar compo-

nents from the surrounding nucleoplasm as observed here for

NCL/NPM and aluRNA is due to their interaction properties

(Brangwynne et al, 2011). Notably, both NCL and NPM contain

disordered and low-complexity sequences (Emmott & Hiscox,

2009; Hisaoka et al, 2014). These sequences form protein

domains that are able to drive RNA-dependent intracellular

phase-separation processes in the cell through conformational

changes upon RNA binding (Han et al, 2012; Hyman & Simons,

2012; Weber & Brangwynne, 2012). Such a behavior has been

reported for NPM (Hisaoka et al, 2010, 2014). It is consistent

with our findings of an emulsion-like dispersion of the nucleolus

observed after Pol II inhibition or aluRNA depletion (Appendix

Fig S8A and B) as well as a RNA-dependent nucleolar targeting

aluRNA NPM UBFNCLrRNA

dispersed
(aluRNA depletion, α-amanitin)

normal
nucleolus

enlarged
(aluRNA overexpression)

Figure 9. Model of aluRNA-driven maintenance of the nucleolus.
The knockdown of aluRNA or treatment with a-amanitin induces the segregation of nucleolar compartments into smaller domains (dispersion process) as
observed (Figs 1A and 4A, and Appendix Fig S2). With regard to rRNA production, those “droplets,” which may vary in composition, are less efficient but some rRNAs
are still produced albeit at low levels (Appendix Fig S1B and C and Fig 4C and D). Overexpression of aluRNA promotes assembly into larger nucleolar
subcompartments, with enhanced Pol I activity (see Fig 5). This model is in excellent agreement with the previously reported liquid-like model of the
nucleolus (Brangwynne et al, 2011; Weber & Brangwynne, 2012) and suggests a RNA binding-driven liquid-like transition between dispersed nucleolar domains
and intact and fully functional nucleoli.
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activity of NCL (Fig 8B). In such a scenario, aluRNA would

serve as “glue” or scaffold to orchestrate nucleolus formation

via promoting the self-organization of NCL/NPM-containing

“droplets” into domains that efficiently associate with rDNA and

support Pol I transcriptional activity within the nucleolus (Fig 9).

This could serve to increase the local concentration of reactants

and the efficiency of rRNA synthesis (Boisvert et al, 2007; Weber

& Brangwynne, 2012).

NCL, NPM and fibrillarin are constituents of the prenucleolar

bodies that associate with the nucleolar organizer regions at early

G1 phase (Dousset et al, 2000). Their enrichment at rDNA loci

could originate from a direct interaction of NCL with rDNA

(Olson et al, 1983). At the same time, UBF has been identified as

a key player in nucleating the assembly of nucleoli (Grob et al,

2014). It suggests that the aluRNA-directed fusion into larger

domains could occur via the interaction of NCL and/or NPM with

UBF bound to nucleolar organizer regions. Consistent with this

view and in accord with the observation that NCL co-localizes

with UBF and interacts with NPM (Li et al, 1996), we show that

recruitment of NCL to lacO arrays was accompanied by the

enrichment of both UBF and NPM at these arrays (Appendix Fig

S8B). Thus, the assembly of the nucleolus requires multiple coor-

dinated macromolecular interactions including: (i) DNA–protein

interactions such as binding of UBF to rDNA and possibly direct

interactions of NCL with rDNA (Olson et al, 1983; Cong et al,

2012); (ii) protein–protein interactions as, for example, interaction

of NCL with UBF and NPM, or NPM with UBF (Hisaoka et al,

2010); and (iii) RNA–protein interactions that involve the associa-

tion of aluRNA with NCL and other nucleolar components as

suggested here.

The nucleolus is a nuclear subcompartment that is found in

almost all eukaryotic cells (Lamaye et al, 2011), while Alu elements

are primate specific (Liu et al, 2009). This raises the question

whether the mechanism revealed here in studying human cells

can also operate in other eukaryotic organisms. In favor of this

possibility, we found that nucleoli in mouse fibroblast cells

showed a similar disruption of their structure upon Pol II inhibi-

tion (Fig 6A) and observed that ASO targeting of Alu-related B1

repeat-containing RNAs induced nucleolar disassembly (Fig 6B).

This strongly suggests that transcripts from B1 elements could

represent the functional equivalent of human aluRNAs. It is

noted that Alu and B1 repeats have a common ancestor in evolu-

tion, namely the 7SL RNA (Nishihara et al, 2002). This RNA is a

crucial component of the signal recognition particle and is

present in all eukaryotic cells (Nagai et al, 2003). One could

speculate that RNAs derived from the 7SL RNA family share a

common function for nucleolus structure throughout eukaryotic

organisms.

Maintaining large numbers of Alu repeats in the human

genome imposes a significant risk to genome stability (Callinan

& Batzer, 2006; Belancio et al, 2010). Furthermore, intronic Alu

elements may also compromise correct mRNA production. As

reported recently, the cell has developed a dedicated mechanism

to prevent misguided splicing that would lead to exonization of

intronic Alu repeats (Zarnack et al, 2013). The important func-

tion of aluRNA to maintain a functional nucleoli structure

revealed in our study could represent a selection pressure to

keep Alu sequences in introns.

Materials and Methods

Cell culture and purification of nucleoli

HeLa and HeLa S3 cells were grown at 37°C/5% CO2 in RPMI

1640 or DMEM containing 1 g/l glucose, respectively, and supple-

mented with 10% FCS, 2 mM L-glutamine and 1% penicillin/

streptomycin. U2OS and NIH 3T3 cells were cultured under the

same conditions in DMEM containing 1 g/l or 4.5 g/l glucose,

respectively. The U2OS cell clones F6B2 (stable insertion of three

lacO arrays) and F4IIB8 (stable insertion of one lacO array) and

transfection of cells with expression plasmids for lacO array

tagging and protein recruitment were conducted as described

previously (Jegou et al, 2009; Chung et al, 2011). The human

keratinocyte and fibroblast cells were kindly provided by Aubry

Miller and Nikolas Gunkel (German Cancer Research Center,

Germany).

Nucleoli were isolated from HeLa S3 cells as described (Busch

et al, 1963; Sullivan et al, 2001), and RNA was purified from

unfractionated cells (total RNA) or nucleoli by TRIzol (Caudron-

Herger et al, 2011). Pre-rRNA and aluRNAs from total RNA were

assayed by Northern blotting using a radiolabeled 50-ETS antisense

riboprobe (from +150 to +1) or a radiolabeled antisense Alu probe

(Appendix Table S4). Alternatively, pre-rRNA levels were quantified

by RT–qPCR as reported before (Hoppe et al, 2009). Quantification

of rRNA amounts depends on synthesis and degradation rates. 47S

has a very short half-life time in the range of minutes (Popov et al,

2013) as compared to 18S and 28S that are stable for days (Defoiche

et al, 2009). Therefore, 47S steady-state measurements can be corre-

lated with the synthesis rate of the precursor (before the cleavage of

the 50-ETS), as done here.

Drug treatments

RNA polymerases were inhibited by culturing cells for 5 h in

medium supplemented with the following inhibitors: actinomycin D

(AMD, 50 ng/ml) for Pol I, a-amanitin (50 lg/ml) or 5,6-dichloro-1-

beta-D-ribofuranosylbenzimidazole (DRB, 50 lg/ml) for Pol II, and

ML-60218 (2-chloro-N-[3-(5-chloro-3-methylbenzo[b]thien-2-yl)-1-

methyl-1H-pyrazol-5-yl]-benzenesulfonamide) for Pol III. Transla-

tion was inhibited by cycloheximide treatment (50 lg/ml) for 5 h.

Microinjection

Microinjection of cells grown in Nunc Lab-Tek chamber slides in

F-15 medium (Thermo Scientific) was performed with a computer-

assisted system (AIS2, CellBiology Trading). A volume of about

50 femtoliters was injected using a needle with a tip diameter of

about 300 nm, 150 hPA pressure and 0.5 s injection time. Ten

microliters of injection mix contained 2 ll propidium iodide (PI,

1 mg/ml, Thermo Fisher Scientific) and 1 lg of RNA in PBS. Follow-

ing injection, cells were cultured under standard conditions for

30 min and processed for confocal microscopy image acquisition.

Immunofluorescence and RNA labeling

Cells grown on coverslips were fixed 24 h after transfection with

4% paraformaldehyde/PBS. For immunostaining, cells were
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permeabilized for 5 min with ice-cold 0.5% (v/v) Triton X-100/PBS.

After three washes, samples were incubated for at least 15 min with

10% goat serum in PBS followed by addition of antibodies specific

to NCL (sc-13057), NPM (sc-56622), UBF (sc-13125), SC35 (BD

Pharmingen, 556363) or Pol I (Percipalle et al, 2006) for 1 h at room

temperature (NCL, Pol I) or overnight at 4°C (NPM, UBF). After

washing, cells were incubated for 25 min with the appropriate

secondary antibodies conjugated to Alexa Fluor 488, 568 or 633

(Thermo Fisher Scientific, Molecular Probes) and for another 5 min

with 40,6-diamidino-2-phenylindoledihydrochloride (DAPI). The

coverslips were mounted with Mowiol. For pulse labeling of RNA,

cells were incubated for 30 min with 1 mM 5-ethynyl uridine (EU)

and fixed with 4% paraformaldehyde/PBS. EU-labeled transcripts

were detected using Alexa Fluor 488 azide (Click-it RNA imaging

Kit, Thermo Fisher Scientific).

DNA and RNA FISH

For DNA FISH, cells grown on coverslips were fixed with 4%

paraformaldehyde/PBS, washed in PBS and permeabilized with

0.5% (v/v) Triton X-100/PBS. After serial washes with ethanol

(70, 80 and 100%) and air-drying, DNA was denatured at 80°C

for 5 min and hybridized overnight at 42°C to a biotin-labeled

human rDNA probe (from nucleotides 18063 to 30486, GenBank

Accession No.: U13369.1) in hybridization buffer (50% forma-

mide, 2× SSC and 10% dextran sulfate). The plasmid pHr4 (Mais

et al, 2005), a kind gift from Brian McStay (NUI Galway, Ireland),

was used to generate about 2,500-bp-long body-labeled fragments

by nick translation. Slides were washed consecutively with

hybridization buffer, 2× SSC, 0.2× SSC containing 0.1% (v/v)

Tween-20 at 55°C, 2× SSC containing 0.05% (v/v) Tween-20 and

finally PBS.

For RNA FISH, cells grown on coverslips were permeabilized in

CSK buffer (100 mM NaCl, 300 mM sucrose, 3 mM MgCl2, 10 mM

PIPES, 0.5% (v/v) Triton X-100) containing 10 mM vanadyl

ribonucleoside complex (VRC) or 50 lg/ml RNase A. Cells were

fixed with 4% paraformaldehyde/PBS, dehydrated by sequential

washes with ethanol (70, 85 and 100%) and air-dried. The RNA

was hybridized overnight in hybridization buffer at 37°C with

2.5 ll of digoxigenin-labeled aluRNA or control RNA probes (each

50 ng/ll). Slides were washed consecutively with hybridization

buffer, 0.2× SSC containing 0.1% (v/v) Tween-20 at 40°C, 2× SSC,

and PBS. Digoxigenin-labeled RNA was detected with anti-

digoxigenin antibody (Roche, clone 1.71.256). The MS2 RNA

stem-loops were visualized using a 50-Atto-565-labeled antisense

probe that targets the MS2 loop sequence (Chaumeil et al, 2002).

Sequences of the FISH probes are listed in Appendix Table S4.

Plasmids and in vitro transcription

GFP-tagged proteins were generated by cloning the corresponding

cDNAs into pEGFP-C1 (Thermo Fisher Scientific). The pEGFP-NCL

and pEGFP-fibrillarin vectors were obtained from Addgene (#28176

and #26673, respectively). pTagRFP-NCL was produced by cloning

the NCL into KpnI and BamHI sites of the pTagRFP plasmid (Evro-

gen). pEGFP-NPM was kindly provided by Mitsuru Okuwaki

(University of Tsukuba, Japan). GFP-TIP5-RBD and GBP-LacI-mRFP

plasmids have been described (Jegou et al, 2009; Zillner et al,

2013). The GFP-NCL-ΔRNA deletion mutant missing the RBD and

GAR domains was generated by cloning of the corresponding cDNA

PCR fragment into the KpnI and BamHI sites of the pEGFP-C1

plasmid. MS2 coat protein fused to GFP-LacI was cloned by intro-

ducing the MS2 protein into the NheI and AgeI sites of pSV2-GFP-

LacI (Jegou et al, 2009). The MS2-aluRNA and the corresponding

control RNA sequences were synthesized as DNA (Integrated DNA

Technologies, Inc) and were cloned into a pcDNA3 plasmid contain-

ing 18 repeats of the MS2 stem-loop as described (Schmidt et al,

2011). The MS2-aluRNA was cloned using the AgeI and NotI restric-

tion sites, and the control sequences were cloned into the NotI site.

The sequences are listed in Appendix Table S4. The aluRNA and

L1-repeat sequences were introduced into the pBS/U6 plasmid

expressing either GFP or TagRFP using two BbsI restriction sites

(Grimm et al, 2006). The plasmid was kindly provided by Dirk

Grimm (University of Heidelberg, Germany).

DNA templates for in vitro transcription of aluRNA and L1-repeat

(Appendix Table S4) were amplified using genomic DNA from HeLa

cells and primers specific to T7 promoter sequences. In vitro

transcription was performed using the RNA polymerase T7 High

Yield RNA Synthesis Kit (NEB) according to the manufacturer’s

instructions.

Confocal fluorescence microscopy and image analysis

Imaging was done with a Leica TCS SP5 confocal laser scanning

microscope (CLSM) equipped with a HCX PL APO lambda blue 63×/

1.4 NA oil immersion objective (Leica Microsystems CMS GmbH,

Mannheim, Germany). A near UV diode, diode-pumped solid-state,

argon and helium–neon lasers were used for DAPI (k = 405 nm),

Alexa 488 or GFP (k = 488 nm), Alexa 568 or Atto-565 or TagRFP

(k = 561 nm) and Alexa 633 (k = 633 nm) excitation. For multi-

color analysis, sequential image acquisition was applied and

emission detection ranges were adjusted to minimize crosstalk

between the different signals. The detection pinhole had a diameter

corresponding to one airy disk.

After microinjection, random pictures of microinjected cells were

taken and analyzed using ImageJ (Schneider et al, 2012). The

images were segmented via thresholding, and the function “Analyze

Particles” was used to automatically count the number and size of

particles in each picture. For nucleoli volume estimation, confocal

z-stacks were acquired, each slice was segmented via thresholding,

and the function “Analyze Particles” was used to automatically

calculate the nucleolar area in each image. Summing and multiply-

ing each area by the z-step provided an estimation of the nucleolar

volume. A similar procedure was repeated to evaluate the nuclear

volume based on the DAPI staining of the DNA. For live-cells image

acquisitions of cells transfected with pBS_U6_aluRNA and RFP-NCL

using X-tremeGENE (Roche Life Science), z-stacks of cells were

acquired every 30 min. The microscope was equipped with an incu-

bation chamber allowing normal growth conditions (5% CO2 and

37°C). To determine the fluorescence intensity of nuclei and nucle-

oli, each slice was segmented via thresholding and the function

“Analyze Particles” was used to automatically calculate the intensi-

ties. To determine the position of the lacO arrays, the fluorescence

signal of GBP-LacI-RFP and a nucleolar marker (labeled with Alexa

633, Thermo Fisher Scientific) were overlaid. P-values were calcu-

lated according to Student’s t-test.
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RNA and protein knockdown

For RNA knockdown, cells were transfected with Lipofectamine

2000 according to the manufacturer’s instruction (Thermo Fisher

Scientific) using 40 nM of antisense oligonucleotides (ASOs), that is

aluRNA ASO or control ASO (see Appendix Table S4 for sequences)

50-labeled with Cy3. Unless otherwise indicated (see Appendix

Fig S8), cells were fixed 14 h after transfection for 10 min in 4%

paraformaldehyde/PBS and processed for immunofluorescence.

Custom LNA blocker probes (Exiqon) were designed to functionally

inactivate target RNAs. The sequences are listed in Appendix

Table S4. For siRNA-mediated knockdown of NCL and NPM,

1.5 × 105 cells were transfected with Lipofectamine 2000 and siRNAs

against NCL (Dharmacon L-003854-00-0005) or NPM (Dharmacon

L-015737-00-0005). ON-TARGETplus Non-targeting Pool (Dharma-

con, D-001810-10-50) was used as control siRNA. Forty-eight hours

after transfection, cells were processed for immunofluorescence

microscopy and rDNA FISH or for Western blot analysis using anti-

bodies against NCL (sc-13057), NPM (sc53175) and histone H3

(ab1791, Abcam).

Protein pull-down with biotinylated RNA transcript

Cell nuclei were isolated from HeLa S3 to prepare a nuclear

extract using nuclear lysis buffer (200 mM NaCl; 20 mM Tris–HCl,

pH 8.0; 0.2% Tween-20; 1 mM EDTA; 1 mM EGTA). Biotinylated

RNA transcripts were in vitro transcribed in the presence of biotin-

16-UTP (Sigma-Aldrich). Five micrograms of labeled RNA were

incubated with 50 ll of streptavidin-coated magnetic beads

(Thermo Fisher Scientific) for 30 min at room temperature in

100 mM NaCl solution. Beads were washed in washing buffer

(5 mM Tris–HCl, pH 7.5; 0.5 mM EDTA; 0.5 M NaCl; 0.05%

Tween-20) and further incubated for 3 h in 70 lg or 35 lg nuclear

extract in a final volume of 100 ll. After 3 steps of washing in

nuclear lysis buffer, the beads were resuspended in 50 ll of

nuclear lysis buffer and bound proteins were eluted by adding

3 ll of RNase A (10 mg/ml; Thermo Fisher Scientific) for 30 min

at 4°C. Beads were retrieved on a magnet, and eluted proteins

were analyzed by Western blotting.

RNA sequencing

Total RNA, nucleoplasmic RNA or nucleolar RNA were isolated

from HeLa cells or purified nucleoli, respectively, using the RNeasy

Mini Kit (Qiagen). High-throughput RNA sequencing was done with

two biological replicates. Ribosomal RNA was removed using the

Ribo-Zero rRNA Removal Kit (Epicentre/Illumina) according to the

manufacturer’s protocol. For the first data set, RNAs were frag-

mented with the RNA fragmentation reagent kit from Ambion

(Thermo Fisher Scientific, AM8740). For Illumina sequencing,

libraries were generated according to the standard protocol for

mRNA (Illumina) comprising first- and second-strand cDNA

synthesis, end repair, addition of a single A base and adapter liga-

tion. PCR products of about 200 bp were excised from a 2% E-Gel

Size Select (Thermo Fisher Scientific). After determining the

concentration and quality on a Qubit fluorometer (Thermo Fisher

Scientific) and Bioanalyzer system (Agilent Technologies), 36-nt-

long sequencing reactions were performed on the Illumina GAIIx

platform (Deep Sequencing Core Facility of the Cell Networks cluster

of excellence, University of Heidelberg, Germany). For the second

data set, strand-specific libraries were prepared using the NEBNext

Ultra Directional RNA Library Prep Kit for Illumina (#E7420L, New

England BioLabs Inc.). Sequencing of 100-base-pair reads was

performed on the Illumina HiSeq 2000 platform (Genomics and

Proteomics Core Facility of the DKFZ, Heidelberg, Germany).

RNA-seq data analysis

RNA-seq reactions were performed with 36-nt and 100-nt read

length and yielded the number of total and mapped reads given

in Appendix Table S5. Reads were quality-controlled and aligned

with Bowtie (Langmead et al, 2009) on the GRCh37/hg19 (2009)

assembly version of the human genome reporting unique hits

and allowing up to two mismatches. Within the 100-nt read

length, we estimated that 90% of the sequences mapping to Alu

elements were unambiguously mapped, given that this read

length allows precise identification of the majority of the Alu

elements (Umylny et al, 2007). For a selected set of genes (see

Appendix Fig S2), comparison of various samples was done by

normalizing expression levels to the total number of mapped

reads and calculating the relative amounts. Read clusters showing

the expression values normalized to the total number of mapped

reads were calculated using Cufflinks (Trapnell et al, 2010). For

annotation, the overlaps with genomic regions were evaluated

based on Genomatix software suite (Genomatix, Munich,

Germany). Clusters annotated as “exon–intron overlapping”

comprise clusters overlapping exonic and intronic regions. After

annotation, the clusters were compared to a primary transcripts

(PT) database and re-grouped into PT when both exonic and

intronic clusters corresponded to the same PT, or spliced tran-

scripts when only exons were found.

A list of human Alu repeats was produced using the

RepeatMasker track in the Table Browser (www.genome.ucsc.

edu) as well as a list of tRNAs. The average and normalized

tRNA level was calculated for various samples (Appendix Fig S1)

using the function “intersect” of the genome arithmetic suite

bedtools (Quinlan & Hall, 2010). The same function was applied

to list clusters overlapping with Alu repeats. The normalized

expression (NE) values were used to classify the clusters and

determine the highest enrichment in nucleoli or in the total RNA

samples (see Appendix Table S2). For the graphical representation

of the RNA-seq data, coverage files were produced with the Inte-

grative Genomics Viewer toolbox and uploaded in the Integrative

Genomics Viewer (Robinson et al, 2011). Multiple sequences

alignment was performed using the alignment tool MultAlin

(http://multalin.toulouse.inra.fr) (Corpet, 1988). Heatmaps were

produced using the programs seqMINER (Ye et al, 2011) and

ngs.plot (Shen et al, 2014).

Data availability

RNA-seq data generated can be accessed via the EBI Array Express

archive under the accession number E-MTAB-3460.

Expanded View for this article is available online:

http://emboj.embopress.org
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