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Abstract

In many scientific domains, including neuroimaging studies, there is a need to obtain increasingly 

larger cohorts to achieve the desired statistical power for discovery. However, the economics of 

imaging studies make it unlikely that any single study or consortia can achieve the desired sample 

sizes. What is needed is an architecture that can easily incorporate additional studies as they 

become available. We present such architecture based on a virtual data integration approach, 

where data remains at the original sources, and is retrieved and harmonized in response to user 

queries. This is in contrast to approaches that move the data to a central warehouse. We 

implemented our approach in the SchizConnect system that integrates data from three 

neuroimaging consortia on Schizophrenia: FBIRN's Human Imaging Database (HID), MRN's 

Collaborative Imaging and Neuroinformatics System (COINS), and the NUSDAST project at 

XNAT Central. A portal providing harmonized access to these sources is publicly deployed at 

schizconnect.org.
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1 Introduction

The study of complex diseases, such as Schizophrenia, requires the integration of data from 

multiple cohorts [1]. As a result, over the past decade we have witnessed the creation of 

many multi-site consortia, such as the Functional Biomedical Informatics Research Network 

(FBIRN) [2], the Mind Clinical Imaging Consortium (MCIC) [3], or the ENIGMA Network 

[4]. Within a consortium, researchers strive to harmonize the data. For example, FBIRN's 
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Human Imaging Database (HID) [5] is a multi-site federated database where each site 

follows the same standard schema. However, across consortia harmonizing the data remains 

a challenge.

One approach to data integration, commonly called the warehouse approach, is to create a 

centralized repository with a uniform schema and data values. Data providers transform their 

data to the warehouse schema and formats, and move the data to the repository. An example 

of this approach within neuroscience is the National Database for Autism Research (NDAR) 

[6]. The warehouse approach is common in industry and in government and provides several 

advantages. The main ones are performance and stability. Since the data has been moved to 

a single repository, often a relational database, or other systems that allow for efficient query 

access, the performance of the system can be optimized by the addition of indices and 

restructuring of the data. Also, since the repository holds a copy of the original data, the life 

of the data can persist beyond the life of the original data generator. However, these 

strengths turn into disadvantages in more dynamic situations. First, the data in the 

warehouse is only as recent as the last update, so this approach may not be appropriate for 

data that is updated frequently. A more insidious problem is that once the schema of the 

warehouse has been defined and the data from the sources transformed and loaded under 

such schema, it becomes quite costly to evolve the warehouse if additional sources require 

changes to the schema.

An alternative approach to data integration, commonly called the virtual data integration or 

mediation approach, is to leave the data at the original sources, but map the source data to a 

harmonized virtual schema. These schema mappings are described declaratively by logical 

formulas. When the user specifies a query (expressed over the harmonized schema), the data 

integration system (also called a mediator) consults the schema mappings to identify the 

relevant data sources and to translate the query into the schemas used by each of the data 

sources. In addition, the system generates and optimizes a distributed query evaluation plan 

that accesses the sources and composes the answers to the user query. This approach has 

opposite advantages and disadvantages to the warehouse approach. The main advantages are 

data recency, ease of incorporation of new sources, and ease of restructuring the virtual 

schema. The user always gets the most recent data available since the answers to the user 

query are obtained live from the original data sources. Adding a new data source or 

changing the harmonized schema is accomplished by defining a set of declarative schema 

mappings. This process is often much simpler than reloading and/or restructuring a large 

warehouse. The fact that the schema mappings are a set of compact logical rules 

significantly lowers the cost of developing, maintaining and evolving the system. 

Conversely, a disadvantage of this system is that query performance generally cannot match 

that of a warehouse, since optimization options available in the centralized setting of a 

warehouse cannot be used in a distributed system. Nonetheless, as we will show in this 

paper, the virtual mediation approach can provide adequate performance.

Finally, the warehouse and the virtual data integration approaches are not mutually 

exclusive. The system can materialize the most stable data, but query in real time the data 

that changes more frequently.
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For SchizConnect virtual data integration was preferable to data warehousing. First, it 

requires significantly less resources; essentially, just developing the web portal/query 

interface and hosting the mediator engine. There is no need for us to store and take care of 

large datasets locally. Second, it demands a minimum effort to integrate new data sources. In 

order to encourage data providers to participate in SchizConnect we required an approach 

that imposed minimum overhead to them. Finally, it does not require data providers to 

relinquish control of their data. Different data providers have different policies regarding 

data sharing and the virtual integration approach allows them to keep full control of who can 

access their data. Our mediator architecture allows for data sources to grant authorization to 

individual data requests based on the user's security credentials..

In this the paper we present how the virtual data integration approach has been applied to 

create the SchizConnect system, which is publicly available at www.schizconnect.org. First, 

we describe the data sources that have currently been integrated. Second, we present the 

behavior of the system from a user perspective, as an investigator interacting with the 

SchizConnect web portal. Third, we provide a technical description of the SchizConnect 

mediator process, including the definition of the harmonized schema, the schema mappings, 

the data value mappings, the query rewriting process, and the distributed query evaluation. 

Fourth, we provide some experimental results. Finally, we discuss related work, future work 

and conclusions.

2 Participating Data Sources

Currently, the SchizConnect system provides integrated access to the following sources of 

schizophrenia data, including demographics, cognitive and clinical assessments, and 

imaging data and metadata. These sources are also publicly available and have been 

extensively curated, documented, and subjected to quality assurance.

FBIRN Phase II @ UCI, http://fbirnbdr.nbirn.net:8080/BDR/ [2]. This study contains 

cross-sectional multisite data from 251 subjects, each with two visits. Data include structural 

and functional magnetic resonance imaging (sMRI, fMRI) scans collected on a variety of 

1.5T and 3T scanners, including Sternberg Item Recognition Paradigm (SIRP) and Auditory 

Oddball paradigms, breath-hold and sensorimotor tasks. The data is stored in the HID 

system [5], which is powered by a PostgresSQL relational database located at the Univesity 

of California, Irvine. The SchizConnect mediator accesses HID using standard JDBC.

NUSDAST @ XNAT Central, central.xnat.org/REST/projects/NUDataSharing [7]. The 

Northwestern University Schizophrenia Data and Software Tool (NUSDAST) contains data 

from 368 subjects, the majority with longitudinal data (~2 years apart), include sMRI scans 

collected on a single Siemens 1.5T Vision scanner. The data is stored in XNAT central, a 

public repository of neuroimaging and clinical data, hosted at Washington University at 

Saint Louis. The site is built over the eXtensible Neuroimaging Archiving Toolkit (XNAT), 

a popular framework for neuroimaging data [8]. XNAT provides a REST web service 

interface. The mediator uses the search API, which accepts queries in an XNAT-specific 

XML format and returns results as a XML document.
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COBRE & MCICShare @ COINS Data Exchange, coins.mrn.org [9]. The Collaborative 

Imaging and Neuroinformatics System (COINS), contains data from 198 and 212 subjects 

from the COBRE and MCICShare projects, respectively. Data for COBRE include sMRI 

and rest-state fMRI scans collected on a single 3T scanner. Data for the multisite 

MCICShare include sMRI, rest-state fMRI and dMRI scans, collected on 1.5T and 3T 

scanners. COINS required special handling in SchizConnect because the native COINS 

architecture involves dynamic data packaging following the query, which does not allow for 

data to be immediately returned to the query engine. With permission from the COINS 

executive committee, we duplicated the COINS data relevant to SchizConnect in a relational 

MySQL database at USC/ISI.

SchizConnect is positioned to become the largest neuroimaging resource for Schizophrenia, 

currently providing access to over 21K images for over 1K subjects, and expected to 

significantly grow as new sources are federated into the system.

3 The SchizConnect Web Portal

To understand the SchizConnect approach, it is best to start with the user experience at its 

web portal, schizconnect.org. The portal provides an intuitive graphical interface for 

investigators to query schizophrenia data across sources.

Consider a query for “male subjects with schizophrenia with DTI scans and measures of 

executive function”. An investigator constructs such query graphically by drag-and-drop of 

the main harmonized concepts into a canvas (Fig. 1(a)). Currently the supported concepts 

include Subject, MRI, Neuropsychiatric Assessments, and Clinical Assessments. Each 

concept has a number of attributes on which the user can make selections. Fig. 1(b) shows 

the attributes of Subject, which include age, sex, and diagnosis, and a selection on the 

diagnosis attribute for subjects with schizophrenia in a broad sense. The values for diagnosis 

have a hierarchical structure and have been harmonized across the sources. In section 4.3 we 

describe how the SchizConnect mediator classifies the subjects into these categories. Fig. 

1(c) shows the cognitive assessment concept (Neuropsych) and a selection on measures of 

executive function.

The results to this query appear in Figures 2 and 3. The SchizConnect Portal shows the 

number of subjects, scans, and assessments that satisfy the query constraints, as well as a 

breakdown of the provenance of the data (Fig. 2). In this case, 117 images from 58 subjects 

come from the COBRE data source and 169 images from 82 subjects from MCICShare data 

source, for a total of 286 images and 6 distinct cognitive assessments of executive function 

for 140 subjects. Any investigator can obtain these summary counts by visiting the 

schizconnect.org portal. After an investigator registers, logs into the system, and signs the 

data sharing agreements of the data providers, she can also retrieve the individual-level data, 

which include summary tables (Fig. 3), as well as links to download the images and full 

cognitive assessments for the selected subjects. The system remembers previously signed 

agreements and asks the investigator to sign additional ones when her query requires data 

from additional sources.
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4 The SchizConnect Mediator

The SchizConnect Web Portal presents a unified view of the data at the different sources, as 

if it was coming from in a single database. However, the data is not stored at the portal, but 

it remains at the original sources, structured under their original schemas. The SchizConnect 

mediator provides a virtual harmonized schema, over which the portal issues queries. Given 

a user query, over the harmonized schema, the mediator determines which sources have 

relevant data, translates the user query to the schemas of the sources, and constructs, 

optimizes, and executes a distributed query evaluation plan that computes the answers to the 

user query by accessing the data sources in real time. The SchizConnect mediator builds 

upon the BIRN Mediator [10]. In this section, we describe each of the components of the 

mediator that make this data harmonization and query processing possible.

4.1 SchizConnect Domain Schema

In order to integrate data from disparate sources, we need to understand the semantics of the 

data, and how different schema elements at different sources related to other elements. The 

common approach to specific such semantics is to map the schema of each source to a 

common harmonized schema (also called the target, or domain, or global schema) [11]. This 

common schema is a degree of freedom for the designer of the integration system. It does 

not need to include every schema element present in the sources; just those elements useful 

for the purposes of the integration problem at hand. The design of the common schema is a 

balance between minimalism, that is, only include elements that exist in the sources and that 

are needed to answer the current query load, and generality, that is, a schema design that can 

easily be extended to model additional sources and query types. Our philosophy leans 

towards minimalism. Instead of attempting to model the neuroimaging domain wholesale, 

we build the common schema incrementally as we find sources that provide data for the 

desired concepts in the domain.

The current domain schema in SchizConnect follows the relational model and is composed 

of the following predicates (Fig. 4):

Project contains the name and description of the studies in the data sources.

Subject contains demographic and diagnostic information for individual participants, 

including “subject id”, “age”, “sex” and “diagnosis”.

Imaging Protocol (MRI) contains information on MRIs a subject has, including the type of 

the scan and metadata about the scanner. The values of the protocol attribute are organized 

hierarchically (cf. Section 4.3).

Cognitive Assessment contains information on which subjects have which 

neuropsychological assessments. The values of the “assessment” attribute are also organized 

hierarchically (cf. Section 4.3).

Cognitive Assessment Data contains full information on the assessments including the 

values for each measure in each assessment for each subject.
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Clinical Assessment and Clinical Assessment Data contain assessments for different 

symptoms in the subjects.

The first attribute in each of the domain predicates is “provenance”, which records which 

source provided the data elements (see Fig. 3).

4.2 SchizConnect Schema Mappings

The SchizConnect domain predicates, shown in Fig. 4, provide a consistent view of the data 

available from the sources. However, the mediator does not pre-compute such data as in a 

warehouse, but obtains these data on-the-fly from the sources at query time. For this process, 

the mediator uses a set of declarative schema mappings, which define how predicates from 

the source schema relate to predicates in the domain schema. These mappings are usually 

logical implications of the form:

with a conjunctive antecedent (ΦS) over predicates from the source schemas (S), and a 

conjunctive consequent (ψG) over predicates from the domain schema (G). These mappings 

are also known as source-to-target tuple-generating dependencies (st-tgds) in the database 

theory literature [12]. The SchizConnect mediator supports full conjunctive st-tgds (aka 

GLAV rules) [13], but so far the domain and schema mappings we have developed only 

needed to be Global-as-View (GAV) rules [11], which are st-tgds with a single predicate in 

the consequent.

Some sample schema mappings appear in Fig. 5. We use a logical syntax for the rules. We 

show domain predicates in bold (e.g., subject) and source predicates in italics (e.g., 

HIDPSQLResource_nc_subjexperiment). The first rule states that the source XNAT 

provides data for subjects. More precisely, that invoking the source predicate 

XnatSubjectResource_xnat__subjectData, and then joining the results with the 

MappingsMySQLResource_dx_mappings source predicate (which are located at different 

sources, XNAT and a MySQL db), yields the domain predicate subject. A shared variable in 

the antecedent of a rule (e.g., SRC_DX) denotes an equi-join condition. Other type of 

conditions can be included in antecedents by adding relational predicates (e.g., the selection 

`nc_experiment_uniqueid = 9610' in the fourth rule). Variables in the consequent denote 

projections over data sources.

Rules with the same consequent denote union. For example, in Fig. 5 the the domain 

predicate subject is obtained as the union of three rule, one for each data source (XNAT, 

COINS, and HID). Note how each of the rules includes a constant in the consequent to 

denote the provenance of the data (i.e., “XNAT”).

Our mediator language allows for non-recursive logic programs. For example, the third rule 

in Fig. 5 states that the subject domain predicate for HID is constructed by the join of 3 

domain predicates: subject_age, subject_sex, and subject_dx. The next two rules show how 

the diagnoses for the subjects (subject_dx) in the HID source are calculated based on 

Ambite et al. Page 6

Data Integr Life Sci. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



specific values for the assessments as stored in the original HID tables. For example, a 

subject with values of 3 and 1 in questions P47 and P53 of the SCID assessment, resp., is 

assigned a diagnosis of schizophrenia in the strict sense.

Finally, the last two rules show how to obtain the imaging_protocol domain predicate for 

the HID and XNAT sources. Normalization of the imaging protocol and scanners values is 

achieved by joining with additional mapping tables (e.g, 

MappingsMySQLResource_protocol_mappings). The mediator also supports functional 

sources, such as concatenation (Concat in the last rule in Fig. 5). In general, the designer can 

define arbitrary Java functions and use them in the schema mappings to perform complex 

value transformations.

4.3 SchizConnect Value Mappings

In addition to mapping the schemas of the sources into the SchizConnect domain schema, 

we also harmonized the values for the attributes. This was achieved by developing mapping 

tables that relate values used in the sources with harmonized values in SchizConnect. These 

tables are stored in a separate relational database, which is treated as a regular data source 

for the mediator. For example, the source predicate 

MappingsMySQLResource_protocol_mappings stores the mappings for imaging protocols. 

Some sample mappings for this predicate appear in Fig. 6. Note that even within the same 

source, there are often several different values/codes for the same concept. For example, 

HID has several different codes for the Sternberg Item Recognition Paradigm protocol 

(since HID contains multiple substudies performed at different times, and no attempt at 

enforcing common values across substudies was made.)

Many of the harmonized values in SchizConnect have a hierarchical structure. For example 

the current hierarchy for the imaging protocol appears in Fig. 7. Similar hierarchies for the 

diagnosis and cognitive assessments appear (partially) in Figures 1(b) and 1(c). These 

hierarchies are easily extensible by updating the mapping tables.

The design of the harmonized values takes into account existing ontologies. A companion 

paper [16] describes in detail this design and the mapping of the Schiz-Connect value 

taxonomies to concepts in NeuroLex and other well-known ontologies.

4.4 Query Rewriting

Given a user query, the mediator uses the schema mappings defined for the application 

domain, to translate the query from the virtual domain schema into an executable query over 

the source schemas, a process called query rewriting. For GAV schema mappings, such as 

those in Fig. 5, query rewriting amounts to rule unfolding and simplification. We have also 

developed algorithms for query rewriting under LAV schema mappings [13] and GLAV 

rules, but they are not used in the current modeling of the SchizConnect domain.

We will describe the rewriting process by example. Consider a user query for all the 

available T1 scans: select * from imaging_protocol where szc_protocol like `%T1%', and 

the schema mappings for imaging_protocol in Fig. 5. The rewritten query, expressed in 

SQL, appears in Fig. 8. This query is built by unfolding the definitions of imaging_protocol 
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according to the schema mapping rules. In general, for GAV rewriting the system unifies 

each domain predicate with the corresponding consequent of the GAV rule (i.e., with the 

same predicate) and replaces it with the antecedent of the rule. After this unfolding process, 

the source-level queries are logically minimized to avoid probably redundant predicates (i.e., 

source invocations). For this simple example, the rewritten query is a union of conjunctive 

queries over the sources providing the data, including joins with the mapping sources to 

produce harmonized values, as we described in Section 4.3. The schema mapping for 

COINS and the corresponding portion of the rewriting is not shown for brevity.

4.5 Distributed Query Engine

Once the mediator has translated the user domain query into a source-level query (i.e., 

involving only source predicates), it must generate, optimize and execute a distributed query 

evaluation plan. Our current query engine is based on the Open Grid Services Architecture 

(OGSA) Distributed Access and Integration (DAI), and Distributed Query Processing (DQP) 

projects [14]. OGSA-DAI is a streaming dataflow workflow evaluation engine that includes 

a library of connectors to many types of common data sources such as databases and web 

services. Each data source is wrapped and presents a uniform interface as a Globus [1515] 

grid web service. OGSA-DQP is a distributed query evaluation engine implemented on top 

of OGSA-DAI. In response to a SQL query, OGSA-DQP constructs a query evaluation plan 

to answer such query. The evaluation plan is implemented as an OGSA-DAI workflow, 

where the workflow activities correspond to relational algebra operations. The OGSA-DQP 

query optimizer partitions the workflow across multiple sources attempting to push as much 

of the evaluation of subqueries to remote sources. OGSA-DQP currently supports 

distributed SQL queries over tables in multiple sources. The OGSA-DAI/DQP architecture 

is modular and allows for the incorporation of new optimization algorithms, as well as 

mediator (query rewriting) modules, as plug-ins for new source types into the system.

We improved the OGSA-DAI/DQP query engine by adding a module to gather cost 

statistics from the sources, including table sizes and selectivity parameters, and by 

developing a cost-based query optimizer based on these statistics, as well as several other 

enhancements to specific optimization steps. The query plan optimizer proceeds in two 

phases. First, it applies a sequence of classical query plan transformations, such as pushing 

selection operations closer to their data sources, grouping operations on the same source and 

pushing subqueries to sources with query evaluation capabilities. Second, it searches how 

join operations can be ordered to minimize the cost of the overall plan. For complex queries, 

such as those described in Section 5 that involve conjunctive queries with 10–20 predicates, 

the enhanced cost-based optimizer produced plans that improved execution time by orders 

of magnitude.

4.6 Source Wrappers

The mediator can access sources of different types, including relational databases, such as 

HID, and web service APIs, such as XNAT. The actual data sources are wrapped as OGSA-

DAI resources. OGSA-DAI provides a common extensible framework to add new types of 

data sources.
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For each non-relational source, we develop a wrapper that takes as input a SQL query (over 

predicates that encapsulate the data from the source), and translates this SQL query into the 

native query language of the source. Symmetrically, the wrapper takes data results from the 

source in their original format and converts them into relational tuples that can flow through 

the query engine.

For SchizConnect, we developed such a wrapper for XNAT. Consider the query:

This query invokes the wrapper for XNAT (see also the rewritten query in Fig. 8). This SQL 

query is translated to the native query language of the XNAT search service API, which is 

expressed as an XML document. The XNAT web service returns the results also as an XML 

document. The wrapper parses this document and translates it into relational tuples, 

following the schema of XnatMRSessionResource_xnat_ _mrSessionData. Now a uniform 

relational result, it is processed by the query engine as the data from any other source.

5 Experimental Results

The system is publicly deployed at SchizConnect.org. The web front-end is hosted at 

Northwestern University, the mediator is hosted at USC/ISI, and the sources are at UCI (the 

HID PostgreSQL DB), Washington University at Saint Louis (XNAT Central), and at 

USC/ISI (the MySQL database that hosts the replica COINS data).

Despite its nationwide distribution, the system performs well. We show some performance 

results for a representative set of queries in Fig. 9. The table of results is structured as 

follows. The first column is just the query id. The next two columns show the size of the 

tested domain query, and the specific predicates involved. All the tested domain queries are 

conjunctive. The following two columns show the structure and size of the resulting 

rewritten source-level query, which is generally much larger than the domain (user) query. 

The last two columns show the number of tuples in the answer to the user query and the total 

time in seconds to compute the answers (i.e., from sending the query to the mediator to 

returning the results to the user). For example, the fourth row shows the results for a domain 

query that asks for subjects with two assessments (of verbal episodic memory: HVLT-Delay 

and HVLT-Immediate), with two imaging protocols (T1, and sensory motor scans). The 

query involves the join of 7 domain predicates; namely, subject (s), in_project (ip), project 

(p), two instances of imaging_protocol (i), and two instances of cognitive_assessement (ca). 

The resulting rewritten query is a union of 5 conjunctive queries, each involving 16, 18, 17, 

10, and 10 source predicates, respectively, for a total of 71 source predicates. The query 

returns 722 tuples and takes 12.1 seconds to complete.

The queries shown identify the subjects, imaging protocol, cognitive assessments, etc., 

satisfying the desired constraints, and return the desired data. However, the performance 

results in Fig. 9 do not include the transfer of the actual image files. For example, the 

seventh query asks for all the metadata about the 21447 imaging protocols currently 

accessible through SchizConnect from all the sources, which the mediator does return. 
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However, the size of corresponding images is several hundred GBs (~173GB compressed). 

So, when the user query identifies the subjects and scans of interest, SchizConnect schedules 

separate grid-ftp, ftp, and http connections to the original sources to obtain and package the 

images for the query subjects. In contrast, the cognitive and clinical assessment data are 

retrieved directly through the mediator, since these are smaller datasets. For example, the 

third query in Fig. 9, shows that asking for all the data on 13 cognitive assessments for all 

subjects produces a result set of 9318 tuples, which are returned in 8.9 seconds.

The computation cost is a combination of the number final and intermediate results needed 

to compute the query, the number of sources involved, and the complexity of the rewritten 

queries, with large and more complex queries often taking more time, but not in a simple 

relationship.

6 Discussion

We have presented SchizConnect, a virtual data integration approach that provides 

semantically-consistent, harmonized access to several leading neuroimaging data sources. 

The mediation architecture is driven by declarative schema mappings that make the system 

easier to develop, maintain and extend. Our virtual approach allows the creation of large 

data resources at a fraction of the cost of competing approaches.

The system is publicly available at SchizConnect.org. Since its initial deployment in 

September 2014, the number of users, queries and image downloads has grown steadily 

(with over 50 registered users as of May 2015).

We are currently extending the coverage of different types data, specifically clinical 

assessments. We also plan to incorporate additional schizophrenia studies to SchizConnect. 

Finally, we plan to improve the underlying data integration architecture, specifically the 

performance of the query optimizer and adding a more expressive representational language 

for the domain schema, such as OWL2 QL.
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Fig. 1. 
Schizconnect portal: sample query using the harmonized schema and terminology. Each 

concept presents different attributes, some of which take hierarchical values, according to 

the SchizConnect harmonized terminologies.
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Fig. 2. 
The results of the query from Fig. 1. The user can then proceed to request the data from the 

different repositories.
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Fig. 3. 
An excerpt individual-level results of the query from Fig. 1. To obtain individual level 

results the user needs to sign the appropriate data sharing agreements.
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Fig. 4. 
SchizConnect current domain model.
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Fig. 5. 
SchizConnect schema mappings.
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Fig. 6. 
SchizConnect value mappings.
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Fig. 7. 
Imaging protocol taxonomy.
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Fig. 8. 
Executable query over the source schemas.
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Fig. 9. 
Experimental results
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