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Abstract
Neural crest cells are a highly migratory pluripotent cell population that generates a wide

array of different cell types and failure in their migration can result in severe birth defects

and malformation syndromes. Neural crest migration is controlled by various means includ-

ing chemotaxis, repellent guidance cues and cell-cell interaction. Non-canonical Wnt PCP

(planar cell polarity) signaling has previously been shown to control cell-contact mediated

neural crest cell guidance. PTK7 (protein tyrosine kinase 7) is a transmembrane pseudoki-

nase and a known regulator of Wnt/PCP signaling, which is expressed in Xenopus neural
crest cells and required for their migration. PTK7 functions as a Wnt co-receptor; however,

it remains unclear by which means PTK7 affects neural crest migration. Expressing fluores-

cently labeled proteins in Xenopus neural crest cells we find that PTK7 co-localizes with the

Ror2 Wnt-receptor. Further, co-immunoprecipitation experiments demonstrate that PTK7

interacts with Ror2. The PTK7/Ror2 interaction is likely relevant for neural crest migration,

because Ror2 expression can rescue the PTK7 loss of function migration defect. Live cell

imaging of explanted neural crest cells shows that PTK7 loss of function affects the forma-

tion of cell protrusions as well as cell motility. Co-expression of Ror2 can rescue these

defects. In vivo analysis demonstrates that a kinase dead Ror2 mutant cannot rescue PTK7

loss of function. Thus, our data suggest that Ror2 can substitute for PTK7 and that the sig-

naling function of its kinase domain is required for this effect.

Introduction
Neural crest (NC) cells are a highly migratory pluripotent cell population that gives rise to a wide
range of derivatives contributing to many tissues and organs. NC cells develop along the ante-
rior-posterior axis of the vertebrate embryo at the border region between the epidermis and the
neural plate. After undergoing an epithelial to mesenchymal transition NC cells migrate and col-
onize almost all tissues of the embryo. In this respect NCmigration is very similar to cancer cell
invasion and metastasis dissemination, which is also mirrored by the conservation of molecules
and signaling pathways involved in both processes [1,2,3]. During migration NC cells follow pre-
cise pathways and encounter various molecular microenvironments, which guide them to their
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final destinations and determine their terminal differentiation [4]. Therefore, NCmigration
needs to be tightly controlled to ensure the development of multiple organs and tissues. Indeed,
failure results in severe birth defects and malformation syndromes–so called neurocristopathies
[5,6,7]. Thus, understanding the molecular mechanism that control NCmigration will also pro-
vide insight into pathological conditions like neurocristopathies or the development of cancer.

Non-canonical– ß-catenin-independent–Wnt signaling contributes significantly to the reg-
ulation of NC migration [8,9,10,11,12,13,14]. NC cells show collective cell migration and form
streams of migrating cells directed for example by repellent guidance cues and chemo-attrac-
tants [2,4]. In addition, NC cell directionality is achieved by communication of NC cells with
each other. One mechanism, which was proposed for the directional migration of cranial NC
cells is contact inhibition of locomotion. This phenomenon was discovered by Abercrombie
[15,16] and describes how two colliding cells change their cell polarization upon cell-cell-con-
tact and migrate in opposite directions. Recent work showed that non-canonical planar cell
polarity (PCP) Wnt signaling is required for contact inhibition of locomotion and directional
collective NC migration [8,9,10,17,18]. PCP signaling was first discovered in the fly where it
regulates the orientation of hairs in the wing or ommatidia organization in the eye [19,20]. In
vertebrates PCP signaling is necessary for inner ear patterning, ciliary beating and tissue move-
ments contributing to axis elongation and neural tube closure [21,22]. In all these biological
systems PCP proteins become asymmetrically localized to the plasma membrane thereby estab-
lishing a polarity in the plane of an epithelium. In moving tissues the situation is more compli-
cated. In migrating NC cells PCP signaling seems to determine the formation of cellular
protrusions by asymmetrically regulating the activity of small GTPases of the Rho family
[14,18,23]. PCP proteins including Frizzled and Dishevelled are localized to the site of cell con-
tact thereby leading to a local activation of Rho and inhibition of Rac [8,9,17,24]. Thus, cell
protrusions collapse and cells migrate in opposite directions. Thereby, PCP signaling provides
a means of NC cell dispersion, which in combination with other repellent, attractant and adhe-
sive cues contributes to controlled migration of NC cells [23,25,26,27]. Although, the contribu-
tion of PCP signaling to NC migration has been acknowledged in different vertebrate systems
the molecular components localizing to cell-contact sites and the signaling pathways leading to
cytoskeletal remodeling remain to be characterized.

Protein tyrosine kinase 7 (PTK7, also known as Colon Carcinoma Kinase-4, CCK-4) a
known regulator of planar cell polarity may be one of the players involved in cell-contact-medi-
ated NC cell guidance. PTK7 is an evolutionary conserved transmembrane protein with extra-
cellular immunoglobulin domains and an intracellular kinase homology domain, which lacks
catalytic activity [28,29]. In Xenopus PTK7 is required for NC migration [13]. As PTK7 inter-
acts with Frizzled7 and recruits Dishevelled to the plasma membrane [13,30], it could play a
role in cell-contact-mediated NC cell guidance. Recent publications suggest that PTK7 affects
multiple Wnt signaling pathways. Loss of function analysis in mice, zebrafish and Xenopus
show that PTK7 is required for non-canonical Wnt signaling controlling convergent extension
cell movements and planar cell polarity [31,32,33,34]. In addition, PTK7 function has been
implicated in canonical Wnt signaling. Recently, we and others demonstrated that PTK7 inter-
acts with canonical Wnt proteins [35,36] and inhibits canonical Wnt signaling [34,35]. Contra-
dictory to these findings a role of PTK7 as an active component of canonical Wnt signaling has
also been reported [37,38] and PTK7 was shown to interact with LRP6 [38]. Therefore, differ-
ences in the composition of the PTK7 co-receptor complex may explain these contradictory
findings in different tissue settings. This is also supported by reports concerning PTK7 down-
stream signaling, where various signaling outcomes like activation of c-jun, AKT, Ras/ERK,
CREB/ATF1, SRC and inhibition of JNK signaling were observed [39,40,41,42]. The fact that
PTK7 interacts with other receptors like Plexin and VEGF receptors further supports this
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hypothesis and suggests that PTK7 is a versatile co-receptor [43]. Similarly, receptor context
may also modulate PTK7 function in Wnt signaling, however, so far interaction with non-
canonical Wnt receptors such as Ror2 have not been analyzed.

The receptor-tyrosine kinase Ror2 is an evolutionary conserved Wnt receptor that has been
shown to activate ß-catenin-independent Wnt pathways and to antagonize Wnt/ß-catenin sig-
naling [44,45,46,47,48,49,50]. The extracellular part of the Ror2 protein contains one Ig-
domain, the Wnt-binding CRD domain, and one kringle domain; its intracellular part consists
of a supposedly active tyrosine-kinase domain and a C-terminal serine/threonine- and proline-
rich domain. The latter is the major interface for cytoplasmic interactions e.g. with Dishevelled,
Filamin A, CK1 and GSK3ß [51,52,53,54]. In vertebrates, Ror2 was found to form a receptor-
complex with Frizzled and is one major co-receptor in Wnt/Frizzled mediated planar cell
polarity signaling [55,56] andWnt-regulated cell movements [52,57,58,59]. In addition, Ror2
can act as a bona fide receptor tyrosine kinase to activate a PI3K-JNK cascade in gastrulating
Xenopus embryos [44]. Ror2 is expressed in the dorsal mesoderm, the neuroectoderm, in pre-
migratory and migrating NC cells in Xenopus embryos and in the cranial ganglia of tadpoles
[57,60]. Thus, Ror2 and PTK7 are co-expressed in migrating NC cells and share a common
function in the regulation of canonical and non-canonical Wnt signaling pathways suggesting
that they may interact in the regulation of NC migration. Here, we provide evidence supporting
this hypothesis. We find that PTK7 and Ror2 co-localize in NC cells and that they interact bio-
chemically. Further, Ror2 can rescue the PTK7 loss of function NC migration defect indicating
that it can substitute for PTK7.

Materials and Methods

Plasmid cloning
For cloning of the HA-tagged full-length mouse Ror2 (Ror2-HA) the coding sequence of
mouse ror2 was amplified using the following primers: forward 5’ACGCTCGAGGTGCATC
GGGGCAGGAAAGGGGAC3’ and reverse 5’ACGCTCGAGGGCTTCAAGCTGGACATGA
GCCG3’. The PCR product was introduced into the XhoI restriction site of the pCS2+/HA vec-
tor. For myc-tagged full-length human PTK7 (PTK7-MT), the coding sequence of human ptk7
was amplified using the following primers: forward 5’CACGTGATCGATGCCCTCAGCTC
CTTTTCCTGA3’ and reverse 5’GACGTGATCGATGCGGCTTGCTGTCCACGGT3’. The
PCR product was introduced into the ClaI restriction site of pCS2+/MT. Myc-tagged human
PTK7 lacking the intracellular kinase homology domain (h ΔkPTK7-MT) was amplified from
PTK7-MT using the following primers: forward 5’CACGTGATCGATGCCCTCAGCTC
CTTTTCCTGA3’ and reverse 5’CCGTATCGATCGGGCTCCTTCTGCAGC3’. The PCR
product was introduced into the ClaI restriction site of pCS2+/MT. For the secreted extracellu-
lar domain of mouse Ror2 (sRor2-HA) the extra cellular part was amplified using the following
primers: forward 5’CAGCTCGAGCCGCAGCATGGCTCGGGGCTGG3’ and reverse
5’gctgCTCGAG acacgggggtacgtcacacagttg3’. The PCR product was introduced into the XhoI
site of pCS2+/HA. The Xenopus RFP-tagged PTK7 (PTK7-RFP) was cloned using a 3 step PCR
with a pair of chimeric primers thereby fusing the RFP-tag in frame to the C-terminus of
PTK7.

Xenopus injection
Xenopus embryos were generated and cultured according to general protocols and staged
according to the normal table of Nieuwkoop and Faber [61]. All procedures were performed
according to the German animal use and care law (Tierschutzgesetz) and approved by the Ger-
man state administration Hesse (Regierungspräsidium Giessen). For Xenopusmicroinjection
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capped sense mRNA was synthesized using the mMessage Machine Kit (Ambion, Life Tech-
nologies). The following published plasmids were used: LacZ [62], mGFP [63], H2B-mcherry
[64], Xenopus Ror2-3I [57], mouse Ror2Δ469-Flag [65] and Xenopus Ror2-EGFP [60].

For the PTK7 loss of function rescue experiments different combinations of MO and sense
mRNA were co-injected. 10 ng of PTK7 MO (a combination of two different MO was used as
previously described [30]) or standard control MO (GeneTools) were co-injected with 100 pg
mGFP, mouse Ror2, mouse Ror2Δ469 or Xenopus Ror2-3I in one blastomere of a two-cell stage
embryo. In addition 100 pg LacZ RNA was injected as a lineage tracer. Cultivation, staging and
fixation of embryos were performed as previously described [66]. Embryos were cultured until
tadpole stages (stage 26–28) and then further analyzed using ß-galactosidase staining and in
situ hybridization using the NC marker twist.

Cranial NC explants and time-lapse imaging
For NC cell explantation embryos were microinjected with 50 pgmGFPmRNA and 250 pg
H2B-mcherrymRNA together with 7.5 ng control MO or PTK7 MO in one blastomere at the
two-cell stage; for rescue experiments 150 pg Ror2 RNA were co-injected. To analyze for co-
localization of PTK7 and Ror2 embryos were injected with 400 pg PTK7-RFP and 150 pg
Ror2-EGFP. Explantation of NC cells was performed as described [67]. Explanted NC cells
were placed in fibronectin coated (1 mg/ml in PBS) chamber slides (Lab-Tek Chambered Cov-
erglass (Thermo Scientific)) filled with DFA medium (53 mMNaCl, 5 mMNa2CO3, 4.5 mM
K-Gluconacid, 32 mMNa-Gluconacid, 1 mMMgSO4, 1 mM CaCl2, 0.1% BSA, adjusted with
bicine (1M) to pH 8.3). Explants were dissected into smaller pieces using an eyebrow-knife and
incubated for two to four hours at 14°C to ensure adherence of the cells. Subsequently NC
migration was observed and analyzed by spinning disk microscopy (AxioObserver Z1, Zeiss,
Objective 10x plan apochromat NA 0,45 or 63x plan apochromat NA 1.4 oil). Images were
taken every 30 seconds (for imaging at 63x) or every 60 seconds (for imaging at 10x) for a time
interval of up to 8 hours.

Image analysis was performed using ImageJ. For cell tracking the MTrackJ plugin [68] was
used. Briefly, for each condition 5 cells were tracked using the nuclear H2B fluorescence to fol-
low their movement throughout all frames of the movie. Further, to analyze the dispersion of
NC cells Delaunay triangulation was used. In short, the nuclei were selected and the Delaunay/
Voronoi diagram plugin was used to draw a Delaunay diagram from the point selections.

Co-immunoprecipitation andWestern blot
For co-immunoprecipitation experiments MCF7 cells were transfected using Lipofectamine
2000™ (Life Technologies) with the following plasmids: Ror2ΔCRD/KRΔ745-Flag, Ror2Δ745-
Flag and Ror2Δ469-Flag [65], Ror2-HA, sRor2-HA, PTK7-MT and ΔkPTK7-MT. In case of
single plasmid transfection 2 μg of pCS2+ vector without insert were added to equalize plasmid
concentrations. 48 hours after transfection cells were washed in TBS (50 mM Tris (pH 7.5),
150 mM NaCl), scraped and lysed in lysis buffer (TBS containing 0.5% NP-40 and Complete
protease inhibitor mix EDTA-free (Roche)). 750 μl of total lysate were pre-cleared by
continuous mixing with Protein A Sepharose CL-4B (GE Healthcare) for one hour at 4°C.
After centrifugation 50 μl of the pre-cleared lysate were taken as input control. For co-immu-
noprecipitation mouse anti-HA (HA.11 16B12 Covance, dilution 1:150), mouse anti-myc
(9E10 M5546 Sigma, dilution 1:500), goat anti-myc (ab 19234 Abcam, dilution 1:250) or
mouse anti-Flag M2 antibodies (F4049 Sigma, dilution 1:500) were added to the supernatants
and incubated at 4°C for two hours. Subsequently Protein A Sepharose slurry was added and
probes were further incubated at 4°C for one hour. The Protein A Sepharose beads were
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washed five times with lysis buffer for five minutes at 4°C. The beads were mixed with 6x
Laemmli loading buffer (0.35 M Tris (pH 6.8), 30% Glycerin, 10% SDS, 9.3% Dithiothreitol,
0.02% bromphenol blue), denatured at 95°C and loaded on 10% SDS PAGE gels. Detection of
proteins by immunoblotting was carried out using different antibodies: goat anti-myc (ab
19234 Abcam, dilution 1:1000), mouse anti-myc (9E10 M5546 Sigma, dilution 1:2000), mouse
anti-HA (HA.11 16B12 Covance, dilution 1:1000), goat anti-Ror2 (AF 2064 R&D Systems,
dilution 1:1000). As secondary antibodies anti-mouse HRP (sc2005 Santa Cruz, dilution
1:5000) or anti-goat HRP (sc2020 Santa Cruz, dilution 1:10000) were used.

Results

PTK7 and Ror2 co-localize in NC cells and interact in co-
immunoprecipitation experiments
Published data suggest that PTK7 is a versatile co-receptor, however, its interaction partners in
migrating NC cells have not been determined yet. To analyze if PTK7 may interact with the
Ror2 receptor, we first checked for co-localization in migrating NC cells. RFP-labeled PTK7
and GFP-labeled Ror2 were expressed in Xenopus NC cells, which were explanted at premigra-
tory stage 17 and monitored using live-cell imaging. Interestingly, distinct areas of the cell
membrane could be distinguished where either PTK7, Ror2 or a combination of both proteins
were localized (Fig 1A). The fact that PTK7 and Ror2 co-localize at the cell membrane suggests
that these proteins may form a co-receptor complex.

In order to determine a potential biochemical interaction between PTK7 and Ror2 we tested
for co-immunoprecipitation. Full-length myc-tagged PTK7 (PTK7-MT) and full-length
HA-tagged Ror2 (Ror2-HA) were overexpressed inMCF7 cells. Precipitation of PTK7 using myc-
antibodies resulted in co-precipitation of Ror2, while EGFR and TGFßR1 were not co-precipitated
(Fig 1B and 1C; S1 Fig). Conversely, precipitation of Ror2 using HA-antibodies co-precipitated
PTK7 (Fig 1C), but not EGFR or TGFßR1 (S1 Fig). As the intracellular kinase-homology domain
of PTK7 is also required for its function [13,30], we further tested if full-length Ror2 also interacts
with a PTK7 construct lacking this domain (ΔkPTK7-HA). Indeed, we found that Ror2 co-precip-
itates ΔkPTK7 and vice versa (Fig 1C). Thus, these data suggest that PTK7 and Ror2 interact and
that this interaction does not require the kinase homology domain of PTK7.

To determine which Ror2 domains are required for PTK7/Ror2 interaction different Ror2
deletion mutants were used (Fig 2A). Ror2Δ745 has a deletion of the intracellular serine/threo-
nine-rich domains. The Ror2ΔCRD/KRΔ745 mutant lacks additionally the extracellular friz-
zled-like cysteine-rich domain (CRD) required for Wnt binding and the kringle domain (KR).
In the Ror2Δ469 construct major parts of the intracellular domain including the tyrosine-
kinase domain, the serine/threonine-rich and the proline-rich domains have been deleted.
Finally, the sRor2 lacks the entire intracellular and transmembrane domains. The FLAG-
tagged Ror2 deletion constructs were co-expressed with full-length myc-tagged PTK7 and co-
precipitations were performed using anti-FLAG antibodies. All Ror2 deletion mutants were
able to co-precipitate full-length PTK7 (Fig 2B and 2C and data not shown). Conversely, if
PTK7 was precipitated using anti-myc antibodies sRor2 was co-precipitated (Fig 2C). Thus,
the PTK7/Ror2 interaction is likely mediated by the extracellular domains of these proteins,
but does not require the CRD and kringle domains of Ror2.

PTK7 loss of function inhibits cell motility of explanted NC cells
As we detected co-localization of PTK7 and Ror2 in explanted NC cells, we used this system to
further evaluate the biological relevance of the PTK7/Ror2 interaction. In Xenopus PTK7 has
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Fig 1. PTK7 andRor2 co-localize in NC cells and co-precipitate independent of the kinase-homology
domain of PTK7. ACo-localization of PTK7 and Ror2. NC cells co-expressing Ror2-EGFP and PTK7-RFP
show distinct areas of co-localization (yellow) as well asmembrane areas where only PTK7-RFP (red) or
Ror2-EGFP (green) is localized. The right panel shows a higher magnification of the single cell in the left panel
(indicated by a dashed square), scale bar = 10 μm.B,CCo-immunoprecipitation of PTK7 and Ror2. Full-length
myc-tagged PTK7 (PTK7-MT) and amyc-tagged PTK7 deletion construct lacking the kinase homology domain
(ΔkPTK7-MT) as well as a full-length HA-tagged Ror2 construct were expressed in MCF7 cells. BConstructs and
their protein domains are depicted in the top panel. Abbreviations are as follows: IG (immunoglobulin domain),
CRD (cysteine-rich domain), K (kringle domain), TM (transmembrane domain), KH (kinase homology domain),
TK (tyrosine kinase), S/T (serine/threonine-rich domain), P (proline-rich domain).C Immunoprecipitation
experiment; the cell transfection scheme is indicated at the top. Co-immunoprecipitation was carried out using
either anti-myc (IP α-MT, upper panel) or anti-HA antibodies (IP α-HA, middle panel). The respective cell lysates
are shown in the bottom panel. Antibodies used for Western blotting andmolecular weights are indicated at the
right.

doi:10.1371/journal.pone.0145169.g001
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been shown to be required for NC migration [13], but its function on a cellular level remains
elusive. Therefore, we used live-cell imaging to further analyze the migration behavior of
explanted control and PTK7 morphant NC cells. Membrane-targeted GFP (mGFP) and
cherry-labeled Histone2B (H2B-mcherry) were co-expressed to visualize cell shape and polar-
ity. At the start of the experiment (0 hours), control NC cells formed a cell cluster where the
leading-edge cells started to get polarized (Fig 3A, upper panel, S1 Movie). After one hour the
leading cells left the main cell cluster and then dispersed rapidly during the 5 hour time-span
of the experiment. In contrast, PTK7 MO injected NC cells adopted a more roundish shape
and did not disperse as well as control cells (Fig 3 A, lower panel, S1 Movie). The dispersion of
NC cells can be seen in the time series (Fig 3A), where–although explant size in the different
experimental conditions is comparable at the beginning of the time-series–the area of cell
spreading is significantly larger for the controls than the MO-injected explants after 5 hours of
imaging. As it is difficult to determine the exact initial cell number and as the cell dissociation
may not occur homogenously, we used cell tracking and Delaunay triangulation as more
sophisticated methods to measure cell dispersion (Fig 3B and 3C). Delaunay triangulation
determines the two closest cell neighbors and the area of the formed triangles is proportional

Fig 2. The intracellular domain and the CRD domain of Ror2 are not required for PTK7/Ror2 interaction.Myc-tagged PTK7 (PTK7-MT) together with
FLAG- or HA-tagged Ror2 deletions were expressed in MCF7 cells.A The respective constructs and their protein domains are depicted in the top panel. B
Immunoprecipitation using anti-FLAG antibodies; the cell transfection scheme is indicated at the top. Co-precipitated PTK7 was detected using anti-myc
antibodies. Immunoprecipitated PTK7 is shown in the top panel, immunoprecipitated Ror2 constructs in the middle panel and cell lysates in the bottom panel.
Antibodies used for Western blotting and molecular weights are indicated at the right. C Immunoprecipitation using anti-myc antibodies; the cell transfection
scheme is indicated at the top. Co-precipitated full-length Ror2 and sRor2 were detected using anti-HA antibodies (top panel). Immunoprecipitated PTK7 is
shown in the middle panel and cell lysates in the bottom panel. Antibodies used for Western blotting and molecular weights are indicated at the right.

doi:10.1371/journal.pone.0145169.g002
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Fig 3. Loss of function of PTK7 affects NC cell shape and inhibits migration of explanted NC. A Time
series showing explanted NC cells injected with 7.5 ng control or PTK7 MO in combination with 50 pgmGFP
RNA and 250 pgH2B-mcherry. Cranial NC explants were excised at stage 16–17 and explanted on a
fibronectin matrix and incubated until they had stably adhered to the matrix. NC migration was monitored for 5
hours using spinning disk microscopy (10x objective NA 0.45). Images for representative explants injected
either with control or PTK7 MO are shown at the start of the experiment (0 h) or after 1, 3 or 5 hours; scale
bar = 50 μm. B Cell tracking and Delaunay triangulation for explants injected with 7.5 ng co MO. The upper
panel shows a single frame of the spinning disk movie and the lower panel the Delaunay triangulation at the
start of the experiment (0 h) or after 5 hours. Cells were tracked over the whole five-hour time interval using
the H2B staining of single nuclei. These tracks are shown for single cells as differently colored lines in the
images taken after 5 hours, scale bar = 50 μm. C Cell tracking and Delaunay triangulation for explants
injected with 7.5 ng PTK7MO.D Time series showing explants injected with 7.5 ng co MO (upper panel) or
7.5 ng PTK7MO (lower panel) at a higher magnification. Injected NC cells were explanted at stage 17,
cultured for 1.5 hours and imaged with a 63x objective (NA 1.4); scale bar = 20 μm. Images are shown at the
start of the experiment (0 min) and after 45 and 90 minutes.

doi:10.1371/journal.pone.0145169.g003
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to the cell dispersion. The time series as well as cell tracking and Delaunay triangulation all
show that control cells dispersed efficiently during the 5 hours of imaging (Fig 3B). In contrast,
in explants where PTK7 protein expression was knocked down, the NC cells had difficulties to
detach from the main cluster and did not disperse as well as the control NC cells (Fig 3C).
Higher magnification shows that PTK7 morphant cells do not form extensive protrusions like
control cells, but adopt a more roundish shape. This shape change does not correlate with cell
death as determined by Propidium iodine staining (S2 Fig). Some of these explants are still able
to form protrusion, but others adopt a cell movement reminiscent of blebbing (Fig 3D, S2
Movie). Thus, PTK7 loss of function has severe effects on NC cell shape and motility.

Ror2 rescues the PTK7 loss of function NCmigration defect and this
requires the kinase domain of Ror2
As PTK7 and Ror2 are both non-canonical Wnt receptors, which share functions in Wnt sig-
naling, we analyzed if Ror2 can rescue the PTK7 loss of function NC migration defect. To this
end NC cells injected either with co MO or PTK7 MO alone or in combination with Ror2 were
explanted and their migration was analyzed by time-lapse imaging. While the majority of
PTK7 MO injected NC cells showed migration defects, NC cells, which were co-injected with
the PTK7 MO and Ror2 showed normal NC migration behavior (Fig 4, S3 Movie). Defects in
protrusion formation as well as cell motility were rescued by co-expression of Ror2 (Fig 4A
and 4B, S3 Movie) indicating that Ror2 expression can substitute for PTK7 in NC cells.

Similar results were obtained in in vivo experiments where NC migration was analyzed at
tadpole stages using twist in situ hybridization. Embryos injected with co MO were unaffected,
while the majority of embryos injected with the PTK7 MO showed severe NC migration defects
(Fig 5A, 5B and 5F). Co-injection of Ror2 RNA with the PTK7 MO significantly decreased the
percentage of embryos showing NC migration defects (Fig 3C and 3F). In contrast co-injection
of a deletion mutant of Ror2 lacking major parts of the intracellular domain, Ror2Δ469 (Fig 2A
and 2F) did not show a significant rescue defect (Fig 3D and 3F). Interestingly, a kinase dead
mutant of Ror2 (Ror2-3I), where three lysines at position 504 (in the putative ATP-binding
motif), 507 and 509 were all replaced with isoleucine [57] to abolish the catalytic activity, was
not able to rescue the PTK7 morphant NC migration defect. Thus, these results suggest that
Ror2 can functionally replace PTK7 and that the kinase function of Ror2 is required for this
activity.

Discussion
The PTK7 receptor functions in various processes ranging from embryonic morphogenesis to
wound repair and its distinct functions are likely regulated by receptor context. PTK7 has been
shown to interact with Frizzled7 and LRP6 ([13,35,38], however, an interaction with bona fide
non-canonical Wnt receptors has so far not been analyzed. Concerning the PTK7 receptor
complex our data suggest that PTK7 may interact with the non-canonical Ror2 Wnt-receptor.
Like PTK7, Ror2 is expressed in migrating NC cells [57,60] and a role in NC development has
been suggested [69]. Further, using fluorescently labeled PTK7 and Ror2 we detect a co-locali-
zation of both proteins in NC cells. Co-immunoprecipitation experiments show an interaction
of Ror2 with PTK7 and suggest the extracellular domains as possible sites of interaction. More
specifically, we observed that a Ror2 mutant lacking most of the extracellular part except the
Ig-like domain was sufficient for binding to PTK7. Both, PTK7 and Ror2 possess Ig-like
domains, which mediate a large variety of protein-protein interactions (for review see [70]).
However, we can currently not rule out that there may be additional interaction sites. As co-
immunoprecipitation experiments were performed in cell lysates it remains unclear if this
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Fig 4. Ror2 rescues the PTK7 loss of function phenotype in explanted NC cells. A NC explants injected with 7.5 ng MO in combination with 50 pgmGFP
RNA, 250 pg H2B-mcherry and 150 pg Ror2 RNA. Time-lapse images (upper panel) and Delaunay triangulations (lower panel) at the start of the experiment
(0 h) and after 4 or 8 hours are shown for the different conditions. BGraph summarizing percentage of migration defects of 3 independent experiments (total
of 39 explants). Standard error of the means are shown. Asterisks indicates a p-value in a Student’s t-test < 0.05. Scale bars = 200 μm.

doi:10.1371/journal.pone.0145169.g004
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Fig 5. The kinase domain of Ror2 is required to rescue the NCmigration defect in PTK7morphant embryos. Xenopus embryos were injected with
different constructs in combination with 100 pg LacZ RNA as a lineage tracer and analyzed by whole-mount in situ hybridization using a twist antisense RNA
probe.A Embryo injected with 10 ng control MO and 100 pgGFP RNA shows normal NC migration. B Embryo injected with 10 ng PTK7MO and 100 pgGFP
RNA shows inhibition of NC migration on the injected side, while NCmigration is normal on the uninjected side.C Co-injection of 10 ng PTK7MO together
with 100 pg Ror2 RNA rescues the NCmigration defect.D Embryo injected with 10 ng PTK7MO and 100 pg of Ror2Δ469RNA. The embryo shows a NC
migration defect on the injected side. E Embryo injected with PTK7 MO and a kinase dead mutant of Ror2 (Ror2-3I) showing a NCmigration defect on the
injected side. FGraph summarizing the percentage of NCmigration defects of a minimum of 5 independent experiments for each experimental condition.
Asterisks indicates a p-value in a Student’s t-test < 0.001. Scale bar = 500 μm.

doi:10.1371/journal.pone.0145169.g005
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interaction is direct or for example mediated by Wnt ligands or Frizzled co-receptors. Since
interaction of both PTK7 and Ror2 with Frizzled receptors has been shown [13,36,50,55],
members of the Frizzled receptor family may also contribute to the PTK7/Ror2 interaction. In
addition, PTK7 [35,36] and Ror2 interact with different members of the Wnt protein family,
although in the case of Ror2 only non-canonical Wnts such as Wnt-5a were found to activate
downstream signaling [49,50,57,71]. Thus, although the exact molecular composition of a
PTK7/Ror2 receptor complex remains yet to be analyzed, the formation and composition may
also affect the selective binding to members of the Wnt family and thereby modulate intracellu-
lar signaling events.

The downstream signaling events of the PTK7/Ror2 complex are currently unclear, but may
be mediated by an activation of c-Jun N-terminal kinase (JNK). Previously, we have shown
that PTK7 overexpression in Xenopus ectodermal explants leads to a nuclear localization of
phosphorylated JNK [13] and this is not observed if a kinase deletion mutant of PTK7
(ΔkPTK7) is overexpressed (data not shown). Ror2 has been shown to have a similar function
[44,46,53]. Therefore, possibly these molecules collaborate to recruit Dishevelled and to
activate JNK via the PCP pathway [72] and thereby enable the migration of NC cells
[8,9,17,18,25]. Supporting this hypothesis, Ror2 overexpression can rescue the PTK7 loss of
function NC migration defect possibly by compensating for PTK7. Consistently, this rescue
effect requires the kinase domain of Ror2, which is necessary for JNK activation [44]. In the
context of mesodermal convergent extension it was previously shown that Ror2 activates a sig-
naling cascade including PI3K, the small GTPase cdc42, MKK7, JNK and c-jun and ATF2 tran-
scription factors [44]. For PTK7 the mechanism of JNK activation remains unclear, but may
involve the adaptor protein RACK1, which is required for PTK7-mediated Dishevelled recruit-
ment [30]. As RACK1 plays a role in PKC-mediated JNK phosphorylation [73], PTK7 may
activate JNK via RACK1 or Dishevelled itself [72]. JNK is involved in a multitude of processes
and can activate the transcription factors jun, fos and ATF2 [74]. Like Ror2, PTK7 is also able
to activate ATF2-mediated transcription as shown by activation of an ATF2 luciferase reporter
in Xenopus lysates [35,75]. Thus, one of the common signaling outcomes of PTK7 and Ror2
may be the transcription of ATF2-dependent target genes, which has previously also been
acknowledged as a readout for a bona fide activator of non-canonical Wnt signaling [75].

In addition to activation of JNK, PTK7 and Ror2 share a function in the inhibition of canon-
ical Wnt signaling [34,35,45,53], which may contribute to their role in NC development. The
molecular mechanisms are currently unclear. Ror2 may inhibit canonical Wnt signaling by reg-
ulating the stability of ß-catenin [49] or Tcf/Lef-dependent transcription [45,53]. Furthermore,
it has been suggested that formation of a non-canonical Wnt5a/Ror2/Frizzled complex could
compete for available Frizzled receptors thereby inhibiting the formation of a canonical
Wnt3a/LRP/Frizzled complex [47] and subsequently canonical Wnt signaling. PTK7 likely
inhibits canonical Wnt signaling by a similar mechanism. As PTK7 can form a complex with
canonical Wnt ligands and Frizzled7 [35], it could also sequester Frizzled7 in a non-canonical
Wnt signaling complex thereby preventing its interaction with canonical co-receptors and Wnt
ligands. Indeed, it has been shown that Frizzled7 functions in canonical and non-canonical
Wnt signaling depending on Wnt- and likely also co-receptor-context [76]. Independent of the
mechanism by which PTK7 or Ror2 inhibit canonical Wnt signaling, this activity could explain
their function in NC migration. Previously, it has been shown that ectopic activation of canoni-
cal Wnt signaling inhibits NC migration. Explanted NC cells treated with LiCl, an inhibitor of
GSK3ß, or exogenous Wnt1 show an inhibition of NC migration [77]. Thus, loss of function of
PTK7 could enhance canonical Wnt signaling thereby inhibiting NC migration. As Ror2 can
also inhibit canonical Wnt signaling, this may account for its ability to substitute for PTK7 in
NC cells. Currently it remains unclear by which mechanism a PTK7/Ror2 complex affects NC

A PTK7/Ror2 Co-Receptor Complex Affects Neural Crest Migration

PLOS ONE | DOI:10.1371/journal.pone.0145169 December 17, 2015 12 / 19



migration. We have shown that the tyrosine kinase domain of Ror2 is required to rescue PTK7
loss of function. However, as the tyrosine kinase activity of Ror2 is required for both activation
of JNK and inhibition of canonical Wnt signaling [44,78], Ror2 is capable to compensate for
both putative functions of PTK7. Therefore, it remains to be seen which one of these or if possi-
bly even a combination of both is required. In summary, PTK7 and Ror2 share signaling func-
tions that may be enhanced by the combination of both molecules and that may allow for
example Ror2 to compensate for PTK7.

A possible interaction of PTK7 with Ror2 is likely not limited to NC cells, as PTK7 and
Ror2 have also been implicated in tumor development and progression. PTK7 and Ror2
expression is frequently deregulated in a variety of cancers [79,80,81,82,83,84,85]. Several stud-
ies indicate an association of Ror2, in some cases downstream of Wnt5a, with tumor invasive-
ness and metastasis [82,84,86,87,88]. However, it has been shown that epigenetic silencing of
Ror2 in colon cancer promotes cell proliferation and tumor growth [89], suggesting that
depending on the cellular context Ror2 could also act as a tumor-suppressor. Similarly, contra-
dictory results are also seen for the function of PTK7. PTK7 is expressed in acute myeloid leu-
kemia, where it promotes cell migration and leads to a poor clinical outcome [90]. Additional
studies found migration and invasion promoting functions of PTK7 in lung cancer, intrahepa-
tic cholangiocarcinoma, glioma and prostate cancer [42,91,92,93]. In contrast, another publica-
tion shows that PTK7 is a target of membrane type-1 matrix metalloproteinase and that PTK7
expression inhibits cell invasion [94]. Thus, the function of PTK7 and Ror2 may depend on
tumor context and ultimately on receptor context.

Supporting Information
S1 Fig. PTK7 and Ror2 co-precipitate each other but not EGFR or TGFß1R. A Full-length
myc-tagged PTK7 (PTK7-MT) was co-expressed with Ror2-EGFP, EGFR-EGFP [95] or
TGFß1R-EGFP (kind gift of A. Menke, Molecular Oncology of Solid Tumors, Giessen, Ger-
many) as indicated in MCF7 cells. Cell lysates were precipitated using anti-myc antibodies (IP
α-MT, upper panel). Precipitates are shown in the upper panels, cell lysates in the lower panel.
Antibodies used for Western blotting and molecular weights are indicated at the right. B Full-
length HA-tagged Ror2 was co-expressed with PTK7-MT, EGFR-EGFP or TGFß1R-GFP as
indicated in MCF7 cells and cell lysates were precipitated using anti-HA antibodies (IP α-HA,
upper panel). Precipitates are shown in the three upper panels and lysates in the two lower pan-
els. Antibodies used for Western blotting and molecular weights are indicated at the right; �

marks unspecific bands, �� Ror2 signal remaining from previous anti-HA staining, which was
only partially removed by blot stripping.
(TIF)

S2 Fig. Propidium Iodine (PI) staining to determine the viability of PTK7 loss of function
NC cells. NC explants injected with 7.5 ng control MO or PTK7 MO in combination with
50 pg mGFP were treated with PI (10 μg/ml) to test for the viability of the explanted NC cells.
Cell membrane integrity prevents PI staining of viable cells, while it can stain nucleic acids of
apoptotic cells (red). In PTK7 morphant cells few PI-positive cells appear after 3 hours com-
pared to 6 hours in controls (one example each is marked by a red arrow). Round-shaped
PTK7 morphant NC cells appear early in the experiment and keep moving/blebbing for up to a
couple of hours (white arrows, numbers indicate specific cells during the course of the experi-
ment). Thus, the roundish cell shape is not necessarily an indication of cell death. Dashed
squares show higher magnifications of specific cells. Scale bar = 50 μm.
(TIF)
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S1 Movie. Time-lapse movie showing the migration of NC cells injected with control MO
(left) in comparison to an explant injected with PTK7 MO. Images were taken using a Spin-
ning Disk microscope with a 10x plan apochromat objective NA (0.45).
(AVI)

S2 Movie. Higher magnification using a 63x plan apochromat objective NA 1.4) of control
MO (left) and PTK7 MO injected (right) NC explants.
(AVI)

S3 Movie. Time-lapse movie showing that Ror2 expression rescues the PTK7 morphant
phenotype. Explants injected with control MO (upper panel, left), control MO and Ror2 RNA
(upper panel, right), PTK7 MO (lower panel, left) or PTK7 MO and Ror2 RNA (loer panel,
right) are shown over a time interval of 8 hours and 20 minutes.
(AVI)

Acknowledgments
We would like to especially thank Alexandra Schambony for constructs and helpful discussions
and comments on the manuscript. We thank Iryna Shnitsar for cloning of the PTK7-RFP and
Jubin Kashef and Andre Mencke for supplying plasmids. Further, we thank Ingrid Bohl-Maser
and Christiane Rohrbach for technical assistance and Melanie Bernhardt for taking excellent
care of our Xenopus colony.

Author Contributions
Conceived and designed the experiments: AB MP AG HB. Performed the experiments: MP AG
HB ER. Analyzed the data: AB MP AG HB ER. Contributed reagents/materials/analysis tools:
AB. Wrote the paper: AB MP AG.

References
1. Powell DR, Blasky AJ, Britt SG, Artinger KB (2013) Riding the crest of the wave: parallels between the

neural crest and cancer in epithelial-to-mesenchymal transition and migration. Wiley interdisciplinary
reviews Systems biology and medicine 5: 511–522. doi: 10.1002/wsbm.1224 PMID: 23576382

2. Kuriyama S, Mayor R (2008) Molecular analysis of neural crest migration. Philos Trans R Soc Lond B
Biol Sci.

3. Theveneau E, Mayor R (2012) Neural crest delamination and migration: from epithelium-to-mesen-
chyme transition to collective cell migration. Developmental biology 366: 34–54. doi: 10.1016/j.ydbio.
2011.12.041 PMID: 22261150

4. Theveneau E, Mayor R (2011) Collective cell migration of the cephalic neural crest: the art of integrating
information. Genesis 49: 164–176. doi: 10.1002/dvg.20700 PMID: 21157935

5. Snider TN, Mishina Y (2014) Cranial neural crest cell contribution to craniofacial formation, pathology,
and future directions in tissue engineering. Birth defects research Part C, Embryo today: reviews 102:
324–332.

6. Zhang D, Ighaniyan S, Stathopoulos L, Rollo B, Landman K, Hutson J, et al. (2014) The neural crest: a
versatile organ system. Birth defects research Part C, Embryo today: reviews 102: 275–298.

7. Bolande RP (1997) Neurocristopathy: its growth and development in 20 years. Pediatric pathology &
laboratory medicine: journal of the Society for Pediatric Pathology, affiliated with the International Pae-
diatric Pathology Association 17: 1–25.

8. Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M, Dunn GA, Parsons M, et al. (2008) Con-
tact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456: 957–961.
doi: 10.1038/nature07441 PMID: 19078960

9. Matthews HK, Marchant L, Carmona-Fontaine C, Kuriyama S, Larrain J, Holt MR, et al. (2008) Direc-
tional migration of neural crest cells in vivo is regulated by Syndecan-4/Rac1 and non-canonical Wnt
signaling/RhoA. Development 135: 1771–1780. doi: 10.1242/dev.017350 PMID: 18403410

A PTK7/Ror2 Co-Receptor Complex Affects Neural Crest Migration

PLOS ONE | DOI:10.1371/journal.pone.0145169 December 17, 2015 14 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0145169.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0145169.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0145169.s005
http://dx.doi.org/10.1002/wsbm.1224
http://www.ncbi.nlm.nih.gov/pubmed/23576382
http://dx.doi.org/10.1016/j.ydbio.2011.12.041
http://dx.doi.org/10.1016/j.ydbio.2011.12.041
http://www.ncbi.nlm.nih.gov/pubmed/22261150
http://dx.doi.org/10.1002/dvg.20700
http://www.ncbi.nlm.nih.gov/pubmed/21157935
http://dx.doi.org/10.1038/nature07441
http://www.ncbi.nlm.nih.gov/pubmed/19078960
http://dx.doi.org/10.1242/dev.017350
http://www.ncbi.nlm.nih.gov/pubmed/18403410


10. Theveneau E, Steventon B, Scarpa E, Garcia S, Trepat X, Streit A, et al. (2013) Chase-and-run
between adjacent cell populations promotes directional collective migration. Nature cell biology 15:
763–772. doi: 10.1038/ncb2772 PMID: 23770678

11. Banerjee S, Gordon L, Donn TM, Berti C, Moens CB, Burden SJ, et al. (2011) A novel role for MuSK
and non-canonical Wnt signaling during segmental neural crest cell migration. Development 138:
3287–3296. doi: 10.1242/dev.067306 PMID: 21750038

12. Ulmer B, Hagenlocher C, Schmalholz S, Kurz S, Schweickert A, Kohl A, et al. (2013) Calponin 2 acts as
an effector of noncanonical Wnt-mediated cell polarization during neural crest cell migration. Cell
reports 3: 615–621. doi: 10.1016/j.celrep.2013.02.015 PMID: 23499442

13. Shnitsar I, Borchers A (2008) PTK7 recruits dsh to regulate neural crest migration. Development 135:
4015–4024. doi: 10.1242/dev.023556 PMID: 19004858

14. Mayor R, Theveneau E (2014) The role of the non-canonical Wnt-planar cell polarity pathway in neural
crest migration. The Biochemical journal 457: 19–26. doi: 10.1042/BJ20131182 PMID: 24325550

15. Abercrombie M, Heaysman JE (1953) Observations on the social behaviour of cells in tissue culture. I.
Speed of movement of chick heart fibroblasts in relation to their mutual contacts. Experimental cell
research 5: 111–131. PMID: 13083622

16. Abercrombie M, Heaysman JE (1954) Observations on the social behaviour of cells in tissue culture. II.
Monolayering of fibroblasts. Exp Cell Res 6: 293–306. PMID: 13173482

17. Theveneau E, Marchant L, Kuriyama S, Gull M, Moepps B, Parsons M, et al. (2010) Collective chemo-
taxis requires contact-dependent cell polarity. Developmental cell 19: 39–53. doi: 10.1016/j.devcel.
2010.06.012 PMID: 20643349

18. Mayor R, Carmona-Fontaine C (2010) Keeping in touch with contact inhibition of locomotion. Trends in
cell biology 20: 319–328. doi: 10.1016/j.tcb.2010.03.005 PMID: 20399659

19. Axelrod JD, McNeill H (2002) Coupling planar cell polarity signaling to morphogenesis. ScientificWorld-
Journal 2: 434–454. PMID: 12806028

20. Klein TJ, Mlodzik M (2005) Planar cell polarization: an emerging model points in the right direction.
Annu Rev Cell Dev Biol 21: 155–176. PMID: 16212491

21. Vladar EK, Antic D, Axelrod JD (2009) Planar cell polarity signaling: the developing cell's compass.
Cold Spring Harbor perspectives in biology 1: a002964. doi: 10.1101/cshperspect.a002964 PMID:
20066108

22. Wallingford JB (2012) Planar cell polarity and the developmental control of cell behavior in vertebrate
embryos. Annual review of cell and developmental biology 28: 627–653. doi: 10.1146/annurev-cellbio-
092910-154208 PMID: 22905955

23. Theveneau E, Mayor R (2010) Integrating chemotaxis and contact-inhibition during collective cell
migration: Small GTPases at work. Small GTPases 1: 113–117. PMID: 21686264

24. Clay MR, Halloran MC (2013) Rho activation is apically restricted by Arhgap1 in neural crest cells and
drives epithelial-to-mesenchymal transition. Development 140: 3198–3209. doi: 10.1242/dev.095448
PMID: 23804498

25. Theveneau E, Mayor R (2013) Collective cell migration of epithelial and mesenchymal cells. Cellular
and molecular life sciences: CMLS 70: 3481–3492. doi: 10.1007/s00018-012-1251-7 PMID: 23314710

26. Becker SF, Mayor R, Kashef J (2013) Cadherin-11 mediates contact inhibition of locomotion during
Xenopus neural crest cell migration. PloS one 8: e85717. doi: 10.1371/journal.pone.0085717 PMID:
24392028

27. Carmona-Fontaine C, Theveneau E, Tzekou A, Tada M,WoodsM, Page KM, et al. (2011) Complement
fragment C3a controls mutual cell attraction during collective cell migration. Developmental cell 21:
1026–1037. doi: 10.1016/j.devcel.2011.10.012 PMID: 22118769

28. Miller MA, Steele RE (2000) Lemon encodes an unusual receptor protein-tyrosine kinase expressed
during gametogenesis in Hydra. Dev Biol 224: 286–298. PMID: 10926767

29. Kroiher M, Miller MA, Steele RE (2001) Deceiving appearances: signaling by "dead" and "fractured"
receptor protein-tyrosine kinases. Bioessays 23: 69–76. PMID: 11135311

30. Wehner P, Shnitsar I, Urlaub H, Borchers A (2011) RACK1 is a novel interaction partner of PTK7 that is
required for neural tube closure. Development 138: 1321–1327. doi: 10.1242/dev.056291 PMID:
21350015

31. Lu X, Borchers AG, Jolicoeur C, Rayburn H, Baker JC, Tessier-Lavigne M (2004) PTK7/CCK-4 is a
novel regulator of planar cell polarity in vertebrates. Nature 430: 93–98. PMID: 15229603

32. YenWW,Williams M, Periasamy A, Conaway M, Burdsal C, Keller R, et al. (2009) PTK7 is essential for
polarized cell motility and convergent extension during mouse gastrulation. Development 136: 2039–
2048. doi: 10.1242/dev.030601 PMID: 19439496

A PTK7/Ror2 Co-Receptor Complex Affects Neural Crest Migration

PLOS ONE | DOI:10.1371/journal.pone.0145169 December 17, 2015 15 / 19

http://dx.doi.org/10.1038/ncb2772
http://www.ncbi.nlm.nih.gov/pubmed/23770678
http://dx.doi.org/10.1242/dev.067306
http://www.ncbi.nlm.nih.gov/pubmed/21750038
http://dx.doi.org/10.1016/j.celrep.2013.02.015
http://www.ncbi.nlm.nih.gov/pubmed/23499442
http://dx.doi.org/10.1242/dev.023556
http://www.ncbi.nlm.nih.gov/pubmed/19004858
http://dx.doi.org/10.1042/BJ20131182
http://www.ncbi.nlm.nih.gov/pubmed/24325550
http://www.ncbi.nlm.nih.gov/pubmed/13083622
http://www.ncbi.nlm.nih.gov/pubmed/13173482
http://dx.doi.org/10.1016/j.devcel.2010.06.012
http://dx.doi.org/10.1016/j.devcel.2010.06.012
http://www.ncbi.nlm.nih.gov/pubmed/20643349
http://dx.doi.org/10.1016/j.tcb.2010.03.005
http://www.ncbi.nlm.nih.gov/pubmed/20399659
http://www.ncbi.nlm.nih.gov/pubmed/12806028
http://www.ncbi.nlm.nih.gov/pubmed/16212491
http://dx.doi.org/10.1101/cshperspect.a002964
http://www.ncbi.nlm.nih.gov/pubmed/20066108
http://dx.doi.org/10.1146/annurev-cellbio-092910-154208
http://dx.doi.org/10.1146/annurev-cellbio-092910-154208
http://www.ncbi.nlm.nih.gov/pubmed/22905955
http://www.ncbi.nlm.nih.gov/pubmed/21686264
http://dx.doi.org/10.1242/dev.095448
http://www.ncbi.nlm.nih.gov/pubmed/23804498
http://dx.doi.org/10.1007/s00018-012-1251-7
http://www.ncbi.nlm.nih.gov/pubmed/23314710
http://dx.doi.org/10.1371/journal.pone.0085717
http://www.ncbi.nlm.nih.gov/pubmed/24392028
http://dx.doi.org/10.1016/j.devcel.2011.10.012
http://www.ncbi.nlm.nih.gov/pubmed/22118769
http://www.ncbi.nlm.nih.gov/pubmed/10926767
http://www.ncbi.nlm.nih.gov/pubmed/11135311
http://dx.doi.org/10.1242/dev.056291
http://www.ncbi.nlm.nih.gov/pubmed/21350015
http://www.ncbi.nlm.nih.gov/pubmed/15229603
http://dx.doi.org/10.1242/dev.030601
http://www.ncbi.nlm.nih.gov/pubmed/19439496


33. Paudyal A, Damrau C, Patterson VL, Ermakov A, Formstone C, Lalanne Z, et al. (2010) The novel
mouse mutant, chuzhoi, has disruption of Ptk7 protein and exhibits defects in neural tube, heart and
lung development and abnormal planar cell polarity in the ear. Bmc Developmental Biology 286:
20970–20976.

34. Hayes M, Naito M, Daulat A, Angers S, Ciruna B (2013) Ptk7 promotes non-canonical Wnt/PCP-medi-
ated morphogenesis and inhibits Wnt/beta-catenin-dependent cell fate decisions during vertebrate
development. Development 140: 1807–1818. doi: 10.1242/dev.090183 PMID: 23533179

35. Peradziryi H, Kaplan NA, Podleschny M, Liu X, Wehner P, Borchers A, et al. (2011) PTK7/Otk interacts
with Wnts and inhibits canonical Wnt signalling. The EMBO journal 30: 3729–3740. doi: 10.1038/
emboj.2011.236 PMID: 21772251

36. Linnemannstons K, Ripp C, Honemann-Capito M, Brechtel-Curth K, Hedderich M, Wodarz A (2014)
The PTK7-related transmembrane proteins off-track and off-track 2 are co-receptors for Drosophila
Wnt2 required for male fertility. PLoS genetics 10: e1004443. doi: 10.1371/journal.pgen.1004443
PMID: 25010066

37. Puppo F, Thome V, Lhoumeau AC, Cibois M, Gangar A, Lembo F, et al. (2011) Protein tyrosine kinase
7 has a conserved role in Wnt/beta-catenin canonical signalling. EMBO reports 12: 43–49. doi: 10.
1038/embor.2010.185 PMID: 21132015

38. Bin-Nun N, Lichtig H, Malyarova A, Levy M, Elias S, Frank D (2014) PTK7 modulatesWnt signaling
activity via LRP6. Development 141: 410–421. doi: 10.1242/dev.095984 PMID: 24353057

39. Andreeva A, Lee J, Lohia M, Wu X, Macara IG, Lu X (2014) PTK7-Src signaling at epithelial cell con-
tacts mediates spatial organization of actomyosin and planar cell polarity. Developmental cell 29: 20–
33. doi: 10.1016/j.devcel.2014.02.008 PMID: 24703874

40. Golubkov VS, Strongin AY (2014) Downstream signaling and genome-wide regulatory effects of PTK7
pseudokinase and its proteolytic fragments in cancer cells. Cell communication and signaling: CCS 12:
15. doi: 10.1186/1478-811X-12-15 PMID: 24618420

41. Chen R, Khatri P, Mazur PK, Polin M, Zheng Y, Vaka D, et al. (2014) A meta-analysis of lung cancer
gene expression identifies PTK7 as a survival gene in lung adenocarcinoma. Cancer research 74:
2892–2902. doi: 10.1158/0008-5472.CAN-13-2775 PMID: 24654231

42. Jin J, Ryu HS, Lee KB, Jang JJ (2014) High expression of protein tyrosine kinase 7 significantly associ-
ates with invasiveness and poor prognosis in intrahepatic cholangiocarcinoma. PloS one 9: e90247.
doi: 10.1371/journal.pone.0090247 PMID: 24587299

43. Peradziryi H, Tolwinski NS, Borchers A (2012) The many roles of PTK7: a versatile regulator of cell-cell
communication. Archives of biochemistry and biophysics 524: 71–76. doi: 10.1016/j.abb.2011.12.019
PMID: 22230326

44. Schambony A, Wedlich D (2007) Wnt-5A/Ror2 regulate expression of XPAPC through an alternative
noncanonical signaling pathway. Dev Cell 12: 779–792. PMID: 17488628

45. Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling
depending on receptor context. Plos Biology 4: 570–582.

46. Nomachi A, Nishita M, Inaba D, Enomoto M, Hamasaki M, Minami Y (2008) Receptor tyrosine kinase
Ror2 mediates Wnt5a-induced polarized cell migration by activating c-Jun N-terminal kinase via actin-
binding protein filamin A. J Biol Chem 283: 27973–27981. doi: 10.1074/jbc.M802325200 PMID:
18667433

47. Grumolato L, Liu GZ, Mong P, Mudbhary R, Biswas R, Arroyave R, et al. (2010) Canonical and nonca-
nonical Wnts use a commonmechanism to activate completely unrelated coreceptors. Genes & Devel-
opment 24: 2517–2530.

48. Winkel A, Stricker S, Tylzanowski P, Seiffart V, Mundlos S, Gross G, et al. (2008) Wnt-ligand-depen-
dent interaction of TAK1 (TGF-beta-activated kinase-1) with the receptor tyrosine kinase Ror2 modu-
lates canonical Wnt-signalling. Cell Signal 20: 2134–2144. doi: 10.1016/j.cellsig.2008.08.009 PMID:
18762249

49. Billiard J, Way DS, Seestaller-Wehr LM, Moran RA, Mangine A, Bodine PV (2005) The orphan receptor
tyrosine kinase Ror2 modulates canonical Wnt signaling in osteoblastic cells. Molecular endocrinology
19: 90–101. PMID: 15388793

50. Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, et al. (2003) The receptor tyrosine kinase
Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes to cells: devoted to molecular
& cellular mechanisms 8: 645–654.

51. Kani S, Oishi I, Yamamoto H, Yoda A, Suzuki H, Nomachi A, et al. (2004) The receptor tyrosine kinase
Ror2 associates with and is activated by casein kinase Iepsilon. J Biol Chem 279: 50102–50109.
PMID: 15375164

A PTK7/Ror2 Co-Receptor Complex Affects Neural Crest Migration

PLOS ONE | DOI:10.1371/journal.pone.0145169 December 17, 2015 16 / 19

http://dx.doi.org/10.1242/dev.090183
http://www.ncbi.nlm.nih.gov/pubmed/23533179
http://dx.doi.org/10.1038/emboj.2011.236
http://dx.doi.org/10.1038/emboj.2011.236
http://www.ncbi.nlm.nih.gov/pubmed/21772251
http://dx.doi.org/10.1371/journal.pgen.1004443
http://www.ncbi.nlm.nih.gov/pubmed/25010066
http://dx.doi.org/10.1038/embor.2010.185
http://dx.doi.org/10.1038/embor.2010.185
http://www.ncbi.nlm.nih.gov/pubmed/21132015
http://dx.doi.org/10.1242/dev.095984
http://www.ncbi.nlm.nih.gov/pubmed/24353057
http://dx.doi.org/10.1016/j.devcel.2014.02.008
http://www.ncbi.nlm.nih.gov/pubmed/24703874
http://dx.doi.org/10.1186/1478-811X-12-15
http://www.ncbi.nlm.nih.gov/pubmed/24618420
http://dx.doi.org/10.1158/0008-5472.CAN-13-2775
http://www.ncbi.nlm.nih.gov/pubmed/24654231
http://dx.doi.org/10.1371/journal.pone.0090247
http://www.ncbi.nlm.nih.gov/pubmed/24587299
http://dx.doi.org/10.1016/j.abb.2011.12.019
http://www.ncbi.nlm.nih.gov/pubmed/22230326
http://www.ncbi.nlm.nih.gov/pubmed/17488628
http://dx.doi.org/10.1074/jbc.M802325200
http://www.ncbi.nlm.nih.gov/pubmed/18667433
http://dx.doi.org/10.1016/j.cellsig.2008.08.009
http://www.ncbi.nlm.nih.gov/pubmed/18762249
http://www.ncbi.nlm.nih.gov/pubmed/15388793
http://www.ncbi.nlm.nih.gov/pubmed/15375164


52. Nishita M, Yoo SK, Nomachi A, Kani S, Sougawa N, Ohta Y, et al. (2006) Filopodia formation mediated
by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration. J Cell Biol 175: 555–
562. PMID: 17101698

53. Witte F, Bernatik O, Kirchner K, Masek J, Mahl A, Krejci P, et al. (2010) Negative regulation of Wnt sig-
naling mediated by CK1-phosphorylated Dishevelled via Ror2. Faseb J 24: 2417–2426. doi: 10.1096/
fj.09-150615 PMID: 20215527

54. Yamamoto H, Yoo SK, Nishita M, Kikuchi A, Minami Y (2007) Wnt5a modulates glycogen synthase
kinase 3 to induce phosphorylation of receptor tyrosine kinase Ror2. Genes to cells: devoted to molecu-
lar & cellular mechanisms 12: 1215–1223.

55. Yamamoto S, Nishimura O, Misaki K, Nishita M, Minami Y, Yonemura S, et al. (2008) Cthrc1 selectively
activates the planar cell polarity pathway of Wnt signaling by stabilizing theWnt-receptor complex. Dev
Cell 15: 23–36. doi: 10.1016/j.devcel.2008.05.007 PMID: 18606138

56. Gao B, Song H, Bishop K, Elliot G, Garrett L, English MA, et al. (2011) Wnt signaling gradients establish
planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Developmental cell 20: 163–
176. doi: 10.1016/j.devcel.2011.01.001 PMID: 21316585

57. Hikasa H, Shibata M, Hiratani I, Taira M (2002) The Xenopus receptor tyrosine kinase Xror2 modulates
morphogenetic movements of the axial mesoderm and neuroectoderm viaWnt signaling. Development
129: 5227–5239. PMID: 12399314

58. He F, XiongW, Yu X, Espinoza-Lewis R, Liu C, Gu S, et al. (2008) Wnt5a regulates directional cell
migration and cell proliferation via Ror2-mediated noncanonical pathway in mammalian palate develop-
ment. Development 135: 3871–3879. doi: 10.1242/dev.025767 PMID: 18948417

59. YamadaM, Udagawa J, Matsumoto A, Hashimoto R, Hatta T, Nishita M, et al. (2010) Ror2 is required
for midgut elongation during mouse development. Developmental dynamics: an official publication of
the American Association of Anatomists 239: 941–953.

60. Feike AC, Rachor K, Gentzel M, Schambony A (2010) Wnt5a/Ror2-induced upregulation of xPAPC
requires xShcA. Biochem Biophys Res Commun.

61. Nieuwkoop PD, Faber J, Hubrecht Laboratory Utrecht. (1956) Normal table of Xenopus laevis (Daudin):
a systematical and chronological survey of the development from the fertilized egg till the end of meta-
morphosis. Amsterdam: North-Holland Pub. Co. 243 p. p.

62. Smith WC, Harland RM (1991) Injected Xwnt-8 RNA acts early in Xenopus embryos to promote forma-
tion of a vegetal dorsalizing center. Cell 67: 753–765. PMID: 1657405

63. Kim SH, Yamamoto A, Bouwmeester T, Agius E, Robertis EM (1998) The role of paraxial protocadherin
in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. Development
125: 4681–4690. PMID: 9806917

64. Kashef J, Kohler A, Kuriyama S, Alfandari D, Mayor R, Wedlich D (2009) Cadherin-11 regulates protru-
sive activity in Xenopus cranial neural crest cells upstream of Trio and the small GTPases. Genes Dev
23: 1393–1398. doi: 10.1101/gad.519409 PMID: 19528317

65. Sammar M, Stricker S, Schwabe GC, Sieber C, Hartung A, Hanke M, et al. (2004) Modulation of GDF5/
BRI-b signalling through interaction with the tyrosine kinase receptor Ror2. Genes to cells: devoted to
molecular & cellular mechanisms 9: 1227–1238.

66. Borchers A, David R, Wedlich D (2001) Xenopus cadherin-11 restrains cranial neural crest migration
and influences neural crest specification. Development 128: 3049–3060. PMID: 11688555

67. Borchers A, Epperlein HH, Wedlich D (2000) An assay system to study migratory behavior of cranial
neural crest cells in Xenopus. Dev Genes Evol 210: 217–222. PMID: 11180825

68. Meijering E, Dzyubachyk O, Smal I (2012) Methods for cell and particle tracking. Methods in enzymol-
ogy 504: 183–200. doi: 10.1016/B978-0-12-391857-4.00009-4 PMID: 22264535

69. Ossipova O, Sokol SY (2011) Neural crest specification by noncanonical Wnt signaling and PAR-1.
Development 138: 5441–5450. doi: 10.1242/dev.067280 PMID: 22110058

70. Barclay AN (2003) Membrane proteins with immunoglobulin-like domains—a master superfamily of
interaction molecules. Seminars in immunology 15: 215–223. PMID: 14690046

71. Liu Y, Rubin B, Bodine PV, Billiard J (2008) Wnt5a induces homodimerization and activation of Ror2
receptor tyrosine kinase. Journal of cellular biochemistry 105: 497–502. doi: 10.1002/jcb.21848 PMID:
18615587

72. Boutros M, Paricio N, Strutt DI, Mlodzik M (1998) Dishevelled activates JNK and discriminates between
JNK pathways in planar polarity and wingless signaling. Cell 94: 109–118. PMID: 9674432

73. Lopez-Bergami P, Habelhah H, Bhoumik A, ZhangW, Wang LH, Ronai Z (2005) RACK1mediates acti-
vation of JNK by protein kinase C [corrected]. Mol Cell 19: 309–320. PMID: 16061178

A PTK7/Ror2 Co-Receptor Complex Affects Neural Crest Migration

PLOS ONE | DOI:10.1371/journal.pone.0145169 December 17, 2015 17 / 19

http://www.ncbi.nlm.nih.gov/pubmed/17101698
http://dx.doi.org/10.1096/fj.09-150615
http://dx.doi.org/10.1096/fj.09-150615
http://www.ncbi.nlm.nih.gov/pubmed/20215527
http://dx.doi.org/10.1016/j.devcel.2008.05.007
http://www.ncbi.nlm.nih.gov/pubmed/18606138
http://dx.doi.org/10.1016/j.devcel.2011.01.001
http://www.ncbi.nlm.nih.gov/pubmed/21316585
http://www.ncbi.nlm.nih.gov/pubmed/12399314
http://dx.doi.org/10.1242/dev.025767
http://www.ncbi.nlm.nih.gov/pubmed/18948417
http://www.ncbi.nlm.nih.gov/pubmed/1657405
http://www.ncbi.nlm.nih.gov/pubmed/9806917
http://dx.doi.org/10.1101/gad.519409
http://www.ncbi.nlm.nih.gov/pubmed/19528317
http://www.ncbi.nlm.nih.gov/pubmed/11688555
http://www.ncbi.nlm.nih.gov/pubmed/11180825
http://dx.doi.org/10.1016/B978-0-12-391857-4.00009-4
http://www.ncbi.nlm.nih.gov/pubmed/22264535
http://dx.doi.org/10.1242/dev.067280
http://www.ncbi.nlm.nih.gov/pubmed/22110058
http://www.ncbi.nlm.nih.gov/pubmed/14690046
http://dx.doi.org/10.1002/jcb.21848
http://www.ncbi.nlm.nih.gov/pubmed/18615587
http://www.ncbi.nlm.nih.gov/pubmed/9674432
http://www.ncbi.nlm.nih.gov/pubmed/16061178


74. Weston CR, Davis RJ (2002) The JNK signal transduction pathway. Current opinion in genetics &
development 12: 14–21.

75. Ohkawara B, Niehrs C (2011) An ATF2-based luciferase reporter to monitor non-canonical Wnt signal-
ing in Xenopus embryos. Dev Dyn 240: 188–194. doi: 10.1002/dvdy.22500 PMID: 21128306

76. Medina A, ReintschW, Steinbeisser H (2000) Xenopus frizzled 7 can act in canonical and non-canoni-
cal Wnt signaling pathways: implications on early patterning and morphogenesis. Mech Dev 92: 227–
237. PMID: 10727861

77. de Melker AA, Desban N, Duband JL (2004) Cellular localization and signaling activity of beta-catenin
in migrating neural crest cells. Developmental dynamics: an official publication of the American Associ-
ation of Anatomists 230: 708–726.

78. Mikels A, Minami Y, Nusse R (2009) Ror2 receptor requires tyrosine kinase activity to mediateWnt5A
signaling. The Journal of biological chemistry 284: 30167–30176. doi: 10.1074/jbc.M109.041715
PMID: 19720827

79. Easty DJ, Mitchell PJ, Patel K, Florenes VA, Spritz RA, Bennett DC (1997) Loss of expression of recep-
tor tyrosine kinase family genes PTK7 and SEK in metastatic melanoma. Int J Cancer 71: 1061–1065.
PMID: 9185712

80. Endoh H, Tomida S, Yatabe Y, Konishi H, Osada H, Tajima K, et al. (2004) Prognostic model of pulmo-
nary adenocarcinoma by expression profiling of eight genes as determined by quantitative real-time
reverse transcriptase polymerase chain reaction. J Clin Oncol 22: 811–819. PMID: 14990636

81. Muller-Tidow C, Schwable J, Steffen B, Tidow N, Brandt B, Becker K, et al. (2004) High-throughput
analysis of genome-wide receptor tyrosine kinase expression in human cancers identifies potential
novel drug targets. Clin Cancer Res 10: 1241–1249. PMID: 14977821

82. O'Connell MP, Fiori JL, Xu M, Carter AD, Frank BP, Camilli TC, et al. (2010) The orphan tyrosine kinase
receptor, ROR2, mediatesWnt5A signaling in metastatic melanoma. Oncogene 29: 34–44. doi: 10.
1038/onc.2009.305 PMID: 19802008

83. Saha S, Bardelli A, Buckhaults P, Velculescu VE, Rago C, St Croix B, et al. (2001) A phosphatase
associated with metastasis of colorectal cancer. Science 294: 1343–1346. PMID: 11598267

84. Wright TM, Brannon AR, Gordan JD, Mikels AJ, Mitchell C, Chen S, et al. (2009) Ror2, a developmen-
tally regulated kinase, promotes tumor growth potential in renal cell carcinoma. Oncogene 28: 2513–
2523. doi: 10.1038/onc.2009.116 PMID: 19448672

85. Ataseven B, Gunesch A, EiermannW, Kates RE, Hogel B, Knyazev P, et al. (2014) PTK7 as a potential
prognostic and predictive marker of response to adjuvant chemotherapy in breast cancer patients, and
resistance to anthracycline drugs. OncoTargets and therapy 7: 1723–1731. doi: 10.2147/OTT.S62676
PMID: 25336969

86. Enomoto M, Hayakawa S, Itsukushima S, Ren DY, Matsuo M, Tamada K, et al. (2009) Autonomous
regulation of osteosarcoma cell invasiveness byWnt5a/Ror2 signaling. Oncogene 28: 3197–3208.
doi: 10.1038/onc.2009.175 PMID: 19561643

87. Kobayashi M, Shibuya Y, Takeuchi J, Murata M, Suzuki H, Yokoo S, et al. (2009) Ror2 expression in
squamous cell carcinoma and epithelial dysplasia of the oral cavity. Oral Surg Oral Med Oral Pathol
Oral Radiol Endod 107: 398–406. doi: 10.1016/j.tripleo.2008.08.018 PMID: 19217015

88. Morioka K, Tanikawa C, Ochi K, Daigo Y, Katagiri T, Kawano H, et al. (2009) Orphan receptor tyrosine
kinase ROR2 as a potential therapeutic target for osteosarcoma. Cancer Sci 100: 1227–1233. doi: 10.
1111/j.1349-7006.2009.01165.x PMID: 19486338

89. Lara E, Calvanese V, Huidobro C, Fernandez AF, Moncada-Pazos A, Obaya AJ, et al. (2010) Epige-
netic repression of ROR2 has aWnt-mediated, pro-tumourigenic role in colon cancer. Mol Cancer 9:
170. doi: 10.1186/1476-4598-9-170 PMID: 20591152

90. Prebet T, Lhoumeau AC, Arnoulet C, Aulas A, Marchetto S, Audebert S, et al. (2010) The cell polarity
PTK7 receptor acts as a modulator of the chemotherapeutic response in acute myeloid leukaemia and
impairs clinical outcome. Blood.

91. Gartner S, Gunesch A, Knyazeva T, Wolf P, Hogel B, EiermannW, et al. (2014) PTK 7 is a transforming
gene and prognostic marker for breast cancer and nodal metastasis involvement. PloS one 9: e84472.
doi: 10.1371/journal.pone.0084472 PMID: 24409301

92. Liu Q, Zhang C, Yuan J, Fu J, WuM, Su J, et al. (2014) PTK7 regulates Id1 expression in CD44-high gli-
oma cells. Neuro-oncology.

93. Zhang H, Wang A, Qi S, Cheng S, Yao B, Xu Y (2014) Protein tyrosine kinase 7 (PTK7) as a predictor
of lymph node metastases and a novel prognostic biomarker in patients with prostate cancer. Interna-
tional journal of molecular sciences 15: 11665–11677. doi: 10.3390/ijms150711665 PMID: 24987951

A PTK7/Ror2 Co-Receptor Complex Affects Neural Crest Migration

PLOS ONE | DOI:10.1371/journal.pone.0145169 December 17, 2015 18 / 19

http://dx.doi.org/10.1002/dvdy.22500
http://www.ncbi.nlm.nih.gov/pubmed/21128306
http://www.ncbi.nlm.nih.gov/pubmed/10727861
http://dx.doi.org/10.1074/jbc.M109.041715
http://www.ncbi.nlm.nih.gov/pubmed/19720827
http://www.ncbi.nlm.nih.gov/pubmed/9185712
http://www.ncbi.nlm.nih.gov/pubmed/14990636
http://www.ncbi.nlm.nih.gov/pubmed/14977821
http://dx.doi.org/10.1038/onc.2009.305
http://dx.doi.org/10.1038/onc.2009.305
http://www.ncbi.nlm.nih.gov/pubmed/19802008
http://www.ncbi.nlm.nih.gov/pubmed/11598267
http://dx.doi.org/10.1038/onc.2009.116
http://www.ncbi.nlm.nih.gov/pubmed/19448672
http://dx.doi.org/10.2147/OTT.S62676
http://www.ncbi.nlm.nih.gov/pubmed/25336969
http://dx.doi.org/10.1038/onc.2009.175
http://www.ncbi.nlm.nih.gov/pubmed/19561643
http://dx.doi.org/10.1016/j.tripleo.2008.08.018
http://www.ncbi.nlm.nih.gov/pubmed/19217015
http://dx.doi.org/10.1111/j.1349-7006.2009.01165.x
http://dx.doi.org/10.1111/j.1349-7006.2009.01165.x
http://www.ncbi.nlm.nih.gov/pubmed/19486338
http://dx.doi.org/10.1186/1476-4598-9-170
http://www.ncbi.nlm.nih.gov/pubmed/20591152
http://dx.doi.org/10.1371/journal.pone.0084472
http://www.ncbi.nlm.nih.gov/pubmed/24409301
http://dx.doi.org/10.3390/ijms150711665
http://www.ncbi.nlm.nih.gov/pubmed/24987951


94. Golubkov VS, Chekanov AV, Cieplak P, Aleshin AE, Chernov AV, ZhuW, et al. (2010) TheWnt/planar
cell polarity (PCP) protein tyrosine kinase-7 (PTK7) is a highly efficient proteolytic target of membrane
type-1 matrix metalloproteinase (MT1-MMP): implications in cancer and embryogenesis. J Biol Chem.

95. Carter RE, Sorkin A (1998) Endocytosis of functional epidermal growth factor receptor-green fluores-
cent protein chimera. The Journal of biological chemistry 273: 35000–35007. PMID: 9857032

A PTK7/Ror2 Co-Receptor Complex Affects Neural Crest Migration

PLOS ONE | DOI:10.1371/journal.pone.0145169 December 17, 2015 19 / 19

http://www.ncbi.nlm.nih.gov/pubmed/9857032

