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Distributed and Dynamic Neural Encoding of Multiple
Motion Directions of Transparently Moving Stimuli in
Cortical Area MT
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Segmenting visual scenes into distinct objects and surfaces is a fundamental visual function. To better understand the underlying neural
mechanism, we investigated how neurons in the middle temporal cortex (MT) of macaque monkeys represent overlapping random-dot
stimuli moving transparently in slightly different directions. It has been shown that the neuronal response elicited by two stimuli
approximately follows the average of the responses elicited by the constituent stimulus components presented alone. In this scheme of
response pooling, the ability to segment two simultaneously presented motion directions is limited by the width of the tuning curve to
motion in a single direction. We found that, although the population-averaged neuronal tuning showed response averaging, subgroups
of neurons showed distinct patterns of response tuning and were capable of representing component directions that were separated by a
small angle—Iless than the tuning width to unidirectional stimuli. One group of neurons preferentially represented the component
direction at a specific side of the bidirectional stimuli, weighting one stimulus component more strongly than the other. Another group
of neurons pooled the component responses nonlinearly and showed two separate peaks in their tuning curves even when the average of
the component responses was unimodal. We also show for the first time that the direction tuning of MT neurons evolved from initially
representing the vector-averaged direction of slightly different stimuli to gradually representing the component directions. Our results
reveal important neural processes underlying image segmentation and suggest that information about slightly different stimulus com-
ponents is computed dynamically and distributed across neurons.
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Natural scenes often contain multiple entities. The ability to segment visual scenes into distinct objects and surfaces is fundamental to
sensory processing and is crucial for generating the perception of our environment. Because cortical neurons are broadly tuned to a given
visual feature, segmenting two stimuli that differ only slightly is a challenge for the visual system. In this study, we discovered that many
neurons in the visual cortex are capable of representing individual components of slightly different stimuli by selectively and nonlinearly
pooling the responses elicited by the stimulus components. We also show for the first time that the neural representation of individual
stimulus components developed over a period of ~70-100 ms, revealing a dynamic process of image segmentation. j

ignificance Statement

great deal has been learned about the neural mechanisms under-
lying image segmentation, how the visual system segments two
entities that differ only slightly remains an important open
question.

Visual motion provides a potent cue for image segmentation.
When two stimuli overlap in space and move in different direc-

Introduction

Natural scenes often contain multiple entities. The ability to seg-
regate visual scenes into distinct objects and surfaces, referred to
as image segmentation, is fundamental to vision. Although a
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tions, the primate visual system can segment them into distinct,
transparent surfaces based on visual motion cues alone. The ex-
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tent of “separation” between two transparently moving stimuli
can be conveniently controlled by manipulating the angular dif-
ference between the motion directions. In primates, neurons in
the extrastriate middle temporal (MT) cortex are direction selec-
tive (Maunsell and van Essen, 1983). Area MT is also important
for image segmentation pertinent to visual motion signals (All-
man et al., 1985; Snowden et al., 1991; Stoner and Albright, 1992;
Qian and Andersen, 1994; Britten, 1999, 2003; Born et al., 2000;
Born and Bradley, 2005; Huang et al., 2007, 2008).

MT neurons are broadly tuned to motion in a single direc-
tion, with a mean tuning width of ~100° (Albright, 1984).
Broad direction tuning can be useful for integrating motion
signals (Braddick, 1993; Rust et al., 2006), but it can also limit
the ability to distinguish two “slightly different” directions
that are separated by an angle less than the tuning width to
unidirectional stimuli. Previous studies have examined neural
mechanisms underlying transparent motion (Snowden et al.,
1991; Qian and Andersen, 1994; Treue et al., 2000; Rosenberg
etal., 2008; Krekelberg and van Wezel, 2013; McDonald et al.,
2014). However, it remains unclear how MT neurons encode
visual stimuli moving transparently in slightly different direc-
tions. It has been shown that the response of an MT neuron
elicited by two stimuli presented simultaneously tends to fol-
low the average of the responses elicited by the stimulus
components presented alone (Qian and Andersen, 1994; Re-
canzone et al., 1997). Given the broad tuning of MT neurons
to unidirectional stimuli, averaging the component responses
elicited by two slightly different directions would give rise to a
unimodal tuning curve to the bidirectional stimuli. The re-
sponse peak of the tuning curve is reached when the vector-
averaged direction is aligned with a neuron’s preferred
direction. Indeed, it has been shown that, when visual stimuli
are moving transparently in two directions separated by <90°,
the population-averaged tuning curve of MT neurons con-
tains only a single response peak (Treue et al., 2000; McDonald
etal., 2014). Such a scheme of response averaging would make
the segmentation of slightly different directions challenging.
In contrast, humans can segment transparently moving stim-
uli separated by an angle much smaller than the tuning width
of MT neurons (Braddick et al., 2002).

We hypothesized that, although, on average, MT neurons
appear to perform a linear response averaging, different sub-
groups of neurons may be informative about slightly different
component directions by selectively pooling the response elic-
ited by one of the stimulus components and by performing
nonlinear operations that emphasize the differences between
the stimulus components. We trained two monkeys to per-
form either a fixation task or a perceptual discrimination task
and presented overlapping random-dot stimuli moving trans-
parently in two different directions. We measured the psycho-
physical performance of the monkeys in discriminating a
bidirectional stimulus from a unidirectional stimulus and
characterized the tuning curves of MT neurons to the bidirec-
tional stimuli. We also characterized the time course of the
response tuning. The monkeys were able to perform the dis-
crimination task well. Our results confirmed the hypotheses
described above and further showed that the neural represen-
tation of component directions developed gradually over
time. Our findings revealed important neural processes un-
derlying image segmentation and provide new insights into
how the visual system segments two stimuli even when the
stimulus separation is smaller than the tuning width to a single
stimulus.
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Materials and Methods

Subjects and neural recording. Two adult male rhesus monkeys (Macaca
mulatta) were used in the neurophysiological experiments. Experimental
protocols were approved by the local Institutional Animal Care and Use
Committee and followed the National Institutes of Health’s Guide for the
Care and Use of Laboratory Animals. Procedures for surgical preparation
and electrophysiological recording were routine and similar to those
described previously (Huang et al., 2008; Huang and Lisberger, 2009).
During sterile surgery with the animal under isoflurane anesthesia, a
head post and a recording cylinder were implanted to allow recording
from neurons in cortical area MT. Eye position was monitored using a
video-based eye tracker (EyeLink SR Research) at a rate of 1000 Hz.

We used tungsten electrodes (~1-3 M{); FHC) for electrophysiolog-
ical recordings from neurons in area MT. We identified area MT by its
characteristically large portion of directionally selective neurons, small
receptive fields (RFs) relative to those of neighboring medial superior
temporal cortex (area MST), and its location at the posterior bank of the
superior temporal sulcus. Electrical signals were amplified and single
units were identified with a real-time template-matching system and an
offline spike sorter (Plexon).

Visual stimuli and experimental procedure. Stimulus presentation, the
behavioral paradigm, and data acquisition were controlled by a real-time
data acquisition program (https:/sites.google.com/a/srscicomp.com/
maestro/). Visual stimuli were presented on a 25 inch CRT monitor at a
viewing distance of 63 cm. Monitor resolution was 1024 X 768 pixels and
the refresh rate was 100 Hz. Visual stimuli were generated by a Linux
workstation using an OpenGL application that communicated with an
experimental control computer. The output of the video monitor was
measured with a photometer (LS-110; Minolta) and was gamma
corrected.

Visual stimuli were achromatic random-dot patterns presented within
a stationary, circular aperture that was 7.5° across. Each dot was a square
of 2 pixels, extending 0.08° on a side. The dot density of a single random-
dot pattern was 3.4 dots/deg® and all dots of a random-dot pattern
moved in the same direction at the same speed (i.e., had a motion coher-
ence of 100%). The luminance levels of the dots and the background were
15.3 and 1.9 cd/m?, respectively, giving rise to a Michelson contrast of
0.78. The SD of the luminance intensity of the random-dot pattern was
1.95 cd/m?, which reflects the root mean square contrast (Moulden et al.,
1990; Peli, 1990). The bidirectional stimuli contained two overlapping
random-dot patterns translating in different directions. Each random-
dot pattern is referred to as a “stimulus component.” In the main exper-
iment, the angle separation between the two component directions was
60°. In a subset of experiments, four direction separations (DS’s) of 45°,
60°, 90°, and 135° were interleaved randomly. At each DS, we varied the
vector-averaged (VA) direction of the bidirectional stimuli across 360° to
characterize the response tuning, typically in an even step of 15°. In some
experiments, we used a fine-sampling step of 10° within *£90° of the
recorded neuron’s preferred direction (PD) and a step of 45° beyond.

We also used plaid stimuli consisting of superimposed sinusoidal grat-
ings to characterize the pattern- and component-direction selectivity of
MT neurons. The plaids and gratings were presented within a circular
aperture that was 7.5° across. The component gratings were separated by
135° in orientation. Grating was presented at 50% contrast, with a mean
luminance of 15.3 cd/m?. The spatial frequency was 0.8 cycles/® and the
temporal frequency was between 4 and 16 cycles/s. The plaids and grating
were sampled in a step of 22.5° or 15°. Gratings were first turned on and
stationary for 200 ms and then drifted for 500 ms.

In each experiment, we first characterized the direction selectivity of a
neuron by interleaving trials of 30 X 27° random-dot patches moving at
10°/s in different directions at 45° steps. Directional tuning and the PD of
the neuron were evaluated on-line using MATLAB (The MathWorks).
We next characterized the speed tuning of the neuron using random-dot
patches moving at different speeds of 1, 2, 4, 8, 16, 32, 64, or 128°/s in the
PD. The speed tuning curve was fitted using a cubic spline and the speed
that gave rise to the highest firing rate in the fitted tuning curve was taken
as the preferred speed (PS) of the neuron. The mean PS of our neuron
population was 24°/s (SD = 16°). We then mapped the RF of the neuron
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other 250 ms after the stimulus offset. Trials
containing a single stimulus component of the
bidirectional stimuli were randomly inter-
leaved with trials of the bidirectional stimuli.
Trials that sampled all tested directions around
360° once were grouped in a random sequence
into a “block of trials.” A new block of trials was
initiated only after the previous block was suc-
cessfully completed. Each stimulus direction
was repeated an average of 10 times (SD = 3.6).

In the discrimination paradigm, the mon-
keys were trained to distinguish the bidirec-
tional stimulus that had a DS of 60° from a
unidirectional stimulus. The unidirectional
stimulus contained two overlapping random-
dot patterns that moved in the same direction and had the same dot
density as the bidirectional stimulus. We trained two monkeys on two
variants of the task. For monkey GE, a bidirectional (or a unidirectional)
stimulus was centered on a neuron’s RF and the corresponding unidirec-
tional (or bidirectional) stimulus was presented at the other half of the
visual field symmetric to the RF location relative to the fixation spot.
Visual stimuli moved for 1500 ms. After the stimulus offset, two spots of
light were presented at the two stimulus centers. Once the fixation spot
turned off, the monkey was required to make a saccadic eye movement to
the spot of light at the center of the bidirectional stimuli to receive juice
rewards. In half of the trials, the bidirectional stimuli were placed on the
RFs and, in the other half, the unidirectional stimuli were placed on the
RFs. All trials were randomly interleaved. In 41 of a total of 48 experi-
ments, visual stimuli started to move as soon as they were turned on. In
the remaining seven experiments, visual stimuli remained stationary for
200 ms before moving.

For monkey BJ, only one stimulus, either bidirectional or unidirec-
tional, was centered on the RF and presented in a given trial. Trials
containing bidirectional and unidirectional stimuli were randomly inter-
leaved. In all 37 experiments, visual stimuli were turned on and remained
stationary for 200 ms and then moved for 1000 ms. After the stimulus
offset, two reporting targets were turned on. The monkey was required to
make a saccadic eye movement to the target located at the right (or left)
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Direction tuning curves of four example neurons elicited by bidirectional stimuli separated by 60° and constituent
unidirectional stimulus components. 4, Diagram illustration of the visual stimuli and the response tuning curves of an example
neuron. Gray dots in the diagram indicate two overlapping, achromatic random-dot patterns moving in two directions separated
by 60°. Colors were used for illustration purposes only. The component direction shown in blue (Dir. 1) moved at the CC-side of the
other component direction shown in green (Dir. 2). The abscissas in blue and green show unidirectional components Dir. 1and Dir.
2, respectively, of the corresponding bidirectional stimuli for which the VA direction is shown by the black abscissa. The blue and
green axes are shifted by 60° relative to each other. A VA direction of 0° is aligned with the neuron’s PD. For this neuron, the
responses elicited by the bidirectional stimuli approximately followed the average of the responses elicited by the stimulus
components. B, (, D, Response tuning curves of another three example neurons. Error bars indicate SE and they are sometimes
smaller than the symbol size (e.g., asin D).

side of the fixation spot when a bidirectional (or unidirectional) stimulus
was presented in a given trial to receive juice rewards.

In addition to using the percentage of correct trials to measure the
behavioral performance, we also used the discriminability index (d') =
norminv (hit rate) — norminy (false alarm rate). norminv is a MATLAB
function that calculates the inverse of the normal cumulative distribution
function, with the mean and SD set to 0 and 1, respectively.

Analysis of response tuning. We calculated the firing rate for each uni-
directional stimulus and each VA direction of the bidirectional stimuli
based on the spike count during the 1000 ms motion interval and aver-
aged the response across repeated trials. Based on the experiments in
which the motion onset was separated from the stimulus onset in time,
we found that the transient neuronal response elicited by the stimulus
onset lasted, on average, <150 ms. In a subset of the experiments of the
discrimination paradigm, motion onset was not separated from the stim-
ulus onset and the stimulus duration was 1500 ms. For these experi-
ments, we calculated the firing rate based on the response 150-1150 ms
after the stimulus onset.

We constructed the response tuning curves to unidirectional stimuli
and to bidirectional stimuli and fitted the raw direction tuning curves
using cubic splines at a resolution of 1°. For each VA direction, we deter-
mined the responses elicited by the bidirectional stimuli and the constit-
uent unidirectional stimulus components. To average the direction
tuning curves across neurons, we rotated the spline-fitted tuning curve
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Figure 2.

Model fits of the response tuning curves elicited by bidirectional stimuli separated by 60°. 4, PV accounted for by the LWS and the SNL model. B, Weights for the component responses

obtained using the SNL model fit. Each dot in A and B represents data from one neuron. Colored dots in B indicate that the two response weights are significantly different. C, Distribution of the
response weight for each stimulus component. D—F, Direction tuning curves and their model fits of three example neurons. These neurons are the same as those shown in Figure 18-D.

elicited by the bidirectional stimuli such that the VA direction of 0° was
aligned with the PD of each neuron. We then normalized neuronal re-
sponses by each neuron’s maximum bidirectional response and averaged
the aligned, normalized tuning curves across cells.

When the sampling step of the VA direction in a block of trials was 15°,
the unidirectional stimuli sampled all possible component directions
across different VA directions. However, when a neuron was tested with
the sampling steps of a mixture of 10° and 45°, the unidirectional stimuli
did not fully sample the component directions. For those neurons, we
first used a cubic spline to fit the neuronal responses elicited by the
unidirectional stimuli and then resampled the tuning curve to obtain the
responses elicited by the component directions.

We fitted the response tuning curves elicited by the bidirectional stim-
uli using a linear weighted summation (LWS) model (Eq. 1), and a sum-
mation plus nonlinear interaction (SNL) model (Eq. 2) (Sanada et al.,
2012; Xiao et al,, 2014) by minimizing the sum of squared error as
follows:

Ryea = wiR, + w,R, + C (1)

(2)

where R,,,..q is the model predicted response to the bidirectional stimuli,
R, and R, are the measured component responses elicited by the two
unidirectional motion components, and w, and w, are the weights for the
component responses, respectively. “C” in the LWS model is a constant
and “b” in the SNL model is referred to as the “nonlinear interaction
coefficient” that determines the sign and strength of the multiplicative
interaction between the component responses.

We also fitted the responses to the bidirectional stimuli using a power-
law summation (PWS) model (Eq. 3) after Britten and Heuer (1999). We
allowed the response weights w, and w, for the two stimulus components
to be different. The parameter 7 is a positive exponent and Cis a constant
as follows:

Ryed = wiR, + w,R, + bR/R,

Rpred = (WIRT + WZR;)IM +C (3)
To evaluate the goodness-of-fit of each model, we computed the percent-
age of variance (PV') accounted for by a model fit as follows:

SSE

SST
where SSE is the sum of squared errors between a model fit and the data
and SST is the sum of squared differences between the data and the mean
of data (Morgan et al., 2008). When occasionally SSE exceeded SST and
gave rise to a negative PV, we forced the PV to be zero.

To compare the goodness-of-fit between models and take the number

of free parameters into consideration, we calculated the Akaike informa-
tion criterion (AIC) (Akaike, 1973) for each model fit as follows:

PV:100><(1 (4)

SSE
AIC=NX1H<W>+2XK (5)

where N is the number of data points, SSE is the sum of squared errors,
and K is the number of free parameters of the model. Between two mod-
els, the one that gives a smaller AIC provides a better goodness-of-fit.

For each neuron, we also fitted its responses to the unidirectional
stimuli first by a cubic spline at a step of 1°and then fitted the spline-fitted
tuning curve using the von Mises function, similar to a circular Gaussian
function as follows:

R(0) = aellcost0=00-11 4 C (6)
where 6 is the motion direction of the unidirectional stimulus, 6_ is the
direction where the tuning curve reaches its peak, a and b determine the
magnitude and bandwidth of the tuning curve, respectively, and C is a
positive constant. First fitting the tuning curve using a spline at a fine step
allowed the following Gaussian-like fit to accurately capture the response
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Figure 3.  Population-averaged tuning curves elicited by bidirectional stimuli separated by
60°and by constituent unidirectional components. 4, Tuning curves averaged across all neurons
inthe sample. B, Averaged across neurons that showed a single response peak and no side bias
to the bidirectional stimuli. ¢, Neurons that showed side bias toward the stimulus component at
the C-side of the two component directions (i.e., Dir. 2). D, Neurons that showed side bias
toward the CC-side component (i.e., Dir. 1). E, Neurons that showed two response peaks. The
convention of the abscissa is the same as that in Figure 1. Abscissas for component Dir. Tand Dir.
2 are not plotted for simplicity. The width of each curve indicates SE.

tuning, especially when the tuning curve’s bandwidth was narrow. The
full width at the half-height of the fitted tuning curve by Equation 6 was
taken as the “tuning width” for a given neuron. For a neuron to be
selected for further data analyses, we required the goodness of fit (PV) of
a neuron’s unidirectional tuning curve by Equation 6 to be >90%. A
small number of neurons that had irregular or multimodal tuning curve
to the unidirectional stimuli were rejected by this criterion (see Results).

To calculate the skewness of a neuron’s response tuning curve to a
unidirectional stimulus, we used a measure of Pearson’s first skewness
coefficient, defined as follows: (mean — mode)/SD. The mean, mode,
and SD were calculated from the unidirectional tuning curve of each
neuron elicited by a random-dot stimulus.

Classification of response tuning curves. We classified neurons into dif-
ferent classes based on the tuning curves in response to the bidirectional
stimuli. To determine whether a tuning curve contained only a single
peak or at least two peaks, we first located the global peak, a candidate
second peak, and a “trough” in between based on the spline-fitted and
smoothed tuning curve of the trial-averaged responses. The smoothing
was done using a second-order, seven-point Savitzky—Golay filter. To
qualify as a candidate second peak, a response at a given VA direction had
to be a local maximum within the neighborhood of *10° along the
spline-fitted tuning curve. A candidate trough was determined as the
minimum between the global peak and a candidate second peak and had
to be within £40° from VA direction of 0° when the DS of the bidirec-
tional stimuli was 60°. More generally, at a DS that was not >135°, a
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candidate trough had to be within an angle range of 2 X DS/3 centered
on VA direction 0°. If the response at the candidate trough was signifi-
cantly smaller than the global peak and the candidate second peak, then
the tuning curve was considered to contain two peaks. If these criteria
were not met after searching through all candidate second peaks, the
tuning curve was considered to contain one peak.

We used the bootstrap method (Efron and Tibshirani, 1994) to deter-
mine whether a candidate trough was significantly smaller than the
global peak or a candidate second peak. Specifically, for each spline-fitted
but not smoothed tuning curve determined by a single trial across differ-
ent VA directions, the responses at the locations of the global peak, a
candidate second peak, and a trough were taken and the difference be-
tween a peak and the trough was calculated. If the difference between a
peak and a trough was >1.5 times of the SEM difference (i.e., 87% of
confidence interval), then the trough was considered significantly
smaller than the peak. The SEM difference was estimated by bootstrap-
ping (200 times) the difference between the responses at the peak and
trough locations from individual trials. Note that the peak and trough
locations were determined by the trial-averaged tuning curve and were
not necessarily peaks and trough for a tuning curve based on a single set
of trials.

To determine whether a trial-averaged tuning curve of the responses
elicited by the bidirectional stimuli was significantly biased toward one
motion component (i.e., showed “side bias”), we used the SNL model to
fit each tuning curve determined by a single trial across different VA
directions. Across the repeated trials, we obtained trial-by-trial model fits
of the response weights for the two components w, and w,. We con-
ducted a permutation test (50,000 times) to determine whether w, was
significantly greater than w, (p < 0.05) or vice versa.

Time course analysis of response tuning. To compute the time course of
the response tuning to the bidirectional stimuli, we calculated the tuning
curve using trial-averaged firing rates within a 50 ms time window and slid-
ing at a 10 ms step for each neuron. The responses were normalized by the
maximum firing rate across all time windows and averaged across neurons.
For the time course analysis, we excluded the experiments in which the visual
stimuli started to move as soon as they were turned on and therefore the
motion onset was not separated from the stimulus onset. When analyzing
the time course of the response tuning from neurons that showed side bias,
we pooled the results from neurons that showed side bias to the component
directions at the clockwise side (C-side; i.e., Dir. 2 in the diagram in Fig. 1)
and the counterclockwise side (CC-side; i.e., Dir. 1 in the diagram in Fig. 1)
together. To do so, we first horizontally flipped the tuning curves to the
bidirectional and unidirectional stimuli of neurons that showed side bias to
the C-side, along the axis of VA direction 0°. We then averaged the flipped
tuning curves together with the tuning curves from the neurons that showed
side bias to the CC-side.

Stimulus discrimination using a classifier. To evaluate whether the re-
sponses of populations of neurons in MT carry sufficient information
about the bidirectional and unidirectional stimuli, we used a linear vari-
ant of the support vector machine (SVM) (Vapnik, 2000; Scholkopfet al.,
2002; Grafetal.,2011; Chen etal., 2015) to discriminate the bidirectional
stimuli from unidirectional stimuli and between bidirectional stimuli
that had different angular separations. In our experiments, we did not
record the responses from a population of neurons simultaneously. To
convert the direction tuning curve of a single neuron into the response
pattern of a population of neurons, we assumed that, for each neuron in
our dataset, there was a family of “cloned” neurons that had the same
tuning curve but different PDs evenly spanning 360°. Each presentation
of a visual stimulus would generate a pattern of population response
across the cloned neurons, as well as across other neurons with different
direction tuning curves and their cloned neurons. The procedure of clas-
sification follows.

For each neuron, we calculated the “single-trial” direction tuning
curve based on the neural responses from one randomly selected block of
trials. We fitted the single-trial tuning curve using a cubic spline at a
resolution of 1° and duplicated and shifted the tuning curve in a step of
7.5°. This generated the tuning curves of 48 cloned neurons with PDs that
were evenly distributed. We took the numbers of spikes of the cloned
neurons elicited by a unidirectional stimulus moving at 0° or a bidirec-
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Figure 4.

Consistent side bias of response tuning curves across different angular separations. A, Averaged response tuning-curves across 18 neurons that showed side bias to the C-side

component of the bidirectional stimuli separated by 60°. B, Averaged response tuning curves across 26 neurons that showed side bias to the CC-side component of the bidirectional stimuli separated
by 60°. The width of each curve indicates SE. C, Response weights obtained using the SNL model fit for the combined 44 neurons that showed side bias to the bidirectional stimuli separated by 60°.
The “biased-side” in the ordinate was determined by the response to 60° DS. Each dot represents data from one neuron. Solid dots indicate that the response weight for one stimulus component was
significantly greater than the other component (permutation test, p << 0.05). The mean weight for the component response to the “biased-side” defined at 60° DS was significantly greater than the
weight to the other stimulus component at angular separations of 45°,90° and 135°. p-values are the results of one-tailed paired ¢ test. AT-C1, 45° DS; A2—€2, 60° DS; A3—(3, 90° DS; A4—(4, 135°
DS. Note that we allowed the side-biased neurons to have either a single response peak or two response peaks in this analysis.

tional stimulus that had a VA direction of 0° as the “single-trial popula-
tion neural response.” The procedure was repeated 10 times with
replacement for a given neuron. Using a data sample of N recorded
neurons, the SVM classifier was trained to discriminate the population
response elicited by two different visual stimuli based on the responses
from N — 1 “training” neurons and, for each training neuron, 10 ran-
domly chosen single-trial tuning curves, i.e., a total of 10 X (N — 1) pairs
of single-trial population responses. The classifier was then used to clas-
sify a pair of the single-trial population responses from the remaining
“testing neuron” elicited by two stimuli. For a given testing neuron, the
single-trial response was randomly selected 10 times with replacement.
The selection of the testing neuron was repeated across all N neurons.
The performance of the classifier was measured using d’ = norminv (hit
rate) — norminv (false alarm rate), as for measuring the behavioral per-
formance of the animals. The hit and false alarm rates were calculated
over the classifications of 10 X N pairs of single-trial population re-
sponses of the testing neurons. When the hit or false alarm rate occasion-
ally reached 1, d° was calculated using a modified formula: d' =
norminv{[(100 X hit rate) + 1]/102} — norminv{[(100 X false alarm
rate) + 1]/102} (Chen et al., 2015). We only needed to use the modified
d' twice in all calculations and those occasions were for the neuronal
population that showed two response peaks. The SVM was implemented
using the MATLAB function fitcsvm.

We also trained the classifier based on the responses from N neurons
and a total of 10 X N — 1 pairs of single-trial population responses by
leaving one pair of single-trial population responses out as the testing

patterns. The procedure was repeated across 10 randomly picked testing
patterns for each neuron and across N neurons. We found similar results
using this method as the method of leaving one neuron out described
above. Because the left-out pattern from one neuron was similar to the
rest of the patterns from the same neuron, we chose to use the stricter
method of leaving all the patterns from one neuron out (i.e., leaving one
neuron out).

Analysis of pattern and component direction selectivity. We used the
methods of Movshon et al. (1985) and Smith et al. (2005) to quantify the
pattern- and component-direction selectivity of MT neurons. The pat-
tern prediction was determined by the responses to gratings drifting in
the pattern directions and the component prediction was the sum of the
responses elicited by the component gratings. We calculated the partial
correlations R,,, and R, for the pattern and component predictions,
respectively, as follows:

G .
VA =)0 = 1)
(rc - rprpc)
Rpc R e e B (8)
(1= -r)
where , and r_ are the correlations between the neuronal responses to

plaid and the pattern and component prediction, respectively, and r,, is
the correlation between the two predictions. We converted each value of

R,, and R, to a Z-score designated as Z, and Z_ respectively using
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Figure5. Relationship between the shapes of response tuning curves to bidirectional and unidirectional stimuli. The results were from 79 neurons that showed side bias in their tuning curves to
the bidirectional stimuli separated by 60°. 4, Relationship between the peak locations of the response tuning to the bidirectional stimuli R,, and the average of the responses elicited by individual
stimulus components R, = (R, -+ R,)/2. The peak location is represented as the VA direction of the bidirectional stimuli. BT, Relationship between the difference of the response weights for the
two stimulus components obtained from the SNL model fit of R, , and the skewness of the unidirectional tuning curve (see Materials and Methods). w, and w correspond to the response weights
for Dir. 2and Dir. 1, respectively (Fig. 1 diagram). B2—B4, Response tuning curves to the unidirectional stimuli of three neurons that had negative (B2), near zero (B3), and positive skewness (B4).
These neurons are marked in BT using the corresponding colors. The neuron shown in B3 is the same example neuron shown in Figure 1B.

Fisher’s r-to-Z transformation (Smith et al., 2005). For a neuron to be
judged as pattern-direction selective, Z, had to exceed Z_ by a value of
1.28 (or 0 if Z_ was negative), equivalent to a probability of 0.9, and vice
versa for a neuron to be judged as component-direction selective. Oth-
erwise, the cell was considered unclassified.

Results

To gain a better understanding of the fundamental neural process
of image segmentation, we asked the question of how simultane-
ously presented and slightly different motion directions are rep-
resented by neurons in extrastriate area MT. To address this
question, we first presented overlapping random-dot stimuli
moving in two directions separated by 60° and characterized the
tuning curves of MT neurons in response to the bidirectional
stimuli. We next used bidirectional random-dot stimuli that had
different DS’s of 45°, 60°, 90°, and 135° to determine whether the
tuning curves showed a consistent trend across DS’s. We also
characterized the time courses of the tuning curves in response to
the bidirectional stimuli. Finally, we compared the tuning prop-
erties of MT neurons in response to our random-dot stimuli with
the pattern- and component-direction selectivity characterized
by plaid stimuli. We recorded from 290 neurons in area MT of
two macaque monkeys as they performed either a simple fixation
task or a perceptual discrimination task. A majority of the re-
corded neurons (N = 267, 92%, 131 from monkey GE and 136
from monkey BJ) passed our selection criteria for the direction
tuning curve to a unidirectional stimulus and were included in
our dataset (see Materials and Methods).

MT direction tuning to bidirectional stimuli separated by 60°

We set the DS between two stimulus components to 60° and
varied the VA direction of the bidirectional stimuli to character-
ize the direction tuning curve. In this experiment, the monkeys
performed a fixation task. The data sample of this experiment
contained 202 neurons (107 from GE and 95 from BJ). The mean
eccentricity of the RFs was 7.1° (SD = 3.7°). We chose to use a DS
of 60° for two reasons. First, at this DS, both humans (Gaudio and
Huang, 2012) and monkeys (see below) can reliably segment the
two component directions of our stimuli. Second, for a majority
of MT neurons, the average of the responses elicited by two mo-
tion components separated by 60° contains only a single response
peak because the tuning curves of MT neurons elicited by unidi-

rectional stimuli have a mean width of ~100° (Albright, 1984).
The peak response occurs when the VA direction is aligned with a
neuron’s PD, which imposes a challenge for the neural encoding
of two separate component directions.

Figure 1 shows the direction tuning curves of four represen-
tative MT neurons. The neuron shown in Figure 1A had a tuning
curve elicited by the bidirectional stimuli (R,,, shown in red)
approximately following the average of the component responses
(R4vg shown in gray). However, we also found that many MT
neurons showed tuning curves that deviated significantly from
the response average. For the second neuron shown in Figure 1B,
the response elicited by the bidirectional stimuli was the strongest
when the motion component at the C-side of the two directions
(i.e., Dir. 2) was near the neuron’s PD, but not when the CC-side
component (i.e., Dir. 1) was near the PD. We refer to this re-
sponse bias toward the stimulus component at a specific side of
two motion directions as “side bias.” The third neuron had a side
bias toward the CC-side of the two component directions (Fig.
1C). Approximately 40% of the neurons showed the side bias.
Last, the fourth neuron showed two separate response peaks that
were reached when either stimulus component moved in a direc-
tion near the neuron’s PD even though the average of the com-
ponent responses only contained a single peak located when the
VA direction was at the PD (Fig. 1D). Approximately 20% of the
neurons showed this type of tuning curve.

We fitted the response tuning curves using a LWS model (see
Materials and Methods, Eq. 1) and a SNL model (Eq. 2). Each
model has three free parameters. The SNL model accounted for,
on average, 92.4% of the response variance (SD = 12.0%),
whereas the LWS model accounted for 90.8% of the response
variance (SD = 11.8%). The SNL model provided a significantly
better fit than the LWS model (N = 202, one-tailed paired ¢ test,
p < 10~% Fig. 2A). Figure 2, D-F, demonstrates this by compar-
ing the SNL and LWS model fits with three of the example neu-
rons shown in Figure 1. We therefore used the SNL model to fit
the data in the rest of our analyses.

We obtained the response weights w, and w, for the two com-
ponent responses, respectively, using the SNL model fit (Eq. 2).
When averaged across all neurons in the sample, the mean w, and
w, were 0.64 and 0.63, respectively (SD = 0.23 for both), suggest-
ing sublinear summation. The two response weights were not
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Figure 6.  Time course of response tuning to bidirectional stimuli separated by 60°.
A-D, Responses of neurons showing side bias to bidirectional stimuli. E-H, Responses of
neurons showing two peaks to bidirectional stimuli. A, E, Subpopulation-averaged re-
sponse tuning curves to bidirectional stimuli at different time epochs after the stimulus
motion onset. The duration of each time epoch is 50 ms. The tuning curves of later epochs
are stacked on earlier ones. The number in figure legends indicates the middle point of
each time epoch. B, F, Time course of the subpopulation-averaged response tuning to
bidirectional stimuli (i.e., R;,). Ordinates indicate the middle point of each time epoch. C,
G, Time course of the average of the component responses (i.e., R,,,), averaged across
neurons in each subpopulation. D, H, Difference between the response to bidirectional
stimuli shown in B and F and the average of the component responses shown in Cand G,
respectively. In A-C, we pooled the results from neurons that showed side bias to the
component directions at the C-side (i.e., Dir. 2) and (C-side (i.e., Dir. 1) together by first
flipping the bidirectional and unidirectional tuning curves of neurons that showed the
side bias to Dir. 2 along the axis of VA direction 0°. The white and gray horizontal lines in
B-Dand F-Hindicate the neuronal response onset to the stimulus motion. In Dand H, the
deviation from the average of the component responses emerged later than the neuronal
response onset.
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significantly different from each other (paired r test, p > 0.8). The
distributions of the two response weights w, and w, are shown in
Figure 2C. However, many individual neurons (N = 94, 47%)
had significantly different response weights for the two stimulus
components (permutation test, p < 0.05; Fig. 2B), consistent
with the observation that the tuning curves of many MT neurons
showed the side bias.

To classify the response tuning curves elicited by the bidirec-
tional stimuli, we used an algorithm to determine whether a tun-
ing curve contained a single response peak or two separate peaks
based on a bootstrap method. We also classified neurons as “side
biased” if the response weights for the two stimulus components
were significantly different based on a permutation test (see Ma-
terials and Methods). Figure 3 shows the response tuning curves
averaged across the whole population and subgroups of neurons.
The tuning curve averaged across all neurons in the population is
very similar to the average of the component responses but is
slightly broader (Fig. 3A). The tuning curve contains only a single
response peak located when the VA direction was in the PD.
Among 202 neurons, 85 neurons (42%) showed a single response
peak and no side bias. The response tuning curves of these neu-
rons were similar to the average of the component responses (Fig.
3B). We referred to these neurons as “averaging” cells. In con-
trast, the response tuning curves of other subgroups of neurons
appear to be informative about the component directions. An-
other 79 neurons (39%) showed a single response peak and side
bias to one side of the two component directions (Fig. 3C,D). On
average, these neurons were most active when a component di-
rection at a specific side of the two motion directions was near the
PD, but not when the other component direction was near the
PD. In other words, these neurons showed selectivity, not only to
the motion direction of a stimulus component, but also to which
side the component direction was situated relative to the other
component direction.

Another 38 neurons (19%) showed two response peaks (Fig.
3E). The peaks were located when either component direction
was near the PD. In other words, these neurons were informative
about the direction of a stimulus component regardless of which
side the component direction was situated on relative to the other
stimulus component. Compared with the average of the compo-
nent responses R,,, (shown in gray), the two response peaks ap-
pear to be shaped by facilitation at the outer flanks of the tuning
curve and suppression near VA 0° (Fig. 3E). Consistent with the
observation that suppression occurred when the VA direction
was near the PD, for neurons that showed two response peaks, the
mean value of the nonlinear interaction coefficient b of the SNL
model fit (Eq. 2) was significantly smaller than 0 (Table 1; one-
tailed ¢ test, p << 0.001). This indicates that the multiplicative
interaction between the component responses had a suppressive
effect on the neuronal response. In contrast, for neurons that
showed a single response peak with or without a side bias, the
mean values of b (Table 1) were not significantly different from 0
(Student’s t test, p > 0.2).

Notably, neurons that showed two response peaks in the tun-
ing curves had a narrower tuning width to unidirectional stimuli
than other subgroups of neurons (one-tailed two-sample  test,
p < 0.002, after Bonferroni correction for multiple comparisons;
Table 1). The mean tuning width of the side-biased neurons was
marginally smaller than that of the averaging neurons (one-tailed
two-sample ¢ test, p = 0.02). Between any two subgroups of av-
eraging, side-biased and two-peaked neurons, we did not find
significant difference in the RF eccentricity, RF size, or PS (Wil-
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Xiao and Huang e Neural Encoding of Multiple Motion Directions

Nonlinear interaction coefficient b of SNL model fit

Exponent n of PWS model fit Tuning width to unidirectional stimuli

Cells No. of cells (mean £ SD) (median, no. of cells) (mean = SD)
All 202 (100%) —0.007 £ 0.058 1.5 (n = 201) 99 +22°
Averaging 85 (42%) —0.004 = 0.028 1.2 (n = 84) 105 = 18°
Side-biased 79 (39%) 0.001 = 0.079 1.7(n=179) 99 +19°
2-peak 38 (19%) —0.03 £ 0.052 3.7 (n=138) 85 £ 27°
~ - Peak location of R12 -»- Right peak location
coxon rank-sum test, p > 0.14). The RE A < Peak location of Ravg B - Le% pgak location
locations of the three subgroups of neu- (N=79) « Peak amplitude of R12 (N=38) Right peak amplitude
rons largely overlapped with each other. S - S - Left peak amplitude
The SNL model outperformed the § 45+ r0.8 ﬁ 45+ r0.8
LWS model due to the inclusion of a non- S 30 2 S 30 @
. . . k<] o) Ke] o
linear interaction term between the com- 3§ 151 -06 o B 5] 06 o
ponent responses. We asked whether a % e % o
model involving a different type of re- ¢ 07 0.4 3 o O7 r0.4 73
L o N o N
sponse nonlinearity could account for the & -15- = ® -15+ =
response tuning curves to the bidirec- % 304 J02 £ % .30 0.2 £
tional stimuli. We fitted our data using a 5 S 5 2
l« t. d I(B -tt d - '45 T T T T % T T 0 - '45 T T T 0
nonlinear summation model (Brittenand 8 ™™ " 150 300 450 600 S 0 150 300 450 600
Heuer, 1999). The PWS model (Materials > >

and Methods, Eq. 3) fitted the data well
and accounted for, on average, 93.2% of
the response variance (N = 201, SD =
10.6%). The model was unable to fit the
response from one neuron. Note that the
PWS model has one additional free pa-
rameter than the LWS and SNL model.
We used the AIC to take the number of
model parameters into consideration and
compared the goodness-of-fit between
the models (Akaike, 1973; Burnham and Anderson, 2002; Chen
etal.,2011). For 119 neurons (59%), the AIC of the SNL model fit
was smaller (and better) than that of the PWS model. For the rest
of the neurons, the AIC of the PWS model was smaller. Across the
population, the average AIC for the SNL model was not signifi-
cantly different from that of the PWS model (paired ¢ test, p =
0.67), indicating that the goodness-of-fits of the SNL and PWS
model were comparable. Between the PWS and LWS model, the
PWS model was better. The AIC of the PWS model was smaller
for 174 neurons (87%) and the average AIC of the PWS model
was significantly smaller than that of the LWS model (one-tailed
paired ¢ test, p < 10 ~2%).

Across the neuron population, the median of the exponent
parameter n of the PWS model fit was 1.5. The median # of the
neurons that showed two response peaks was 3.7 and significantly
greater than that of the averaging neurons and the side-biased
neurons (one-tailed Wilcoxon rank-sum test, p < 0.001, after
Bonferroni correction; Table 1). This indicates that neurons
showing two response peaks are more likely to perform a soft
MAX-like operation (Britten and Heuer, 1999; Riesenhuber and
Poggio, 1999; Kouh and Poggio, 2008) than other subgroups of
neurons. The median # of the side-biased neurons was also sig-
nificantly greater than that of the averaging neurons (one-tailed
Wilcoxon rank-sum test, p < 0.01).

Figure 7.

epoch.

Comparison of response tuning curves across different
angular separations

As characterized above, some MT neurons showed side bias in the
response tuning curves to the bidirectional stimuli separated by
60°. We asked whether the side bias was consistent across differ-
ent angular separations. In this experiment, we randomly inter-

Time after motion onset (ms)

Time after motion onset (ms)

The temporal evolution of the response peak(s) in the tuning curve to bidirectional stimuli separated by 60°. 4,
Location and amplitude of the response peak of neurons that showed a single peak and side bias. We pooled neurons that showed
side bias to the C-side (i.e., Dir. 2) and (C-side (i.e., Dir. 1) together as in Figure 6, A and B. B, Peak locations and amplitudes of
neurons that showed two response peaks to bidirectional stimuli. Right side and left side refer to the peaks seen in Figure 6, £ and
F. The peak location and magnitude were calculated based on averaged response tuning curves across neurons in each subgroup.
The tuning curve was calculated within a 50 ms time epoch, sliding ata 10 ms step. Abscissa indicates the middle point of each time

leaved experimental trials of four angular separations of 45°, 60°,
90°, and 135° and varied their VA directions to characterize the
response tuning curves. The monkeys performed a fixation task
and our data sample included 96 neurons.

We found that MT neurons showed consistent side bias across
different angular separations (Fig. 4). We classified side-biased
neurons based on their responses to bidirectional stimuli sepa-
rated by 60°. For neurons showing side bias to one side of two
component directions at a DS of 60° (Fig. 4A2,B2), their tuning
curves tended to bias to the same side at other angular separations
(Fig. 4A1,A3,A4,B1,B3,B4). Figure 4C shows the response
weights obtained using the SNL-model fit. We pooled together
the response weights of 44 neurons (46% of the data sample) that
showed side bias to the C-side (Fig. 4A) and the CC-side (Fig. 4B)
at 60° DS. Although the “biased-side” was only determined by the
response tuning to the DS of 60°, at the DS’s of 45°, 90°, and 135°,
the mean response weight for the component direction at the
“biased-side” defined at 60° DS was significantly greater than the
response weight for the other stimulus component (one-tailed
paired f test, p < 0.00012, after Bonferroni correction; Fig. 4C).

Relationship between the shapes of tuning curves to
bidirectional and unidirectional stimuli

For neurons that showed side bias in the response tuning to the
bidirectional stimuli (i.e., R,,) separated by 60° (Fig. 3C,D, red
curves), the mean component response averaged across the same
subpopulation of neurons (i.e., R, Fig. 3C,D, gray curves) had
the response peak slightly shifted toward the same side as that of
R,,. We asked whether the side bias of R, was linked to a shift of
peak location in R,,,. We found that the peak location of R;,
of the side-biased neurons in response to the bidirectional stimuli

separated by 60° was correlated with that of R, (Spearman’s p =
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Figure 8.

Temporal development of side bias in the response tuning curves elicited by bidirectional stimuli at different angular separations. A7-A3, Responses elicited by bidirectional stimuli

separated by 45°. B1-B3, 60° DS. €1-(3, 90° DS. D1-D3, 135° DS. A1-D1, Subpopulation-averaged tuning curves of responses at different time epochs elicited by bidirectional stimuli. The
duration of each time epoch is 50 ms. A2—-D2, Time course of the response tuning to bidirectional stimuli averaged across side-biased neurons at each DS. Classification for the side-biased neurons
was based on the responses to the bidirectional stimuli at each DS. A3—-D3, Time course of the average of the component responses. Conventions are the same as for Figure 6, A-C. The results from
neurons that showed side bias to the component directions at the C-side and CC-side were pooled together. This analysis included side-biased neurons that showed either a single response peak or

two peaks at each DS.

0.54, p < 10 %, N = 79; Fig. 5A). However, the side bias in R,
cannot be explalned simply by the bias in R,,,.. For some neurons,
as shown in the second and fourth quadrants, the peak locations
of R, and R, were at opposite sides of VA direction 0° (Fig. 5A).
When we determined the “biased-side” by the response weights
of the SNL model fit, the shift of the peak location in R,, toward
the biased side (mean = 17°) was significantly greater than the
shift of the peak location to the same side in R,,, (mean = 5%
one-tailed ¢ test, p < 10 7).

The peak location of R,,, is related to the shape, specifically
the skewness of the tuning curve to the unidirectional compo-
nent. The peak location of R,,, would shift to the right (or left)
side of VA direction 0° if a neuron’s tuning to unidirectional
stimuli has a positive (or negative) skewness. Because the peak
location of R,, was correlated with that of R,,,, we asked whether
the side bias in R, of a neuron was linked to the skewness of its
tuning curve to the unidirectional stimuli. We found that the
difference between the response weights for the two stimulus
components obtained from the SNL model fit of R,, had a weak
but significant correlation with the skewness of the tuning curve
to the unidirectional stimuli (Spearman’s p = 0.38, p < 0.001,
N = 79; Fig. 5B). Despite this correlation, the side bias in the
response tuning to the bidirectional stimuli cannot be explained
simply by a neuron’s tuning property to unidirectional stimuli.
For some neurons, as shown in the second and fourth quadrants
of Figure 5B1, the skewness of the tuning curve to unidirectional
stimuli mismatched the side bias in R,,. Furthermore, for neu-
rons that had a symmetric tuning curve to unidirectional stimuli

(e.g., the neuron shown in Figs. 5B3, 1B), they nevertheless
showed side bias to either the C-side or CC-side (Fig. 5BI).

Time course of response tuning to bidirectional stimuli

We found that the side bias and two response peaks in MT response
tuning to the bidirectional stimuli evolved over time. When the an-
gular separation between the two component directions was small,
the tuning curve initially followed the average of the component
responses and gradually changed to better represent the constituent
component directions. To measure the time course of the response
tuning, we characterized the direction tuning curves using a time
window of 50 ms and sliding at a step of 10 ms.

Figure 6 shows the time course of the response tuning curve
elicited by the bidirectional stimuli separated by 60°. For neurons
that showed the side bias (79 of 202 neurons), the initial response
tuning had a symmetric single peak located near the VA direction
at 0° (Fig. 6A, black curve). Over time, the response peak gradu-
ally shifted toward one side of the tuning curve (Fig. 6A,B). In
contrast, the average of the component responses elicited by the
two component directions (i.e., R,,,) had an approximately sym-
metric single peak throughout the motion response period with
only a slight bias (Fig. 6C). Taking the difference between the
response tuning curves elicited by the bidirectional stimuli (i.e.,

R;,) and R,,, revealed strong facilitation at the biased side and
suppression at the other side of the tuning curve (Fig. 6D).

For neurons that showed two response peaks (38 of 202 neu-
rons), the initial response tuning also had a single, symmetric
peak near VA 0° (Fig. 6 E, F) similar to the average of the compo-
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nent responses (Fig. 6G). Over time, the A
response elicited by the bidirectional
stimuli split into two separate peaks (Fig.
6E, F), whereas the average of the compo- ~as!

nent responses remained a single peak FP

(Fig. 6G). The difference between the bi-
directional response and the average of
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the component responses indicated re-
sponse facilitation at the two outer flanks
of the tuning curve and response suppres-
sion near VA 0° (Fig. 6H). For both B
groups of neurons that showed the side

bias and two response peaks, the facili-
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tatory and suppressive effects occurred af-
ter a delay following the onset of the &
neuronal response (Fig. 6D,H). P

The peak locations in the response
tuning curves of the side-biased neurons
and those showing two separate peaks
were approximately aligned with the di-

| Motion

| Saccade/Report

rections of the stimulus components (Fig.
7). For neurons that showed the side bias,
the peak location of R,, was initially near
VA direction 0° and progressively shifted
to near —30° over a period of 80—-100 ms
(Fig. 7A, red curve). At VA direction
—30°, the two component directions were
0° (i.e., the PD of the neuron) and —60°,
respectively. In other words, these neu-
rons responded most strongly when one
component direction was near the PD. Af-
ter the initial, progressive shift, the peak
location fluctuated to some extent, but re-
turned to VA —30° at times. In contrast,
the peak location of R,,, (Fig. 7A, black
curve) had a much smaller bias and the
fluctuation started in the very beginning
of the neural response. These results sug-
gest that the side bias is not a byproduct of randomly sampling
two response weights from a given distribution, but rather may
be functionally important in representing slightly different stim-
ulus components.

For neurons that showed two response peaks, the peaks did not
separate until 30—40 ms after the response onset and it took another
40-50 ms for the two peaks to separate to the farthest angles of near
VA directions of £40° (Fig. 7B, red and blue curves). After this
initial, farthest separation, the two response peaks returned and re-
mained near VA directions of +35° (i.e., a DS of ~70°). The over-
shoot of the peak separation from the veridical 60° separation may be
related to the perceptual phenomenon of direction repulsion re-
ported by human subjects (Marshak and Sekuler, 1979). When hu-
man subjects viewed visual stimuli similar to those used in our
neurophysiological experiments, they also reported direction repul-
sion (Gaudio and Huang, 2012).

At other angular separations, the response tuning for neurons
with side bias also shifted gradually from initially following the aver-
age of the component responses to later being biased toward one side
of the tuning curve. Moreover, the side bias appeared to develop
slightly slower at the smaller angular separation. Figure 8 shows the
results of the neurons that displayed side bias at the DS of 45°, 60°,
90°, and 135°, respectively. At the DS of 45°, the average of the com-
ponent responses contained a single response peak centered near VA
0° throughout the motion response period (Fig. 8A3). The bidirec-

Time

Figure9.

llustration of two perceptual discrimination tasks. 4, In Task |, a bidirectional stimulus and a unidirectional stimulus
were presented simultaneously. The animal was required to make a saccadic eye movement after the stimulus offset toward the
location where a bidirectional stimulus was presented. The stimulus centered on the RF was either bidirectional or unidirectional.
B, In Task I1, only one stimulus, either bidirectional or unidirectional, was presented in a given trial and centered on the RF. The
animal was required to make a saccadic eye movement after the stimulus offset toward one reporting target if the stimulus was
bidirectional or the other target if the stimulus was unidirectional.

tional responses initially showed a single response peak centered
near VA 0° (Fig. 8A1, gray, black, green, and pink curves), but over a
period of ~50 ms, the response peak shifted to a side (Fig. 8A1,A2).
At the DS of 90°, the average of the component responses showed a
broad but approximately symmetric tuning curve (Fig. 8C3). The
bidirectional response of the same group of neurons initially showed
a broad and symmetric tuning curve peaked near VA 0°. Over a
period of ~40 ms, the response peak shifted ~45° in the VA direc-
tion and was reached when one component direction was near a
neuron’s PD (Fig. 8C1,C2). At the DS of 135° the average of the
component responses contained two separate but symmetric peaks
(Fig. 8D3). The bidirectional response tuning showed two symmet-
ric peaks in the early response. However, over a period of ~30 ms,
one response peak evolved to be higher than the other peak and the
whole response tuning curve was biased toward one side (Fig.
8D1,D2). The temporal development of the side bias was delayed
relative to the response onset and the transition occurred slightly
earlier at the larger angular separations (Fig. 8A1-D1, A2-D2).

Neuronal response tuning obtained during a perceptual
discrimination task

The results reported so far were obtained while the monkeys
performed a simple fixation task and viewed the visual stimuli
passively. We asked whether MT neurons showed similar pat-
terns of response tuning when monkeys performed a behavioral



Xiao and Huang e Neural Encoding of Multiple Motion Directions

< R1, Dir. 1

< R2 Dir. 2

= Ravg, (R1+R2)/2
< R12, Dir. 1 & Dir. 2

70

35

J. Neurosci., December 9, 2015 - 35(49):16180-16198 * 16191

-90

0 90 '1éo-1'80' -éo' 0 90 180

90 180 -180
D 40+ 180- Task Il
£
g
751 301
& 120
g 50- 20-
o 60
@ 25 104
(0]
4
O* T T l T T I
-180 -90 0 180 -180 -90 180 180 90 80
15, A3 (N=21,22%) q5- (N=24,25%) 15, C3 (N = 28, 29%)

90 0 90 180 -180 S 00

1 14 14
0.5 0.5 0.5
o T T |

" 180 180 " .90 80

Vector Average Direction (deg)

Figure 10.

Direction tuning curves obtained while the animals performed the perceptual discrimination tasks. The DS of the bidirectional stimuli was 60°. AT—C1, Three example neurons

recorded while monkey GE performed Task |. A2—(2, Three example neurons recorded while monkey BJ performed Task II. A3—€3, Direction tuning curves averaged across subpopulations of neurons
from the two animals. 4, Neurons showing side bias to the CC-side. B, Neurons showing side bias to the C-side. ¢, Neurons showing two separate peaks in the response tuning curves.

task to actively discriminate bidirectional stimuli from unidirec-
tional stimuli (see Materials and Methods). The DS of the bidi-
rectional stimuli was set to 60°. For monkey GE, a bidirectional
stimulus and a unidirectional stimulus moving in the VA direc-
tion were presented simultaneously at locations symmetric to the
fixation spot. One of the two stimuli was centered on a neuron’s
REF. After viewing the moving stimuli for 1.5 s, the monkey was
required to make a saccadic eye movement to the location of the
bidirectional stimulus to receive a juice reward (referred to as
Task I; Fig. 9A). The behavioral performance of monkey GE was,
on average, 83% correct (SD = 7.1%) across 48 recording ses-
sions, during which 51 neurons were recorded. The correspond-
ing d' was 1.9. As in the fixation task, when the monkey
performed this task, we found that some MT neurons showed the
side bias in their response tuning curves (Fig. 10A1,B1) and some
neurons showed tuning curves containing two separate peaks
(Fig. 10CI), although the average of the component responses
had only a single peak.

To perform Task I, however, the monkey may shift its atten-
tion back and forth between the RF stimulus and the other stim-
ulus at the opposite side of the visual field. To better control the
spatial allocation of attention, we trained a second monkey (BJ)
on a modified task, in which only one stimulus, either bidirec-
tional or unidirectional, was presented in a given experimental
trial and centered on the RF. The monkey’s task was to discrim-
inate whether the presented stimulus was unidirectional or bidi-
rectional (referred to as Task II; Fig. 9B). Trials containing the
bidirectional stimuli and those containing the unidirectional
stimuli were interleaved randomly. To perform this task well, the
animal needed to direct its attention toward the RF. Across 37 re-
cording sessions during which 44 neurons were recorded, monkey
BJ correctly identified the bidirectional stimuli at a rate of 90%
(SD = 3.8%) and correctly identified the unidirectional stimuli at a
rate of 92% (SD = 5.9%). The corresponding d’ was 2.7.

Again, we found that some M T neurons showed side bias (Fig.
10A2,B2) or two response peaks (Fig. 10C2) in their tuning curves
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Figure11.  Time course of the direction tuning curves obtained while an animal performed a
perceptual discrimination task. The DS of the bidirectional stimuli was 60°. Results were re-
corded while monkey BJ performed Task Il, during which the onset of visual motion was sepa-
rated from the stimulus onset (see Materials and Methods). A, B, Averaged responses from 25
neurons that showed side bias to the bidirectional stimuli. €, D, Averaged responses from 14
neurons that showed two peaks in the tuning curves to the bidirectional stimuli. A, C, Response
tuning curves to the bidirectional stimuli. Ordinates indicate the middle point of each time
epoch of 50 ms. B, D, Average of the component responses.

while the monkey performed this task. Because we found similar
results across Tasks I and II, we pooled the data to calculate the
population-averaged tuning curves. MT neurons showed similar
patterns of response tuning curves when the monkeys performed
the perceptual discrimination tasks (Fig. 10A3—C3) as when they
performed the fixation task (Fig. 3C-E). Notably, a higher per-
centage of neurons showed two response peaks when the mon-
keys performed the discrimination tasks (29% of 95 neurons)
than when they performed the fixation task (19% of 202 neu-
rons). To characterize the tuning curves obtained during the dis-
crimination tasks, we used all of the experimental trials, including
those that had correct and incorrect behavioral reports, because
the correct rates of the animals’ performance were high and our
algorithm classifying tuning curves into different subgroups re-
quired equal number of trials at different VA directions. In addi-
tion to this analysis, we first classified a neuron’s tuning curve
into one of three subgroups based on all trials and recalculated
the tuning curve based on only the correct trials. The direction
tuning curves constructed based on only the correct trials were
very similar to those based on all trials (results not shown).

When the monkeys performed the perceptual discrimination
task, the time course of MT response tuning to the bidirectional
stimuli also evolved from initially following the average of the
component responses to later showing the side bias or two re-
sponse peaks, as found using the fixation paradigm. Figure 11
shows the results from monkey BJ while it performed Task I, in
which the stimulus motion onset was separated in time from the
stimulus onset (see Materials and Methods).

Stimulus discrimination using a classifier of SVM
To evaluate whether the population of recorded neurons con-
tained sufficient information to discriminate a bidirectional
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stimulus from a unidirectional stimulus and to discriminate be-
tween two bidirectional stimuli that had different angular sepa-
rations, we used the SVM to classify different visual stimuli (see
Materials and Methods). We assumed that, for each neuron in
our dataset, there was a family of “cloned” neurons that had the
same tuning curve but different PDs evenly spanning 360° (Fig.
12 A, B). The inclusion of the cloned neurons in the population
allowed an unbiased representation of all motion directions and
the conversion of the direction tuning curve of a single neuron
(Fig. 12A) to the responses of a population of the cloned neurons
elicited by a given stimulus (Fig. 12C).

The classifier was capable of discriminating a bidirectional
stimulus of 60° DS from a unidirectional stimulus moving at the
same VA direction (Fig. 12D). Based on the responses of all 202
neurons in the dataset shown in Figure 3, the discrimination
performance of the classifier, measured in d’, was 1.3. The per-
formances of the classifier based on the responses of the two-
peaked neurons (N = 38) and the side-biased neurons (N = 79)
were better than the averaging neurons (N = 85) (Fig. 12D). The
d’' based on the responses of the averaging neurons merely
reached 1 (Fig. 12D, solid green bar), whereas the d' based on the
side-biased neurons and the two-peaked neurons was 1.7 and 2.8,
respectively (Fig. 12D, solid blue and red bars), similar to the
behavioral performance of the two monkeys. This difference in
classification was not due to different pool sizes of three sub-
groups of neurons. We randomly picked 38 neurons from 85
averaging neurons and from 79 side-biased neurons and repeated
the procedure 100 times. The averaged classification perfor-
mance based on 38 subsampled neurons was similar to that based
on all averaging neurons or side-biased neurons (Fig. 12D, open
green and blue bars). The mean d’ based on 38 subsampled aver-
aging neurons was significantly smaller than that based on 38
side-biased neurons (¢ test, N = 100, p < 10 ~"*) and both were
significantly smaller than the d’ value of 2.8 based on 38 two-
peaked neurons (ttest, p < 10 ~**). These results support the idea
that the two-peaked neurons and the side-biased neurons carry
more information about the bidirectional stimuli of 60° DS than
the averaging neurons.

The classifier was also capable of discriminating a bidirec-
tional stimulus of 60° DS from another bidirectional stimulus
moving at the same VA direction (Fig. 12E) based on the 96
neurons shown in Figure 4. As expected, the classification perfor-
mance increased as the difference between the DS’s of two stimuli
increased from 15° to 75°. Among the three subgroups of neu-
rons, classification based on the two-peaked neurons gave the
best performance. For the most difficult discrimination between
DS 60° and DS 45°, the classification based on all 96 neurons and
the averaging neurons was poor and had a d" of 0.51 and 0.33,
respectively. In contrast, the classification based on the two-
peaked neurons had a d’ of 1.4. The d’ based on the side-biased
neurons was 0.74, which was better than the d’ based on the
averaging neurons (Fig. 12E).

The two-peaked neurons classified based on the tuning
curves to the bidirectional stimuli of 60° DS provided good
classification between a unidirectional stimulus and a bidirec-
tional stimulus with various DS’s, suggesting that this group of
neurons were informative about bidirectional stimuli in gen-
eral (Fig. 12F). Classification based on the side-biased neu-
rons was better than the averaging neurons (Fig. 12F). Note
that, at DS 135°, all side-biased neurons showed two response
peaks, which may explain why the d’ value based on the side-
biased neurons was the largest. At DS 45°, although not all 13
two-peaked neurons classified at DS 60° showed two response
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Figure 12.  Stimulus discrimination using a classifier of support vector machine (SVM). A—(, Proc

edure of constructing a “single-trial population neural response” based on the direction tuning

curve. D—F, Discrimination performance of the classifier. 4, Trial-by-trial tuning curves of one example neuron in response to the bidirectional stimuli of 60° DS. A tuning curve based on one block
of trials (red) was picked. B, The picked single-trial tuning curve from A (red) was duplicated and shifted in a step of 7.5° to create the tuning curves of 48 “cloned” neurons. For clarity, only the cloned
neurons that had PDs in a step of 30° are shown (black). C, Single-trial population neural response of the cloned neurons elicited by a bidirectional stimulus moving at VA direction 0°. D,
Discrimination between the bidirectional stimuli of 60° DS and the unidirectional stimulus moving at the same VA direction. Stimulus classification was based on the neural responses of all neurons
in the dataset (black) or one of three subgroups of neurons (green, blue, and red). The label “sub” in the abscissa means a subset of randomly selected neurons within the groups of averaging and
side-biased neurons. E, Discrimination between a bidirectional stimulus of 60° DS and another bidirectional stimulus that had a DS of 45°, 90°, and 135°, respectively, and moving at the same VA
direction. When discriminating between DS 60° and 90°, the performances of the side-biased neurons and the averaging neurons were nearly identical. In this analysis, the side-biased neurons only
contained a single response peak to the bidirectional stimulus of 60° DS, so the side-biased and two-peaked neuron populations did not overlap. F, Discrimination between a unidirectional and a
bidirectional stimulus. The dlassifications of averaging, side-biased, and two-peaked neurons were based on the responses to DS 60°.

peaks, they nevertheless supported reliable discrimination be-
tween DS 45° and 0°, giving a d’ value of 1.4 (Fig. 12F). The d’
based on the side-biased neurons was 0.75, better than the d’
of 0.38 based on the averaging neurons (Fig. 12F).

Based on the response tuning curves to DS 45°, 42 of the 96
neurons were classified as the side-biased neurons with a sin-
gle response peak and seven neurons were classified as the
two-peaked neurons. When discriminating between DS 45°
and 0°, the classifier gave the largest d’ of 0.90 based on the 42
side-based neurons. The d’ based on the 7 two-peaked neu-
rons was smaller and had a value of 0.58, which may be caused
by the small sample size of the two-peaked neurons at DS 45°.
In comparison, the d’' based on the 47 averaging neurons was
0.41. These results suggest that, at a DS of 45° or smaller, the
side-biased neurons may be important for representing the
bidirectional stimuli.

Comparison of direction tuning curves elicited by overlapping
random-dot stimuli and plaid stimuli

It has been well established that, when tested with overlapping
sinusoidal gratings (i.e., plaid stimuli) drifting in widely different
directions, some MT neurons are selective to the pattern-motion
direction of the plaid, whereas some other neurons are selective to
the directions of the component gratings (Movshon et al., 1985;
Rodman and Albright, 1989; Smith et al., 2005; Rust et al., 2006).
McDonald etal. (2014) showed recently that pattern cells in area MT
of marmosets represented component directions of transparently
moving random-dot stimuli that had a large DS of 120°, whereas
component cells tended to represent the VA direction.

We examined the relationship between the pattern- and
component-direction selectivity to plaid and the types of re-
sponse tuning curves elicited by overlapping random-dot
stimuli moving in slightly different directions. A total of 102



16194 - ). Neurosci., December 9, 2015 - 35(49):16180-16198

neurons were tested with both plaid
stimuli that had a large DS of 135° and
random-dot stimuli that had a DS of
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two response peaks, and response-averaging
to random-dot stimuli that had a DS of
60°—could be either pattern selective or
component selective to our plaid stimuli.
Across the population of 102 neurons, the
“averaging” neurons included a higher per-
centage of pattern cells than did the side-
biased and two-peaked neurons, whereas
the two-peaked neurons included a slightly higher percentage of
component cells than did the side-biased and averaging neurons
(Fig. 13, Table 2). Examining the difference between Z-transformed
pattern correlation (Zp) and component correlation (Zc; see Mate-
rials and Methods) revealed that the median value of Zp — Zc was
positive and the largest for the averaging neurons, indicating that
these neurons tended to be more pattern selective, whereas the me-
dian value of Zp — Zc was negative for the two-peaked neurons,
indicating that these neurons tended to be more component selec-
tive (Table 2). However, the median values of Zp — Zc were not
significantly different between any two subgroups of averaging, side-
biased, and two-peaked neurons (Wilcoxon rank-sum test, p >
0.18). We found the same result when we constrained our dataset to
the 99 neurons that were tested with the plaid and random-dot stim-
uli moving at the same speed.

We also tested 46 neurons with both the plaid stimuli and
random-dot stimuli that had the same DS of 135°. We did not find a
significant relationship between the tuning properties to the
random-dot stimuli and the pattern/component selectivity even
when the DS was matched. In response to the random-dot stimuli,
most of these neurons (45/46) showed two response peaks because

Z-Transformed component correlation (Zc)

Figure 13.  Z-transformed pattern and component correlation between the responses elicited by 135° plaid and pattern/
component predictions. Each dot represents results from one neuron. 4, Results from overall neuron population. B, Results from
neurons approximately followed the average of the component responses when responding to the bidirectional random-dot
stimuli that had a DS of 60°. €, Neurons with responses to the random-dot stimuli that showed side bias. D, Neurons with responses
to the random-dot stimuli that showed two response peaks.

the DS was large. Twenty-three (23) of the two-peaked neurons
followed the average of the component responses and 22 neurons
showed side bias. Only one of the 46 neurons showed a single re-
sponse peak. This cell was classified as an averaging neuron. Based on
the responses to the plaid stimuli, the median values of Zp — Zc were
not significantly different between the two-peaked averaging neurons
(N = 23) and the two-peaked side-biased neurons (N = 22) (Wilcoxon
rank-sum test, p = 0.59; Table 2).

Smith et al. (2005) have shown that it takes longer for the
pattern-direction selectivity of the pattern cells to develop than
the component-direction selectivity of the component cells. Our
data obtained using the plaid stimuli confirmed this finding.
Among 102 neurons in this dataset, the pattern selectivity of 33
pattern cells emerged later than the component selectivity of 25
component cells. A neuron showing a longer buildup of the pat-
tern selectivity (consistent with motion integration) depended on
whether the neuron was a pattern cell regardless of the neuron’s
tuning property to the random-dot stimuli. All three types of
tuning curves characterized based on the response to the
random-dot stimuli: two-peaked, side-biased, and averaging
neurons showed a longer buildup of pattern selectivity with the



Xiao and Huang e Neural Encoding of Multiple Motion Directions

J. Neurosci., December 9, 2015 - 35(49):16180-16198 * 16195

Table 2. Relationship between the properties of response tuning to random-dot stimuli (RDS) and plaid stimuli

Cells No. of neurons Pattern- selective Component- selective Undlassified Ip — Zc (median) Ip — Zc(mean) Ip — 1c(SD)
RDS 60°/Plaid 135°
Al 102 32% 25% 43% 0.25 0.36 2.78
Averaging 30 43% 17% 40% 0.47 0.96 2.57
Side-biased 48 27% 25% 48% 0.14 0.087 2.76
2-peak cells 24 29% 33% 38% —0.24 0.15 3.04
RDS 135°/Plaid 135°
Al 46 39% 26% 35% 0.22 0.46 347
Averaging (1-peak) 1 0 0 100% 0.50 0.50 —
Averaging (2-peak) 23 39% 17% 44% 0.23 0.74 2.76
Side-biased (2-peak) 2 41% 36% 2% 0.07 0.16 4.20
A NIT. Gucons the response tuning to bidirectional stimuli was stimulus depen-

Figure 14.  lllustration of possible circuit mechanisms underlying the side bias. Each circle
represents one neuron in area MT or V1. The arrow inside each circle represents the PD of that
neuron. The width of the connection line and the diameter of the solid circle at the end of each
line indicate the strength of the synaptic connection. A, Asymmetric feedforward connections
between V1 neurons and a MT neuron. The connection between a V1 neuron with a PD that is at
the C-side of the PD of the MT neuron is stronger than the connection between a V1 neuron with
a PD that s at the CC-side of the MT neuron. B, Symmetric feedforward connections and asym-
metric recurrent connections among MT neurons. Recurrent connections between the center
MT neuron and the MT neurons that have PDs at the C-side are stronger than those at the
(C-side. For clarity, only one way of the recurrent connections are shown. C, Slightly asymmetric
feedforward connections coupled with asymmetric recurrent connections. Except for the center
MT neuron, only the feedforward connections between V1 neurons and MT neurons that have
matching PDs are illustrated for simplicity. Recurrent interactions between MT neurons may
include both excitatory and inhibitory connections (not differentiated in the illustration).

plaid stimuli as long as they were also pattern cells (results not
shown). Interestingly, for neurons that were pattern cells and also
showed two response peaks or side bias to the bidirectional
random-dot stimuli with a small DS, the temporal evolution of

dent and switched from a gradual buildup of segmentation (as
shown in Fig. 6) to a buildup of integration when the visual
stimuli changed from random dots to plaids. This adaptive
change of the temporal property of response tuning is akin to the
stimulus-dependent change of surround antagonism and inte-
gration found in area MT (Huang et al., 2007, 2008). Future study
is needed to understand the neural mechanism underlying such
adaptive change of direction tuning over time.

Discussion

We found that many neurons in area MT were capable of repre-
senting component directions of transparently moving stimuli
even when the angular difference between two directions was
smaller than the tuning width to unidirectional stimuli. We also
discovered that the neural representation of component direc-
tions developed over time. The tuning curves of some neurons
initially followed the average of the component responses and
later showed side bias or two response peaks. The early neuronal
responses better represented the VA direction of slightly different
stimuli, whereas the late responses were informative about the
component directions.

Previous studies show that the neuronal response elicited by
two stimuli within the RF can be described as a weighted sum of
the responses elicited by the individual stimulus components
(Qian and Andersen, 1994; van Wezel et al., 1996; Recanzone et
al., 1997; Britten and Heuer, 1999; Zoccolan et al., 2005). Consis-
tent with the model of response normalization (Carandini and
Heeger, 2012), the response weight is greater for the stimulus
component that has a stronger signal strength, as found in area
V1 (Busse et al., 2009; MacEvoy et al., 2009), MT (Xiao et al.,
2014) and MST (Morgan et al., 2008; Fetsch et al., 2012). In the
current study, the stimulus components had the same signal
strength. Although, as expected, the population-averaged re-
sponse weights for the two stimulus components with a DS of 60°
were identical, we found that, for many neurons, the response
weight for one stimulus component was significantly greater than
the other. This unequal pooling of the component responses al-
lows a neuron to selectively represent the direction at a specific
side of two motion vectors. To the best of our knowledge, this
finding establishes for the first time the selectivity of MT neurons
for the side relationship of two motion directions.

Ni et al. (2012) suggest that response normalization is tuned,
meaning that different visual stimuli contribute differently to
normalization (also see Carandini et al., 1997; Rust et al., 2006).
Tuned normalization can explain why, for some MT neurons, the
response to the bidirectional stimulus follows the average of the
component responses whereas, for others, the response follows
the stronger (or weaker) component response or anywhere in
between. At its current form, however, tuned normalization can-
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not explain the side bias found in our study. Taking the neuron in
Figure 1B as an example, this neuron showed response averaging
when the component direction at the CC-side was closer to the
PD and winner-take-all when the C-side component was closer
to the PD. The two component stimuli contributed equally to
normalization at one side of the tuning curve, but contributed
differently at the other side of the tuning curve. The extent of
tuned normalization itself is tuned to the visual stimuli.

We speculate that recurrent interactions among MT neurons
may be involved in shaping the side bias because the side bias
developed over time and emerged later in the tuning curve. Feed-
back connections from higher-order areas may also be involved.
Area MT receives feedforward inputs from direction-selective
neurons in V1 (Movshon and Newsome, 1996). If feedforward
connections between V1 neurons and a target MT neuron have
an asymmetric distribution of the synaptic weights in relation to
whether the PD of a V1 neuron is at the C-side or CC-side of the
PD of the MT neuron (Fig. 14A), then the MT neuron’s response
to the bidirectional stimuli would show side bias. However, it is
unlikely that feedforward connections alone can explain the time
course of the side bias. Alternatively, the side bias may arise due to
asymmetric recurrent connections between MT neurons (Fig.
14B).Itis also possible that a slight asymmetry in the feedforward
connections is amplified by recurrent interactions (Fig. 14C).
Future studies are needed to understand the neural circuit mech-
anisms underlying the side bias, possibly involving an attractor
network (Knierim and Zhang, 2012).

Some MT neurons showed two response peaks to the bidirec-
tional stimuli even when the average of the component responses
was unimodal. This result suggests that stimulus components
interact nonlinearly within the RF. One possible mechanism in-
volves response suppression proportional to the product of the
component responses (Xiao et al., 2014). Another possibility in-
volves a soft MAX-like operation (Riesenhuber and Poggio, 1999;
Lampl et al., 2004) in which the neuronal response elicited by two
stimuli is close to the stronger component response. The suppres-
sive mechanism involving multiplicative interaction and the soft
MAX-like operation may work synergistically to allow neurons to
represent slightly different stimulus components.

Treue et al. (2000) previously investigated how bidirectional
random-dot stimuli were represented by neurons in area MT. Re-
cently, McDonald et al. (2014) studied the response tuning of MT
neurons in marmosets using similar stimuli. Consistent with these
studies, we found that the tuning curve averaged across all neurons
in response to the bidirectional stimuli with a small DS approxi-
mately followed the average of the component responses and
showed a symmetric, unimodal shape (Fig. 3A). It is unclear whether
the individual neurons in these previous studies also showed the side
bias or two response peaks that deviated from response averaging.
Moreover, these previous studies did not examine the time course of
the tuning curve. In the study of Treue et al. (2000), the random-dot
stimuli moved on a circular path (Schoppmann and Hoffmann,
1976). Although this method of stimulus presentation is efficient for
measuring direction tuning, the constant change of stimulus direc-
tion could make it difficult to reveal the time course of response
tuning to the bidirectional stimuli.

Perceptually, lowering luminance contrast benefits motion
integration rather than segmentation (Murakami and Shi-
mojo, 1993). Response normalization in area MT is also con-
trast dependent (Heuer and Britten, 2002). The response
tuning to the bidirectional random-dot stimuli may become
less supportive of segmentation when luminance contrast is
reduced. Furthermore, the perceived angle separation be-
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tween two component directions of random-dot stimuli varies
with motion coherence (Gaudio and Huang, 2012). As the
coherence level is lowered, the perceived angle shifts from
repulsion to attraction, consistent with a change from motion
segmentation to integration. The response tuning to the bidi-
rectional stimuli therefore may also depend on the coherence
level of the random dots. Future studies are needed to test
these hypotheses.

Attention can bias the neuronal response elicited by mul-
tiple stimuli in the RF (Ferrera and Lisberger, 1997; Reynolds
et al., 1999; Treue and Martinez-Trujillo, 1999; Recanzone
and Wurtz, 2000; Li and Basso, 2005). Wannig et al. (2007)
showed that attention directed to one of two transparently
moving surfaces could alter the responses of MT neurons in
favor of the direction of the attended surface. In that study,
attention was cued to one of two already segregated surfaces.
In contrast, the two slightly different stimuli in our experi-
ments had not been rendered in advance as separate surfaces
and no visual cue was given for attention selection. It is un-
likely that our finding of the side bias was due to an attentional
bias. For the side bias to be caused by attention, attention had
to be directed to the stimulus component at a specific side
(e.g., the C-side) of the two component directions across dif-
ferent VA directions. Without an attention cue, such a specific
and consistent attention selection is unlikely to occur. The fact
that we found similar results when the animals performed a
passively viewing fixation task and performed two variants of
aperceptual discrimination task also suggests that the side bias
was not caused by an attentional bias. Under our experimental
conditions, the visual system may have to solve the problem of
segmentation first, at least at a primitive level, before attention
can be directed to one of the stimulus components. Although
attention selection may occur during the later portion of the
stimulus presentation, it is unlikely to be specific to one side of
the bidirectional stimuli.

A recent theoretical study shows that having heterogeneous
response weights and response nonlinearity in “stimulus mix-
ing” benefits the neural coding of multiple stimuli (Orhan and
Ma, 2015). Our findings of the side-biased and two-peaked
neurons in area MT provide experimental evidence that the
visual system uses these strategies to encode slightly different
stimuli. The existence of the side-biased neurons toward the
stimulus component at the C-side or CC-side and the two-
peaked neurons suggest that information regarding slightly
different moving stimuli is distributed across subpopulations
of neurons in area MT. The visual system may take the distrib-
uted neural code of multiple stimuli into consideration to fully
use such information.

Previous studies show that direction tuning curves of MT
neurons undergo dynamic changes during the process of mo-
tion integration related to the solution of the aperture prob-
lem (Pack and Born, 2001) and the emergence of pattern-
motion selectivity (Smith et al., 2005). Here, we show that,
during the process of motion segmentation, the direction tun-
ing curves of the side-biased and two-peaked neurons evolve
over time to better represent the component directions. Our
results suggest that segmenting different stimuli is a dynamic
process and may involve recurrent interactions within the
neuronal network. Together, our findings put new constraints
on neural models of visual motion processing and have impli-
cations for understanding the neural mechanisms underlying
image segmentation in general.
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