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Abstract

Articular cartilage injuries and degenerative joint diseases are responsible for progressive pain and 

disability in millions of people worldwide, yet there is currently no treatment available to restore 

full joint functionality. As the tissue functions under mechanical load, an understanding of the 

physiologic or pathologic effects of biomechanical factors on cartilage physiology is of particular 

interest. Here we highlight studies that have measured cartilage deformation at scales ranging 

from the macroscale to the microscale, as well as the responses of the resident cartilage cells, 

chondrocytes, to mechanical loading using in vitro and in vivo approaches. From these studies, it 

is clear that there exists a complex interplay between mechanical, inflammatory, and biochemical 

factors that can either support or inhibit cartilage matrix homeostasis under normal or pathologic 

conditions. Understanding these interactions is an important step toward developing tissue 

engineering approaches and therapeutic interventions for cartilage pathologies.

Keywords

Chondrocyte; Osteoarthritis; Mechanotransduction; Loading; Strain; Deformation; Magnetic 
Resonance Imaging; Atomic Force Microscopy; Pericellular Matrix; Extracellular Matrix; 
Inflammation; Interleukin-1; Proinflammatory Cytokines; Animal Models; Growth Factors

1: Introduction

Articular cartilage serves a critical mechanical role in diarthrodial joints by providing a 

smooth, lubricated surface that allows joint articulation while minimizing wear. It also acts 

to support and distribute forces across the joint during activities of daily living. Under 

normal physiologic conditions, the cells in cartilage, chondrocytes, synthesize and maintain 

crucial extracellular matrix (ECM) components that confer the functional properties of 

cartilage [1]. However, under pathologic conditions, such as osteoarthritis (OA), 

chondrocytes exhibit an imbalance of anabolic and catabolic activities that are characterized 
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by degenerative changes in the cartilage matrix and other joint tissues, including the 

subchondral bone and synovium [2, 3].

Far more than a disease of simple “wear and tear”, OA represents a family of diseases that 

involve active processes by which cartilage and the surrounding tissues respond 

pathologically to environmental factors, particularly mechanical loading. Physical activity in 

healthy, asymptomatic adults reduces the risk of cartilage thinning, cartilage defects, and 

bone marrow lesions [4], demonstrating the protective role that joint loading can play in a 

physiologic biochemical and biomechanical environment. On the other hand, biomechanical 

risk factors for OA, such as obesity, trauma, and joint destabilization [5], illustrate the 

central role that mechanical factors in an altered biochemical and/or biomechanical setting 

can have in OA development and progression [6]. In this regard, understanding the interplay 

between cartilage loading and other biological factors within the joint can provide insight 

into the factors that influence OA disease progression, and may help identify targets for 

therapeutic intervention. The goal of this review is to examine the interactions of these 

biomechanical and biological factors in cartilage and their effects on chondrocytes to help 

inform our understanding of cartilage diseases, such as OA.

2: Cartilage Loading and Deformation in Health and Disease

2.1 Cartilage Tissue Level Deformation

In healthy cartilage, the unique composition and complex structure of the ECM confers 

specific mechanical properties that allow the tissue to withstand a lifetime of cyclic loading 

deformation [1]. Cartilage ECM is primarily composed of water, negatively-charged 

proteoglycans, and fibrillar and non-fibrillar collagens. During cartilage loading, water in 

this highly hydrated tissue is gradually squeezed out of the tissue, causing direct tissue, 

cellular, and nuclear strains [7]. Concomitantly, mechanical loading of cartilage generates 

secondary biophysical signals such as hydrostatic and osmotic pressures, and their 

importance in cartilage mechanobiology will be discussed in later sections.

Deformation caused by mechanical loading is typically reported as strain, defined in one 

dimension as the change in thickness divided by the original thickness. The measurement of 

cartilage strains under in vivo loading conditions has been challenging; however, recent 

advances in imaging, such as magnetic resonance imaging (MRI), alone or in combination 

with high-speed dual-fluoroscopy, have allowed measurements of cartilage deformation 

during or after various activities (Figure 1A) [8–6]. These studies show that cartilage strains 

are dependent on both the anatomic location within the joint, as well as the specific activity 

undertaken. For example, a relatively short bout of running (20 minutes) leads to transient 

cartilage strains of approximately 20% in the weight bearing regions of the femur, while in 

the tibia, strains of up to 30% are observed following activity [11]. With walking, peak 

strains in the tibiofemoral contact area range from 7 to 23%, and tend to result in higher 

strains on the medial side of the joint [15]. Due to the biphasic (solid/fluid) nature of 

cartilage, the tissue exhibits significant viscoelastic behavior and takes time to recover its 

original height after loading. Thus, the repeated loading of the tissue over the course of a 

day, without time to recover to its original height, results in decreased cartilage thickness 

from morning to evening. This strain accumulates through the course of the day and 
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recovers overnight. Diurnal cartilage strains vary significantly with location in the knee, 

ranging from 11% (medial tibia) to no significant diurnal strain in certain locations, such as 

the femoral groove [9].

Cartilage strains also vary significantly with injury and disease, and these altered loading 

patterns may impact subsequent OA progression. In individuals with a high body mass index 

(BMI), a known risk factor for OA, the diurnal cartilage strain in the medial tibia increases 

significantly from 3% to 5% [10]. In another example, full weight bearing in the ankles of 

patients suffering from chronic lateral ankle instability increases cartilage strain by 8% when 

compared to the uninjured ankle [8]. Furthermore, the location of the peak strain also moves 

anteriorly and laterally, which corresponds to the location where patients with lateral ankle 

instability tend to develop OA. Similarly, loss of the anterior cruciate ligament (ACL), 

another risk factor for OA development, also coincides with increased knee strains upon 

weight bearing [16]. On the other hand, deep knee bends cause less strain in knee cartilage 

of older individuals (ages 50–78) than in young individuals (ages 20–30), indicating that age 

can have an effect on cartilage deformation [12]. These examples illustrate the importance 

of cartilage loading patterns on maintaining cartilage health, and underscore cartilage 

loading as a critical factor toward understanding cartilage pathology.

2.2 The Micromechanical Environment of Chondrocytes

As the tissue is compressed, the hierarchical structure of articular cartilage results in a 

complex and non-uniform deformation field at the tissue and cell levels, which in turn may 

influence the responses of chondrocytes to joint loading [17–19]. In particular the chondron, 

which encompasses both the chondrocyte and its pericellular matrix (PCM), shows variable 

deformation in different zones of the tissue when cartilage is subjected to macroscale 

compression [20]. In the superficial zone, where the ECM modulus is the lowest, cells 

within the chondron are shielded from ECM strains as compared to those in the deeper 

zones, where the PCM serves to amplify strain magnitudes relative to those in the ECM. 

This finding indicates that the PCM plays a role in regulating cellular strains throughout the 

tissue depth to provide a more uniform environment for the chondrocytes, perhaps 

protecting the cells from injurious strain [20–22]. In this context, the PCM has emerged as a 

potential transducer of mechanical signals in cartilage, showing an ability to either amplify 

or attenuate local mechanical strains, as well as to convert tissue deformation to 

physicochemical [23] or biochemical changes [24] in the chondrocyte microenvironment.

The ability of the PCM to perform these functions is tied to its unique structure and 

biochemical composition, which impart specific biomechanical and physicochemical 

properties. The mechanical properties of the PCM have been measured using a variety of 

techniques, including micropipette aspiration [25], atomic force microscopy (AFM) [26, 27], 

and computational models [28]. Together, these techniques confirm that the chondrocyte 

PCM has an intermediate modulus between the modulus of the cell and the surrounding 

ECM. More recent advances in AFM techniques have allowed for spatial mapping in situ of 

PCM and local ECM properties, and have revealed that the cartilage PCM is isotropic, and 

its modulus is constant throughout the depth of the tissue [29]. Interestingly, these findings 
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are in stark contrast with local ECM properties, which show distinct anisotropy and zonal 

variations in elastic modulus [29].

More recent investigations in specific PCM molecular constituents via combined 

immunofluorescence staining and AFM probing of PCM properties indicate that the 

biomechanical properties of the PCM is heavily influenced by its biochemical makeup [27, 

30]. Of particular interest is the finding that the PCM shows high resistance to enzymatic 

degradation [31], which may help protect the cell from tissue breakdown in an inflammatory 

environment, such as that observed in OA. It is known, however, that the chondrocyte PCM 

is enlarged and less stiff in OA cartilage, as compared to healthy cartilage [32]. Thus, 

despite some innate resistance to degradation, the micromechanical environment of the 

chondrocyte can be affected in OA. The precise cause of these changes remains under 

investigation, but the increased synthesis of matrix macromolecules as well as degradative 

enzymes (i.e., matrix metalloproteases (MMPs), aggrecanases, elastase, etc.) in the OA joint 

play a role in this phenomenon. A potential early event may be the disruption of the PCM by 

the serine protease, high temperature requirement A1 (HTRA1), which can be induced by 

TGF-β1 upon biomechanical stress [33].

3: Mechanical Loading at the Chondrocyte Level

3.1 Effects of Loading on Chondrocytes

Chondrocytes respond to mechanical load, as a means of regulating growth, cellular 

differentiation, and metabolism in the cartilage ECM, throughout development and 

maturation. However, while mechanical loading of chondrocytes is an important stimulator 

of matrix synthesis, certain types of loading can provoke pathologic responses. This contrast 

between the protective versus pathologic response of chondrocytes to mechanical loading is 

well documented in studies of physiologic loading and cartilage injury (Figure 1B) [34–41]. 

Cartilage responds to physiologic magnitudes of dynamic compression (~10–20%) with 

enhanced synthesis of ECM molecules, including proteoglycans, collagens, and cartilage 

oligomeric matrix protein (COMP) [42–45]. Importantly, the responses of chondrocytes to 

mechanical loading are highly dependent on parameters such as frequency, strain-rate, 

loading history, and loading amplitude. For example, super-physiologic magnitudes of 

loading (>20%) fail to enhance matrix production [42], while static or very low frequency 

loading [46] inhibits matrix synthesis. The damaging effects of high magnitude, high strain-

rate impact loading are likely a combination of direct cellular damage, such as chondrocyte 

apoptosis and necrosis [47, 48], as well as a shift of chondrocyte-mediated matrix 

metabolism towards catabolism [41, 49, 50]. Interestingly, the surviving cell population after 

impact loading lacks a biosynthetic response to dynamic, physiologic levels of loading that 

uninjured explants normally exhibit [50], suggesting that sustained alteration of chondrocyte 

mechanotransduction occurs following injury, even when the tissue is returned to an 

apparently normal biomechanical setting.

In the cartilage ECM, highly negatively charged sulfated proteoglycans attract counterions 

to maintain electroneutrality, which in turn creates an osmotic differential with the synovial 

fluid. This osmotic gradient confers a swelling pressure to the proteoglycans to expand, but 

their expansion is restrained by the collagen network. As the tissue is compressed, water is 
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gradually exuded from the tissue. However, during the initial stages of cartilage loading, the 

low permeability of the tissue leads to fluid pressurization, exposing the chondrocytes to 

increases in hydrostatic pressure. With prolonged and/or higher magnitude loads, exudation 

of interstitial water and ions leads to not only direct deformation, but also to the generation 

of numerous indirect biophysical signals, such as streaming potentials, fluid flow, and 

changes in local pH and osmolarity [51]. These phenomena are largely due to the 

compaction of the entangled proteoglycans increasing the fixed charge density, thus 

increasing the concentration of dissolved ions within the tissue. With removal of loading, 

water is reabsorbed, and the biophysical environment returns to its initial state, leading to 

dynamic changes in these parameters with dynamic loading regimes.

The effects and significance of these dynamic biophysical signals have constituted the 

subject of a number of recent investigations. For example, chondrocytes are known to 

increase ECM production in response to dynamic hydrostatic pressure [52, 53] and dynamic 

osmotic changes [54], similar to their response to mechanical loading. Though it is unclear 

whether chondrocytes in loaded tissue in vivo are responding to deformation of the tissue 

and cells or to these secondary biophysical effects, in vitro experiments that deliver 

individual mechanical or biophysical signals suggest that each of these parameters 

contributes to mechanical regulation of cartilage homeostasis. Furthermore, defining the 

mechanisms of mechanotransduction should be highly useful in addressing this question.

3.2 Chondrocyte Mechanotransduction

A number of key transduction mechanisms have been identified that facilitate the 

mechanically-driven enhancement of cartilage ECM biosynthesis and functional properties, 

including mechanosensitive ion channels [55, 56] and signaling through integrins [57] and 

primary cilia [58]. Transient receptor potential vanilloid 4 (TRPV4) is an osmo-

mechanosensitive ion channel highly expressed in articular chondrocytes [55]. TRPV4-

mediated Ca2+ signaling in response to mechanical loading plays a primary role in the 

enhanced matrix biosynthesis and decreased expression of catabolic and proinflammatory 

genes in chondrocytes after moderate, dynamic loading [54]. Specifically inhibiting TRPV4 

prevents loading-mediated increases in matrix synthesis, and activating TRPV4 in the 

absence of loading increases matrix synthesis in a manner analogous to loading [54]. As a 

ubiquitous second-messenger, mechanically-induced Ca2+ signaling is an especially 

attractive regulator of mechanotransduction, as it is known to regulate multiple signaling 

pathways, including nuclear factor of activated T lymphocytes (NFAT), protein kinase C, 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), c-Jun N-terminal 

kinase 1 (JNK1), and cyclic adenosine monophosphate (cAMP) response element-binding 

protein (CREB) [59]. In superficial zone chondrocytes, the mechanically-driven 

enhancement of Prg4 (lubricin) expression, appears to involve a number of signaling 

pathways that also involve intracellular Ca2+ signaling, including ATP/P2X7 and PKA/

CREB [60]. Additional studies have further proposed TGF-β/Smad, Erk1/2, p38, and ciliary 

signaling [55, 61], as well as integrin/FAK signaling [62–64] in mediating the responses of 

chondrocytes to loading.
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Though less is known about the transduction of mechanical load in pathologic settings, these 

processes appear to involve the enhancement of catabolic effectors, such as MMPs and 

aggrecanases [65, 66], and recent studies suggest the involvement of ciliary signaling [67] 

and histone modification [68]. Further mechanistic studies in the setting of injurious loading, 

or joint impact followed by physiologic loading, will reveal clinically relevant information 

for the treatment of patients following destabilizing and traumatic joint injuries.

3.3 Animal Models of Cartilage Loading

Animal models of joint loading provide additional data supporting the role of mechanical 

factors in cartilage physiology, as well as pathology. The two most common animal models 

of altered joint loading are ACL transection (ACLT), which causes increased joint laxity 

[69], and meniscal injury or meniscectomy, which alters cartilage contact pressure 

distributions [70]. Both of these models lead to degenerative joint changes similar to human 

joint injury [71, 72], and have been effective in identifying a number of disease-modifying 

enzymes, including ADAMTS5 [73], MMP-13 [74], and PAR-2 [75]. Furthermore, 

knockout mouse models have shed light on the interaction between mechanical loading and 

arthritis by examining OA development in mice lacking critical elements in 

mechanotransduction pathways. For example, mice lacking TRPV4 develop OA earlier than 

wild type mice [76], and mice lacking type VI collagen, a key structural element of the 

PCM, have softer PCMs and develop OA in the hip earlier than wild type mice [25]. Mice 

lacking primary cilia also show signs of OA development [77]. Altered joint loading by 

ACLT or meniscal injury combined with knockout mouse models will likely play an integral 

role in unraveling the complicated interaction of pathologic loading and cartilage 

homeostasis.

4: Interaction of Cartilage Loading and Biochemical Factors

4.1 Biomechanics and Inflammation

Injury and arthritic degradation affect both the biomechanical as well as the biochemical 

environments of cartilage. Following joint injury and in OA joints, inflammatory cytokines 

are upregulated [78], with median synovial fluid concentrations of IL-1α and IL-1β rising to 

43 pg/mL and 109 pg/mL, respectively, in mild OA joints, and 288 pg/mL and 122 pg/mL in 

moderate OA joints [79]. While OA is known to inhibit secretion of the active form of IL-1β 

in articular cartilage [80], inflammatory cytokines are known to be produced by other tissues 

in the joint, such as the synovium [81] and infrapatellar fat pad [82]. Treatment of articular 

cartilage explants with physiological concentrations of IL-1 (which are far lower than most 

in vitro studies) increases Ca2+ signaling, MMP activity, sulfated glycosaminoglycan (S-

GAG) degradation, release of the proinflammatory mediator nitric oxide (NO), and leads to 

decreases in the mechanical properties of healthy cartilage [79]. The pleiotropic and 

concurrent effects of catabolic mediators on the biochemical and biomechanical properties 

of the cartilage environment highlight the interrelationship that exists between 

biomechanical factors and inflammatory factors in the joint [83, 84].

Generally, physiologic magnitudes of mechanical loading suppress the proinflammatory and 

catabolic effects of IL-1, while injurious magnitudes of loading activate proinflammatory 
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and catabolic pathways leading to cartilage degradation. Dynamic compression of articular 

cartilage explants at physiologic magnitudes blocks IL-1 induced increases in the mRNA 

levels of the degradative enzymes ADAMTS-4, ADAMTS-5, MMP-1, and MMP-3 [85] and 

aggrecan breakdown [86], and increases TIMP-3 expression, suggesting a net decrease in 

MMP activity under these conditions [85]. Dynamic 15% compression of agarose-embedded 

primary chondrocytes also decreases IL-1 mediated production of the proinflammatory 

mediators NO and prostaglandin E2 (PGE2) and increases matrix biosynthesis rates [87]. 

Additional studies using the agarose-embedded chondrocyte model system in the presence 

of IL-1 and inhibitors of the MAPK signaling pathways have shown that dynamic 

compression increases chondrocyte proliferation and proteoglycan synthesis, suggesting the 

potential therapeutic benefit of biophysical and/or pharmacologic interventions to block IL-1 

induced cartilage degradation [88]. Chondrocytes in two-dimensional bioreactor systems 

also respond to cyclic tensile strain with a reduction in IL-1-induced catabolic activity (nitric 

oxide synthase 2 (NOS2), cyclooxygenase 2 (COX2), and MMP-1 mRNA and protein 

levels) and a loading-mediated enhancement of chondrosupportive gene expression 

(TIMP-2, type II collagen, and aggrecan mRNA levels) and proteoglycan synthesis [89].

Individually, dynamic strain and IL-1 induce similar signaling cascades, such as ERK1/2 

phosphorylation [90]. The differential effects of these two stimuli, however, may lie 

upstream of ERK1/2 phosphorylation. For example, IL-1 activates B-Raf kinase activity, 

while dynamic strain causes the activation of c-Raf kinase activity, and furthermore, causes 

inhibition of IL-1 induced B-Raf activation. Perhaps these unique signaling phenomena may 

explain the differential processing of mechanical signals in the presence of inflammation. 

ERK1/2 activation also occurs three-times faster in response to mechanical signals than 

IL-1. Therefore, perhaps by upstream activation of kinases in response to dynamic strain, 

initiates a feedback loop to suppress the signaling cascades activated by IL-1 [90].

Experimental and theoretical modeling studies reveal that inflammation is differentially 

regulated at low (10%) and high (30%) magnitudes of dynamic compressive strain [91]. In 

the presence of IL-1 at low magnitudes, NOS2 transcription is suppressed and this correlates 

with attenuation of the NF-κB signaling pathway, which activates transcription of 

proinflammatory genes. At high magnitudes of dynamic compressive strain, NOS2 

expression is activated, promoting a proinflammatory environment with pathologic loading. 

Furthermore, static compression of cartilage explants at 50% strain in the presence of IL-1 

receptor antagonist (IL 1ra) increases proteoglycan synthesis and upregulates IL-1 and 

NOS2 transcription [92]. These findings further suggest that injurious magnitudes of loading 

activate proinflammatory mediators and ultimately catabolic pathways that lead to cartilage 

degradation. Furthermore, a recent study has shown that immobilization can prevent 

degenerative changes in a mouse model of joint injury by decreasing mechanically-induced 

protease expression, further demonstrating the important role of mechanical loading [93]. 

While the complex signaling and regulatory cascades between biomechanical factors and 

inflammatory mediators in cartilage are slowly being elucidated, the effects of a variety of 

other biochemical factors, such as anabolic growth factors, and mechanical loading on 

chondrocytes must also be considered in order to identify potential targets for OA therapy.
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4.2 Effects of Load and Growth Factors on Chondrocytes

Mechanical stimulation of cartilage also exhibits complex interactions with anabolic factors 

and processes. Many studies have shown that incubation with growth factors and mechanical 

stimulation of either cartilage explants or isolated chondrocytes can cause additive or 

synergistic effects on matrix synthesis and organization [24, 94–98]. For example, dynamic 

loading enhances the effects of insulin-like growth factor-I (IGF-I) on proteoglycan and 

collagen synthesis in articular cartilage explants in a synergistic manner [95]. This synergy 

is also observed when chondrocyte-seeded agarose is exposed to dynamic loading in 

combination with IGF-I or transforming growth factor beta-1 (TGF-β1) [96]. Static 

compression, on the other hand, significantly diminishes the anabolic effect of IGF-I [97].

Hydrostatic pressure also interacts strongly with anabolic growth factors. For example, the 

combination of TGF-β1 and hydrostatic pressure cause additive effects on aggregate and 

Young’s modulus of self-assembled cartilage tissue and synergistic effects on collagen 

content [98]. Rather than simply integrating the external cues of soluble anabolic factors, 

chondrocytes appear to also modulate the endogenous production and signaling of these 

anabolic pathways when exposed to biomechanical cues [54, 99]. Furthermore, this two-way 

interaction between biomechanical cues and growth factor signaling provides a potential 

mechanism for how growth factor signaling is both altered by and influences OA 

progression [100].

A complete understanding of how mechanical stimulation interacts with growth factors has 

yet to be achieved, but each new investigation illuminates the potential mechanisms of these 

interactions. For example, the PCM surrounding each chondrocyte functions not only as a 

mechanical transducer, but also serves to sequester and retain growth factors in the 

microenvironment of the chondrocyte. In fact, the pericellular component perlecan is 

uniquely able to sequester basic fibroblast growth factor (bFGF) [94], which is essential for 

signal transduction during articular cartilage loading [24]. However, aberrant mechanical 

stimulation, such as that observed in OA joints, is also associated with increases in TGF-β1 

which can trigger production of HTRA1, a protease that degrades PCM components [33]. 

Therefore, interactions between articular cartilage loading and the biochemical factors 

surrounding chondrocytes can have a significant effect on chondrocyte metabolism. 

Interactions, such as these, that show promise in producing cartilage matrix components 

may be used to inhibit OA progression and/or regenerate cartilage.

5: Conclusions

The lack of therapeutic interventions following cartilage injury or disease and the important 

mechanical function of the tissue has prompted numerous studies investigating the influence 

of loading on cartilage homeostasis and metabolism. These studies have revealed the 

complex biochemical and biomechanical hierarchy of articular cartilage and the important 

roles of loading, inflammation, and growth factors on chondrocyte signaling pathways. It is 

clear that inflammatory mediators, such as IL-1, play a significant role in modulating the 

response of chondrocytes to mechanical load, and that depending on the mode, magnitude, 

duration of application, and combination with growth factors, mechanical loading can have 

either beneficial or detrimental effects on the tissue.
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Given the strong links between inflammation, mechanical load, and cartilage homeostasis, 

targeting receptors of inflammatory mediators and chondrocyte mechanotransduction 

machinery, such as the TRPV4 ion channel and primary cilia, may be direct ways of 

controlling the response of chondrocytes to pathologic loading or disease [101]. While more 

work needs to be done to understand chondrocyte signaling in pathologic conditions, the 

present data support biomechanics and mechanobiology of articular cartilage as crucial 

regulators of cartilage health and disease.
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Figure 1. 
A. Physiologic strain magnitudes measured in articular cartilage. During normal activities, 

diurnal strains range from 0–10% [9, 10], post activity strains range from 5–15% [12–14, 

102], and dynamic strains during activity range from 15–35% [15, 16]. At higher nominal 

strain magnitudes (50–70%), mechanical compression can cause injury [35–39, 41], 

eventually inducing cell death via necrosis and apoptosis at strains of the highest levels (70–

90%) [40, 47, 48]. B. Effects of different loading conditions on chondrocyte function. Static 

loading decreases cartilage metabolic activity [46], physiologic levels of dynamic loading 

can be anabolic or anti-inflammatory [42, 45, 85, 91, 95, 96], while hyperphysiologic levels 

of dynamic loading and injurious loading can induce catabolic or pro-inflammatory response 

[41, 49, 50, 91].
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