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Steering Transforms the Cortical Representation of
Self-Movement from Direction to Destination
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Steering demands rapid responses to heading deviations and uses optic flow to redirect self-movement toward the intended destination.
We trained monkeys in a naturalistic steering paradigm and recorded dorsal medial superior temporal area (MSTd) cortical neuronal
responses to the visual motion and spatial location cues in optic flow. We found that neuronal responses to the initial heading direction
are dominated by the optic flow’s global radial pattern cue. Responses to subsequently imposed heading deviations are dominated by the
local direction of motion cue. Finally, as the monkey steers its heading back to the goal location, responses are dominated by the spatial
location cue, the screen location of the flow field’s center of motion. We conclude that MSTd responses are not rigidly linked to specific
stimuli, but rather are transformed by the task relevance of cues that guide performance in learned, naturalistic behaviors.
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ignificance Statement

Unplanned heading changes trigger lifesaving steering back to a goal. Conventionally, such behaviors are thought of as cortical
sensory-motor reflex arcs. We find that a more reciprocal process underlies such cycles of perception and action, rapidly trans-
forming visual processing to suit each stage of the task. When monkeys monitor their simulated self-movement, dorsal medial
superior temporal area (MSTd) neurons represent their current heading direction. When monkeys steer to recover from an
unplanned change in heading direction, MSTd shifts toward representing the goal location. We hypothesize that this transforma-
tion reflects the reweighting of bottom-up visual motion signals and top-down spatial location signals, reshaping MSTd’s response
properties through task-dependent interactions with adjacent cortical areas.
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Introduction
Steering relies on a feedback control loop coupling heading per-
ception with motor control: heading deviations are seen and trig-
ger steering back toward the intended destination (Fig. 1A). The
cortical analysis of optic flow accesses heading cues in its global
radial pattern, local motion directions, and the location of its
radial center-of-motion (COM) (Gibson, 1950; Warren, 1995).
Optic flow analysis relies on neurons in the dorsal medial
superior temporal area (MSTd) (Tanaka and Saito, 1989; Duffy
and Wurtz, 1991a,b; Lappe et al., 1996; Britten and Van Wezel,
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2002), which is embedded in the dorsal processing pathway (Un-
gerleider and Mishkin, 1982). MSTd receives bottom-up local
motion signals from adjacent middle temporal cortex (MT)
(Zeki, 1974) and top-down spatial location signals from adjacent
posterior parietal cortex (PPC) (Andersen et al., 1990; Bisley and
Goldberg, 2003).

Cueing attention to specific locations enhances the amplitude
and selectivity of responses in MT (Seidemann and Newsome,
1999; Treue and Martinez Trujillo, 1999; Wegener et al., 2004)
and PPC (Snyder et al., 2000; Saalmann et al., 2007; Herrington
and Assad, 2010), so it is no surprise that MSTd’s optic flow
responses are comparably shaped by attentional cues (Dubin and
Duffy, 2007; Sato et al., 2013) but also by tasks that shift attention
without explicit cueing of a particular location (Page and Dulffy,
2008; Kishore et al., 2012).

We hypothesized that MSTd is contextually adaptive, adjust-
ing the impact of bottom-up and top-down signals to suit the
instantaneous demands of learned tasks. To test this hypothesis,
we trained monkeys in a steering paradigm that presents optic
flow stimuli in a manner that enables our distinguishing neuronal
responsiveness to several heading cues embedded in optic flow
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back to the intended direction (illustrated from left to right). €, In the delayed steer to Sam
was presented for 500 ms. Aftera 1000 = 250 ms blank screen delay, the Start optic flow was presented with a radial COM 90° clockwise (CW) or counterclockwise (CC) from Sample COM.
After 500 ms, free viewing was allowed while the monkey used the rotational joystick to
control was released during active steering, both monkeys saccaded to the COM and t
reward. B, The stimulus set consisted of eight optic flow patterns, four outward (left) and four inward (right). D, Both monkeys performed well, as seen in average joystick (magenta,
mean deflection from upright) and eye (green, eccentricity from centered fixation)

ing demands monitoring for unpredictable heading changes and steering to redirect heading
ple task, the monkey maintained centered fixation while one of eight Sample optic flow stimuli

steer the COM to match the sample position, where it was held for 500 ms. When the fixation
hen tracked it to the Match location, prompting them to recenter their gaze to earn liquid

position traces. Example eye traces from a single recording session are shown (dashed,

green lines).

(e.g., global radial motion patterns, local motion directions,
COM spatial location). We find that steering transforms MSTd’s
response properties to represent different cues in different stages

of the task.

Materials and Methods

Animal preparation. We studied two adult Rhesus monkeys (Macaca
mulatta; M125, female; M606, male) after the surgical preparation of

bilateral recording cylinders centered above MSTd (AP: 2 mm, ML: 15
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mm, angle 0°) and scleral search coils (Judge et al., 1980). The recording
chambers, eye coil connectors, and a head holder were embedded in a
dental acrylic cap covering the calvarium. Surgery under general anes-
thesia used inhaled isoflurane, with banamine (1 mg/kg, i.m.) postoper-
ative analgesia. All protocols were approved by the Institute Animal Care
and the Use Committee and complied with the Public Health Service
Policy on the humane care and use of laboratory animals. The monkeys
were first trained to maintain ocular fixation while viewing visual motion
and then underwent extensive training in the delayed steer to Sample task
described below. Monkey M606 received 1 year of training (>1000 h).
Monkey M125 was already familiar with joystick steering by optic flow
and training occurred over several months (>200 h).

Optic flow stimuli. Full-field optic flow (90° X 90°) was generated using
680 white dots (0.19°at 2.61 cd/m*) on a black background (0.18 cd/m ).
Each dot had a randomly assigned screen duration of 33-1000 ms that
maintained uniform dot density across the stimuli. Radial patterns were
created by accelerating the dots across screen using a sine X cosine func-
tion of each dot’s angular distance from the radial COM as viewed by the
monkey. Average dot speed was adjusted to 36°/s in all stimuli. Both
radial in (contraction) and radial out (expansion) were used with four
COMs arranged on the cardinal axes at an eccentricity of 24°.

We created a delayed steer to Sample task in which the various cues
imbedded in optic might take on more or less relevance in different stages
of the task. The Sample condition’s random selection of one of four
inward or four outward optic flow fields might create a circumstance in
which the unbiased representation of flow fields is to be preferred. The
shifting of the optic flow field in the Start stimulus by a consistent =90°
might encourage the monkey to use a local motion direction change
detection strategy to guide the better steering wheel response. The con-
sistent goal of returning the COM in the optic flow, whether it is an
inward or outward radial pattern, might promote a spatial location based
strategy to the monkeys’” determining when steering should be adjusted
to terminate COM movement at the target spatial location.

Steering paradigm. In our delayed match to Sample paradigm, all optic
flow stimuli after the Sample are nonmatches. The task is to rotate their
COM locations to match that presented in the Sample (Fig. 1C). At the
beginning of each trial, the monkey established centered fixation on a
“+7(0.3° X 0.3°) and vertical joystick orientation by rotating it in posi-
tion alignment mode: a vertical handle aligns fiducial markers on the
screen to be just above and below the fixation point. Eye or joystick
movements before the steering period aborted the trial.

After correct joystick and eye position were established, the joystick
alignment markers were extinguished but the fixation point remained.
One of eight Sample optic flow stimuli (four in and four out, cardinal axis
positioned COMs) was then presented for 500 ms, followed by a 1000 ms
(plus a random period up to 500 ms) fixation only delay period. During
the Sample stimulus, 8 stationary dots (0.1° X 0.1°) appeared at the 4
cardinal and 4 oblique locations as landmarks that remained present
throughout all trials.

A second optic flow stimulus was then presented with its COM rotated
90° clockwise or counterclockwise from the Sample’s COM. That marked
the beginning of the Start period with the joystick switching to steering
mode in which its angular deflection specified the COM’s angular speed
around the circle through all possible COM locations. The monkey was
allowed to begin joystick rotation at any time after the appearance of the
Start optic flow. However, the monkey was required to maintain centered
fixation for the first 500 ms to ensure stable centered gaze for the analysis
of neuronal activity.

While steering the Start COM to match that in the Sample, the fixation
point was extinguished and the monkeys were allowed free viewing of the
changing optic flow and the eight position markers. Maximum joystick
deflection induced a rate of radial center displacement of 125.0°/s. After
the monkey brought the COM to within *5° of the Sample location for
1000 ms, an audible “beep” was sounded, the optic flow was extin-
guished, and if the monkey sustained fixation, a liquid reward was deliv-
ered. The average steering period was 2-3 s.

We allowed free viewing during steering but required refixation to
earn the liquid reward. Both monkeys spontaneously reestablished cen-
tered gaze within the previously established fixation windows (*£5°) be-
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fore the beginning of the Match period (mean eccentricity =SEM: M125:
0.59° = 0.01°, M606: 3.26° = 0.06°). Despite these small differences in
fixation, there was no monkey X stimulus interaction in neuronal cue
selectivity.

Behavioral and neuronal data were recorded in 14,214 trials for Mon-
key M606 and in 6219 trials for Monkey M125. Both monkeys performed
the task at >80% correct. Fixation errors, initial steering direction errors,
and failure to correctly match errors all aborted trials. Behavioral re-
sponse latency was calculated from the time of Start stimulus onset until
joystick rotation.

Recording sites. Single-neuron recordings were directed to MSTd using
stereotaxic positioning and confirmed by MR imaging. When experi-
ments were completed, the animals underwent pentobarbital euthanasia
and perfusion with heparinized saline followed by formalin. The brain
was removed for additional weeks of formalin fixation, followed by
blocking and then sectioning at 50 wm with every fourth and fifth section
stained by the Nissl and Luxol fast blue. Electrolytic lesions and anatomic
landmarks were used to localize the recording sites. This analysis indi-
cates that the neurons studied were in the anterior bank of the superior
temporal sulcus within the MSTd (Komatsu and Wurtz, 1988).

Single neuron recording. Single-neuron action potentials were recorded
using epoxy-coated tungsten microelectrodes (FHC and Microprobe)
passed through transdural guide tubes mounted in the recording cham-
bers (Crist et al., 1988). Activity was monitored as the electrode advanced
to identify the depth of gray and white matter landmarks. On isolating a
neuron, its receptive field was mapped using projected images. MSTd
neurons were identified by large receptive fields (>20°) that included the
fixation point and showed direction-selective responses preferring large
moving patterns (Komatsu and Wurtz, 1988; Duffy and Wurtz, 1991a,
1995). Gray matter layers that included MSTd neurons at appropriate
electrode positions were considered to be part of MSTd. Template
matching (Alpha Omega) was used to digitize neuronal discharge times
that were stored with stimulus and behavioral event markers from
the REX system (Hays et al., 1982) for offline analysis in MATLAB (The
MathWorks).

We recorded the responses of a total of 226 neurons from cortical area
MSTd in M606 and M125. Neurons with <40 trial repetitions of the
delayed steer to Sample task (five trials/stimulus) were excluded from the
analysis, leaving a total of 197 neurons. Responses to dot motion during
the Sample or Start conditions were compared with activity with fixation
alone (two-way ANOVA with/without dot motion, Sample/Start condi-
tions). The great majority of MST neurons (172/197, 87.3%) were dot
motion or condition responsive and used in further analyses. There was
no monkey X stimulus interaction: neurons from both monkeys showed
similar changes in cue selectivity across conditions.

Data analysis. Single-neuron studies presented a random sequence of
heading stimuli during Sample and Start, with eight to 16 repetitions of
each stimulus per condition. The monkeys were free move their eyes
when steering, but all analysis periods were during centered fixation and
stable joystick position. Responses in each condition were measured
as firing rates in the last 200 ms of the Sample stimulus, the 200 ms before
joystick rotation during the Start stimulus, and the 200 ms after the
monkey completed joystick rotation during the Match condition.
Selectivity for stimulus parameters was determined using a three-way
ANOVA from responses to the three task conditions (Sample, Start, and
Match), four COM locations (cardinal directions), and two radial mo-
tion patterns (in and out) in the MATLAB Statistics Toolbox. Population
averages were determined by aligning responses to the preferred stimulus
in Sample and normalizing to the mean firing rate to this stimulus.

Neuronal selectivity for the direction of local motion was character-
ized by calculating a local motion direction selectivity index defined as
the contrast ratio of the average firing rate evoked by the preferred stim-
ulus and the nonpreferred radial in/out pattern with the same COM
location. Neuronal selectivity for the COM location was characterized by
calculatinga COM location selectivity index as the contrast ratio between
the average firing rate evoked by the preferred stimulus and the nonpre-
ferred radial in/out pattern at the antipreferred COM location. Both of
these selectivity measures were calculated across the task using a 200 ms
sliding window in 10 ms increments.
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The diversity of single-neuron response changes across steering conditions. A, Neuron with robust motion pattern selectivity and modest heading location selectivity. Spike density

functions (SDFs) are arranged at the four cardinal COM locations used during the Sample (left), Start (middle), and Match (right) conditions. Average responses to radial-in motion (blue) and
radial-out motion (red) are shown for 16 correct trials for each optic flow stimulus (128 trials). The polar plots each group of SDFs represent average firing rate in the last 200 ms of each response
period. The position of each apex corresponds to one of the four COM locations for inward and outward radial motion, with the co-plotted radial line representing the in and out net vectors. B, This
neuron shows decreased response selectivity from the Sample to the Start and Match conditions. C, Polar plots of the responses of a neuron that maintains selectivity but shows declining total
response amplitude. €, Polar plots of the responses of a neuron that changes its stimulus selectivity to prefer inward and outward left side COMs. D, Polar plots of the responses of a neuron that

demonstrates initial pattern selectivity changing to location selectivity during the match period.

Results

We recorded MSTd neuronal activity while monkeys were en-
gaged in an active steering task in which imposed heading
deviations must be rapidly corrected. Two monkeys were
trained to view optic flow stimuli simulating heading direc-
tions distributed in heading space (Fig. 1B). These stimuli
were presented in a behavioral task beginning with the mon-
keys holding a neutral steering wheel position while viewing a
sample optic flow stimulus. That stimulus was followed by a
second optic flow stimulus presenting a clockwise or counter-
clockwise heading deviation that signaled the monkey to start
steering. The monkeys then turned a wheel to steer the optic

flow back to match the original sample position (Fig. 1C).
Both monkeys learned reliably accurate performance in the
visual fixation and steering aspects of the tasks with minor
idiosyncratic differences in the monkey’s steering behavior
(Fig. 1D).

We quantified these diverse task effects using a three-way
ANOVA across neurons for task condition (Sample, Start, Match),
radial pattern (in vs out), and COM location (four cardinal loca-
tions). The neuron shown in Figure 2, A and B, changes its in versus
out radial pattern selectivity and its preferred COM location from
the Sample to the Match task conditions. It shows interaction effects
between task condition X radial pattern (F, 405, = 4.40, p = 0.013)
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and between task condition X radial pat-
tern X COM location (F4 405 = 3.88, p <
0.001).

In contrast, the neuron in Figure 2C
maintains its radial pattern and COM lo-
cation selectivity, but shows decreasing
net responsiveness across task conditions,
which is reflected in a main effect of task
condition (F(, 499y = 39.4, p < 0.001). Fi-
nally, the neuron in Figure 2D changes
both its preferred COM location and its
net responsiveness, yielding a condi-
tion X location interaction effect (F4 ;3
= 2.34,p = 0.034).

The great majority of neurons yielded
at least one significant effect in the condi-
tion X pattern X location ANOVAs
(74%, 139/188). These effects include
main effects of task condition (57%, 79/
139), radial pattern (42%, 58/139), and
COM location (40%, 55/131). In addi-
tion, there are a great many interaction
effects across task conditions with task
condition X radial pattern (22%, 31/139),
task condition X COM location (33%, 46/
139), and task condition X radial pat-
tern X COM location (28%, 39/139).

Despite the diversity of single neuron re-
sponses, the population averaged responses
show distinctly different responses in the
Sample, Start, and Match conditions. Dur-
ing the Sample period, the population re-
sponse shows pronounced global pattern
selectivity: the population responses to the
preferred stimuli are larger than the re-
sponses to all other stimuli, those with the
dominant radial pattern, and a great deal
larger than those with the nondominant ra-
dial pattern (Fig. 3A).

Global pattern selectivity declines dur-
ing the Start and remains low during the
Match condition (Fig. 3B, C). We quanti-
fied this effect in a three-way ANOVA
across neurons for task condition (Sam-
ple, Start, Match), radial pattern (in vs
out), and COM location (four cardinal lo-
cations). This yields highly significant
main effects of condition (F, 351, =
13.46, p < 0.001).

Comparing the Sample and Start con-
ditions reveals greatly increased responses

<«

is a decrease in radial selectivity from Sample to Start and an
increase in COM location selectivity from Start to Match. B,
Averaged neuronal population responses aligned to the pre-
ferred motion pattern in each of the response periods (thick
solid red line) and normalized to the mean response rate
evoked by that stimulus (format as in A). Across the popula-
tion, there are changes in which of the stimuli are preferred
from Sample to Start and Match, with a subtle decline in selec-
tivity (Sample to Start) and then a reversal of stimulus prefer-
ences to favor location effects (Start to Match).
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conditions yields no main effect of condition or any condition X
stimulus interaction effects (all p > 0.60).

We hypothesized that the loss of global pattern selectivity in
the Start and Match conditions could reflect a shift in neuronal
stimulus selectivity to different optic flow cues. This view was
based on two contrived attributes of the paradigm: First, the task
required the monkeys to steer the COM to match the Sample
location. Second, the randomization of the in/out pattern would
render global radial selectivity irrelevant. We tested this hypoth-
esis by comparing the motion direction selectivity index versus
the COM location selectivity index across task conditions (Fig.
4A).

As the monkeys view the Sample optic flow to see the goal in each
trial (Fig. 4B) and then view the Start optic flow to select the correct
steering direction (Fig. 4C), the population maintains strong motion
direction selectivity and weak COM location selectivity. In Sample,
the neuronal population shows selective preferences of one of the
eight optic flow stimuli. In Start, the population prefers in/out op-
posite COM stimuli. In Match, the neurons prefer same COM in/out
stimuli. These observations are consistent with the view that MSTd
neurons contribute to optic flow analysis using different response
criteria, including shifting emphasis on global pattern, local motion,
and COM location cues.

During the subsequent active steering period, the optic flow
continually changes and both motion direction and COM loca-
tion selectivity are reduced. Finally, when the monkey recenters
the joystick and regains centered fixation, the optic flow comes to
match the COM location in the Sample. At that point, population
selectivity is the opposite of that seen in Sample and Start, with
COM location selectivity exceeding motion direction selectivity
(Fig. 4D). The marked change in the nature of optic flow selec-
tivity is evidenced by a significant condition (Sample, Start,
Match) X selectivity type (motion direction, COM location) in-
teraction effect (F, 5,5y = 8.90, p < 0.001).

Despite the uniformity of stimulus composition across steer-
ing conditions, MSTd neurons change their response properties
to highlight the cue that is most relevant to the current task
condition: in the Sample condition, global pattern selectivity of
individual stimuli is at its greatest; in the Start condition, the
representation of local motion directions increases; in the Match
condition, the representation of COM location increases. There-
fore, as changing steering conditions transform the task, chang-
ing cue preferences transform MSTd’s optic flow responses.

Discussion

Task-dependent stimulus-response relations

Sample optic flow evokes highly selective neuronal population
responses. This selectivity is consistent with the Sample’s present-
ing one of eight, equally likely stimuli widely distributed in 3D
heading space. The demand for the rapid and specific encoding of
optic flow is further increased by the brevity of the Sample stim-
ulus (500 ms) and its critical behavioral relevance in the task.
Although the Sample evokes diverse single neuron responses
(Fig. 2), aligning neuronal responses on their preferred heading
directions and normalizing their response amplitudes creates a
coherent representation of population responses (Georgopoulos
et al., 1986; Ben Hamed et al., 2003).

These effects might reflect motion adaptation from sequential
stimulation (Sekuler, 1965), particularly because Sample pre-
ferred stimuli evoke smaller responses in Start and Match (Fig. 3).
Our paradigm always presented a series of orthogonal direction
stimuli, not same or opposite directions, so classically described
motion adaptation effects do not readily account for our obser-
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vations. Nevertheless, the selective adaptation of MSTd neuronal
receptive field segments might reflect adaptation of input from
adjacent MT (Boussaoud et al., 1990; VanWezel and Britten,
2002; Kohn and Movshon, 2004; Glasser et al., 2011). However,
the distinct effects seen from Sample to Start and from Start to
Match are unlikely to be from the same, single underlying re-
sponse mechanism.

Our findings substantially alter earlier conclusions about task
effects in MSTd. Comparing optic flow used to guide saccades with
optic flow that is behaviorally irrelevant shows that relevance en-
hances MSTd’s response amplitude and heading selectivity (Treue
and Maunsell, 1996; Dubin and Dufty, 2007). When optic flow
guides button presses in a delayed match to Sample task, stronger
selectivity is evoked by the Sample than by the match or nonmatch
(Sato et al., 2013). The current study confirms that behaviorally rel-
evant Sample stimuli evoke strong heading selectivity and also shows
that the fundamental stimulus—response relations of single neurons
can be changed by ongoing behavior.

Mechanisms of stimulus selectivity

MSTd’s optic flow responses change from Sample to Start, with
larger Start responses to the Sample’s nonpreferred in/out radial
direction (Fig. 3B). Critically, in/out radial patterns sharing the
same local motion directions at locations around the central vi-
sual field have opposite COM locations. This allows us to distin-
guish local motion and COM location effects. It also suggests that
the shift to local motion responses may reflect changes in the
responsiveness of receptive field segments that are selectively ac-
tivated by a particular direction of planar motion.

An alternative view might attribute response differences among
Sample, Start, and Match from the stimulus sequence independent
of the task in which it is presented. From this perspective, the Sample
stimulus can be seen as being presented on an unbiased clean slate of
neuronal responsiveness. The Start stimulus is presented in the con-
text of the preceding Sample stimulus; the Match stimulus in the
context of the Sample, Start, and Steering period stimuli. The visual
context of these stimuli may contribute to the observed response
changes. However, previous studies of MSTd neuronal responses to
series of optic flow stimuli have not revealed these effects (Paolini et
al., 2000; Froehler and Dufty, 2002; Page etal., 2015). We suggest that
the naturalistic behavioral task that links the Sample, Start, and
Match conditions may influence neuronal responses changes across
those conditions. Further, we expect that the varying behavioral sig-
nificance of cues imbedded in optic flow may be reflected in the
neuronal responses to optic flow in each task condition.

A neural network model of MST responses demonstrated that
responses to radial-in and radial-out optic flow stimuli with op-
posite COM locations can emerge from the input of MT-like
neurons (Lappe etal., 1996). This suggests that the steering effects
that we have seen in MSTd are consistent with underlying planar
motion mechanisms. More recent studies suggest that the re-
sponse dynamics revealed by the network elements may reflect
direction-specific interactions between receptive field segments
that could be driven by input from MT (Khawaja et al., 2009; Yu
et al., 2010).

The current findings further suggest that task effects can shift
MSTd neurons from their intrinsic optic flow selectivity to more
planar motion dependent, MT-like responses. This occurs de-
spite our promoting global pattern analysis by randomizing ra-
dial in/out directions between Sample and Start (O’Brien et al,,
2001; Page and Duffy, 2008). We consider that the Sample COM
may focus the monkey on that segment of the visual field and
enhance responses to planar motion at that site in a transition of
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spatial attention from a floodlight to a spotlight (Posner et al.,
1980) or from attention to the stimulus to intention in the task
(Snyder et al., 2000).

Highlighting the destination

The Match condition yields greater influence of COM location,
seen as similar responsiveness to radial in/out directions with the
same spatial location of the COM, be it a center of expansion
from outward radial movement or a center of contraction from
inward radial movement (Fig. 3C). These effects are seen in com-
parisons of motion and location selectivity across task condi-
tions, with stronger motion selectivity in Sample and Start and
stronger COM location selectivity in Match (Fig. 4). The influ-
ence of COM location in Match responses is consistent with the
behavioral goal of the Match condition: to steer the optic flow’s
COM location to match that presented in the Sample.

Optic flow provides a wide variety of cues about the observ-
er’s self-movement heading direction. These include the
global radial motion pattern, the local planar motion at differ-
ent points in the visual field, and the spatial location of the
radial COM. There are still more visual cues in optic flow that
are not explicitly consider in this analysis, such as speed gra-
dients, texture and occlusion depth cues, and derived or ex-
tracted motion parameters (Gibson, 1966; Dosher et al., 1989;
Landy et al., 1991; Cornilleau-Péres and Gielen, 1996; Calow
and Lappe, 2007). Our result suggests that when the goal of
ongoing behavior is to detect a change in the flow field, the
neuronal population transforms to better represent local mo-
tion directions. When the goal of ongoing behavior is to mon-
itor the spatial location of the COM, the neuronal population
transforms to better represent spatial location.

Steering-related changes in neuronal optic flow preferences
may be similar to featural attentional effects on natural scene
preferences, with neuronal (David et al., 2008) and hemody-
namic (Cukur et al., 2013) changes related to task demands. Such
effects may be mediated by top-down connections from prefron-
tal to posterior cortical areas (Buschman and Miller, 2007) trans-
mitting signals that reflect the dynamic encoding of behavioral
tasks in prefrontal cortex (Stokes et al., 2013).

Alternatively, stimulus preference changes in MSTd might not
be explicitly controlled, but rather may reflect MSTd’s involve-
ment in a distributed representation of the learned steering task
such that the monkey anticipates the next task condition and
intends a behavioral response to that condition (Lashley, 1929;
Mountcastle and Edelman, 1978). Changes across the sensory-
motor stages of the steering task may trigger the contextual reop-
timization of cortical neuronal assemblies without explicit
control signals (Singer, 2009; Friston, 2010), potentially by re-
weighting local motion input from MT and spatial location sig-
nals from PPC. Therefore, steering could transform MSTd’s optic
flow responses from its intrinsic global pattern analysis to MT-
like local motion analysis and then to PPC-like spatial location
analysis.
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