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Abstract

Mesothelioma is a form of cancer generally caused from previous exposure to asbestos. Although 

it was considered a rare neoplasm in the past, its incidence is increasing worldwide due to 

extensive use of asbestos. In the current practice of medicine, the gold standard for diagnosing 

mesothelioma is through a pleural biopsy with subsequent histologic examination of the tissue. 

The diagnostic tissue should demonstrate the invasion by the tumor and is obtained through 

thoracoscopy or open thoracotomy, both being highly invasive surgical operations. On the other 

hand, thoracocentesis, which is removal of effusion fluid from the pleural space, is a far less 

invasive procedure that can provide material for cytological examination. In this study, we aim at 

detecting and classifying malignant mesothelioma based on the nuclear chromatin distribution 

from digital images of mesothelial cells in effusion cytology specimens. Accordingly, a 

computerized method is developed to determine whether a set of nuclei belonging to a patient is 

benign or malignant. The quantification of chromatin distribution is performed by using the 

optimal transport-based linear embedding for segmented nuclei in combination with the modified 

Fisher discriminant analysis. Classification is then performed through a k-nearest neighborhood 

approach and a basic voting strategy. Our experiments on 34 different human cases result in 100% 

accurate predictions computed with blind cross validation. Experimental comparisons also show 

that the new method can significantly outperform standard numerical feature-type methods in 

terms of agreement with the clinical diagnosis gold standard. According to our results, we 

conclude that nuclear structure of mesothelial cells alone may contain enough information to 

separate malignant mesothelioma from benign mesothelial proliferations.
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Malignant mesothelioma, a type of cancer in the lung, is a universally fatal disease with an 

increasing incidence worldwide (1). Mesothelioma is generally caused by previous exposure 

to asbestos. Millions of people are exposed to asbestos every year and more than one 

hundred thousand people die each year across the globe from asbestos-related diseases, with 

approximately three thousand new mesothelioma cases each year in the United States alone 

(2). Although the incidence in the U.S. peaked in 2010, predicted peak years for European 

and Eastern countries are still to come (3,4). These predictions are based on historical 

statistics and the clinical nature of mesothelioma, that is, mesothelioma usually develops 

20–50 years after asbestos exposure. Moreover, the risk for developing mesothelioma varies 

with the type of asbestos exposure. For example, crocidolite, which is no longer mined in 

the U.S., is 500 times more toxic than chrysotile (5). Malignant mesothelioma can also occur 

due to less common causes such as radiation, viruses (e.g., Simian virus 40) and germline 

mutations in BAP-1 (6–8).

Mesothelioma cancer cells originate from mesothelium, which is a membrane that forms the 

outer lining of the lung. In mesothelioma, these cells become abnormal and divide without 

control or order. Histologically, mesothelioma can be categorized in to three major types: 

epithelioid type, sarcomatoid type, and biphasic type and the incidence of each is 

approximately 60, 20, and 20%, respectively (9). Regardless of the histological type, they 

invade nearby tissues and organs, which lead to a high mortality rate with a short survival 

period (10). Various studies reported the median survival of a patient diagnosed with 

mesothelioma between 6 and 18 months (11,12). These grim statistics reflect the fact that, 

mesothelioma is difficult to diagnose due to the similarity of its symptoms to other lung 

diseases (13,14) and these symptoms do not become apparent until late stages of disease. On 

the other hand, early diagnosis of mesothelioma is important for clinical management of the 

patient; for example, treatment at an early stage of disease significantly improves patient 

survival (15). Moreover, early diagnosis is important because of the issues of compensation 

and lawsuits, especially if the jurisdiction will only accept cases brought on behalf of a 

living victim (16,17).

The current gold standard for malignant mesothelioma diagnosis is through a pleural biopsy 

with subsequent histologic examination of the tissue (18), which is often complemented by 

immunohistochemistry examination. The extraction of diagnostic tissue is performed 

through a thoracoscopy or open thoracotomy. Both of these procedures are invasive and 

costly. On the other hand, thoracocentesis, which is removal of effusion fluid from the 

pleural space, is a far less invasive procedure that can provide material for cytological 

examination. Though crucial for the diagnosis (19), tissue invasion cannot be determined 

from cytological examination and therefore such an examination, by itself, is usually not 

sufficient for a definitive diagnosis. In this study, we describe a computational method to 

detect malignant mesothelioma based on the nuclear chromatin distribution from digital 

Tosun et al. Page 2

Cytometry A. Author manuscript; available in PMC 2015 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



images of mesothelial cells in effusion cytology specimens. Examination of nuclear 

chromatin distribution of the mesothelial cells to determine the presence of mesothelioma is 

a challenging task for cytopathologists, because benign and malignant nuclei look similar to 

human eye. This nuclear similarity can be clearly seen Figure 1.

In the past few years, computational methods became more popular than before especially 

for cell and nuclear segmentation and quantitative analysis on segmented structures (20–23). 

In this particular study, we aim to predict the diagnosis of a patient by analyzing digital 

images of cells from pleural effusion fluid of patients with both malignant mesothelioma and 

benign effusions. If successful, the new technique will have the potential to eliminate or 

reduce the need for tissue biopsy.

This article is organized as follows. The next section describes in detail our sample 

procurement, preparation, imaging, and image analysis pipeline. After acquisition of light 

microscopy images of stained effusion fluid, we first manually select nuclei from relevant 

mesothelial cells under supervision of a cytopathologist. The selected nuclei are then semi-

automatically segmented using a level set-based method (24). After segmentation, the 

chromatin content of each segmented nucleus is processed to obtain its linear optimal 

transport (LOT) embedding, as described in detail in Wang et al. (25) and in Basu et al. (26). 

Classification is performed by using a linear discriminant analysis-based k-nearest neighbor 

classifier on LOT space. Finally, we show that this method can outperform traditional 

numerical feature-based approaches for comparing nuclei, and can achieve high accuracy in 

a cohort of 34 patients. In addition, we show the approach can be used to visualize 

interesting differences in nuclear morphology between different nuclei types.

MATERIALS AND METHODS

Sample Procurement, Staining, and Image Acquisition

Cytology slides are obtained from the archives of the departments of pathology of Allegheny 

General Hospital and the West Penn Hospital (Institutional Review Board approval 

RC-5713). Selected slides include patients with both malignant mesothelioma and benign 

pleural effusions. All patients selected for our study had a cytological examination of pleural 

effusion and a concurrent or subsequent pleural biopsy, which served as the gold standard 

for our evaluation procedure. Effusion cytology specimens were stained with the Diff-Quik 

(27) stain. Digital images of mesothelial cells were acquired using an Olympus BX50 

microscope equipped with a Plan CN 60X objective (Olympus America, Central Valley, 

PA) and IN1820 spot insight firewire two megapixel camera (Spot Imaging Solutions, 

Sterling Heights, MI). Images of at least 30 mesothelial cells per case were obtained. Patient 

cases were anonymized to prevent any bias and cases with insufficient numbers of 

mesothelial cells were excluded from the study. A total of 34 patients were used for this 

study, including 16 cases of malignant mesothelioma and 18 cases of benign pleural 

effusions.
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Nuclear Segmentation

We used a semi-automatic procedure for segmenting the relevant nuclei from the images 

acquired as described above. Mesothelial cells were first manually identified from digital 

images under the supervision of a cytopathologist (O.Y.). Rough initial borders for each 

nucleus were manually selected as input for a level-set method (24), which was applied to 

automatically achieve the final contours of the segmented nuclei. Figure 2 contains a few 

examples of segmented nuclei (second row) with their final contours in white, and the 

corresponding nuclei after our normalization (third row), which is described in more detail 

below. A total of 1,080 nuclei segmented from digital images in this study, where 590 nuclei 

for benign cases and 490 nuclei malignant cases.

Comparing Nuclear Chromatin Using Transport-Based Morphometry

Our approach for classifying nuclear chromatin images relies on the idea of computing the 

optimal transport plan between two images. In this work, however, we use the linearized 

version (explained in detail below) of the optimal transport metric we have recently 

described in Refs. 25 and 26. Before the application of the transport-based morphometry 

pipeline, the segmented nuclear images (one nucleus per image) were pre-processed as 

follows. The luminance component of segmented RGB nuclei images was extracted and 

intensities were normalized so that the pixel brightness indicates the amount of locally 

concentrated chromatin (the brighter the pixel, the more chromatin). The sum of intensities 

in each segmented nuclear image is set to one and single nucleus images are normalized to 

remove relative translations and rotations, using the procedure proposed in Rohde et al. (28), 

where the images are centered to eliminate the translation factor and rotated such that the 

major axis is aligned vertically. Example segmented and normalized nuclear images are 

shown in Figure 2 (third row).

After normalization, the chromatin content of each segmented nucleus was processed to 

obtain its LOT embedding (25) using 800 particles for approximating each image. The 

particle approximation process is performed by using Lloyd’s weighted K-means algorithm 

(29) to adjust the position and weights of a set of N particles, where N<<M and M is the 

number of pixels in the image. The details and intuition behind this procedure can be found 

in Supporting Information. An illustrated result of the particle approximation step can be 

seen in Step 1 of Figure 3.

The optimal transport plan between each nucleus image and a reference image is computed 

using the ‘mass’ of the particle approximation, where ‘mass’ is the collection of pixel 

intensity values and reference image is the Euclidean average of intensities across the entire 

image dataset (after translation and rotation effects have been removed). One of the major 

benefits of this technique is a dramatic reduction in computational complexity when 

computing pairwise transport distances between images in a dataset.

Although a detailed explanation of the LOT approach is available in the Supporting 

Information, for completeness, in this study, we offer the following summary. In brief, we 

use aforementioned reference image (Euclidean average of intensities across the entire 

image dataset) as a template. That is, let the dataset be composed of K images I1; I2; …; Ik. 
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The reference image is computed as . We then compute a particle 

representation for each image (and the template image) as described before. This 

approximation is meant to decrease the computational complexity of the overall method by 

selecting the “most important” pixel locations based on a weighted K-means approach. Note 

that, we have chosen N = 800 particles to be used for approximating each image. The output 

for each image is the position of each particle, and the weight (mass which corresponds to 

intensity values) of each particle in approximating the corresponding image. For example, 

the approximation for the reference image can be written as  where 

corresponds to a discrete delta function placed at position xk in that image, whereas qk 

corresponds to the ‘mass’ at that position. Likewise, let , be the particle 

approximation of another image in the database. To obtain the linear embedding of image I1 

we solve for the optimal transport between the particle approximations of I0 and I1.

More precisely, we use the optimal transportation (Kantorovich–Wasserstein) framework to 

quantify how mass in an image, in relative terms, is redistributed to morph that image into 

the template image. Note that mass in this study corresponds to pixel intensities, which in 

this case correspond to chromatin density within the nuclei. Hence, the meaning of transport 

distance between two nuclei becomes the transport distance between localization of 

chromatin distribution of two nuclei. We describe the mathematics of the traditional optimal 

transport (OT) framework, and in particular the geometry behind it, in the Supporting 

Information. As a summary, the optimal transportation distance, also known as the 

Kantorovich–Wasserstein distance, between two measures (images) P1 and P2 on domain π 

is defined as:

(1)

where μ is a coupling within the set of all couplings between P1 and P2. Note that, the set of 

all couplings (∏(P1, P2)) is the set of all probability measures on with the first marginal is 

P1 and the second marginal is P2. Each coupling describes a transportation plan μ(A0×A1), 

which tells the amount of “mass” that is originally in set A0 transported into set A1. In Eq. 

(1), the space of probability measures is endowed with a Riemannian manifold, which is 

visualized in Step 3 of Figure 3 (OT manifold). This Riemannian manifold structure is 

needed to be able to consider paths and in particular the shortest path (i.e., geodesics) 

connecting any two probability measures, or in our case, two nucleus images in the image 

space.

In, Wang et al. (25) used Eq. (1) for a finite number of particles described here as particle 

approximation step. Recalling the particle-based definitions of images as 

and  optimal transportation distance between these two images can be found 

by minimizing
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(2)

subject to constraints  for i=1, … N, and  for j=1, …, N. In 

Figure 3, Step 2 illustrates a sample transportation map between two images. The 

minimization is performed using the linear programming approach described in Wang et al. 

(25). The linear embedding of I1 is obtained by applying the discrete transportation map 

between the reference I0 and I1 to the coordinates yj via

(3)

where ak is the centroid of the particle  computed via

(4)

We denote t1 to be the LOT embedding of I1. This embedding has dimensions t1 ∈ ℝN×2 for 

two dimensional (2D) images.

Classification

To perform the classification task we compute a one dimensional linear discriminant 

subspace that can be used for classifying sets of nuclei. To that end, we computed a linear 

classification function to distinguish individual nuclei from the two classes (benign and 

malignant) by using the standard Fisher linear discriminant analysis (LDA) technique (30) 

on the LOT embedding of each nucleus in the training set. The outcome of this procedure is 

a projection vector, denoted as , of the same size as each LOT embedding.

Given a set of LOT embeddings x1;…; xN from a given class, the projection of each nucleus 

was computed via  and stored as training data, where  is the projection line. 

Given a set of LOT embeddings from nuclei from an unlabeled patient y1;…; yM, the 

projection of each nucleus  was computed. Figure 3 Step 4 shows the histograms of 

the projected data onto first LDA direction. The class of an unknown set of nuclei is 

computed by classifying each y1 via a K-nearest neighbor algorithm [see Bishop and 

Nasrabadi (30) for details], and taking the majority ‘vote’ (the most common class 

assignment of the nuclei of the particular patient). The appropriate number of nearest 

neighbors K is computed with a blind cross validation procedure with-in the training set 

(double cross-validation).

Visualization of Discriminating Information

The transport-based morphometry pipeline described above, and in more detail in the 

Supporting Information, can also be used to visualize discriminating information between 

two classes (in this case, benign vs. mesothelial cells). This is possible because the LOT 
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embedding procedure described above can also be viewed as an invertible transform. That 

is, after transforming image to LOT space one can transform back to image space using 

particles and their weights in LOT space. Note that, t1 is the LOT embedding of I1 with 

dimensions t1 ∈ ℝN×2 for 2D images. Hence, the embedding is interpretable in the sense that 

any point in this space can be visualized by simply plotting the vector coordinates (each in 

ℝ2) in the image space π, which makes LOT an invertible transform. This inversion 

operation is described in detail in Refs. 25 and 26, but in short, any point xk in LOT space 

contains within it a transport map [f in Eq. (4)], which can be used to visualize the template 

masses in image domain, and in this way an image corresponding to point xk can be 

visualized. To visualize the most discriminant differences between benign and malignant 

cells, it is therefore possible to simply plot the LDA line  computed as described above, 

via this inversion operation. As we have described in Ref. 31, however, simply plotting 

 can lead to misleading interpretations given that nothing constrains the LDA 

procedure to visualize the data in image domain. Meaning that the direction  may not 

have any phenotypes ‘nearby’ and hence may not be representative of any trend in the data. 

In Ref. 31, we have described a penalized version of the method, denoted in this study as 

, that helps enforce the direction for visualization of the data (images of cells) by 

combining the cost functions of the standard LDA and the principal component analysis 

method.

Figure 4 shown below contains a result of applying the penalized linear discriminant 

analysis (pLDA) method to this dataset. In this figure, histogram bins represent the 

distribution of nuclei in LOT space, such that their LOT embeddings are projected onto the 

first (most discriminant) direction of pLDA. The nuclei images below these histogram bins 

are the images of nuclei along the pLDA direction, which is generated by simply plotting the 

vector coordinates of each particle of the average image. We note that in this computation, 

we have used the pLDA method modified as described in Ref. 31. Finally, we mention that 

it is not possible to perform this operation using the standard numerical feature-based 

approach described above, as the operation of extracting features from an image is not 

invertible. That is, although it is possible to extract features from an image of a cell, 

generally speaking, it is not possible to reconstruct an image from the extracted features.

Comparison

To show the effectiveness of proposed method, we have also included results obtained using 

a numerical feature-based approach for comparison. This feature-based approach is similar 

to the approach described earlier in Wang et al. (31). A total of 256 numerical features were 

extracted per nucleus. These features include ‘morphological features’ (such as area, 

convexity, circularity, perimeter, eccentricity, and equivalent diameter), which are widely 

used in image analysis in digital pathology. In addition, the feature set also includes ‘texture 

features’, which in our case consisted of Haralick and Gabor features as described in Refs. 

32 and 33. Finally, the feature set also included wavelet-based features, which can capture 

multi resolution information from images as described in Wang et al. (20). Features were 

normalized after extraction, so that the variance of each feature was set to one. A ‘leave one 

patient out’ cross validation strategy was applied to train the classification procedure. The 
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training process also consisted of applying the stepwise discriminant analysis (34) technique 

for feature selection, and subsequently applying the same LDA-based classification 

procedure described above to obtain the final predictions for each patient. In the 

comparisons below, the training and testing procedures used identical data for both LOT and 

numerical feature-based approaches.

RESULTS

To evaluate the performance of proposed method, we used the standard “leave one patient 

out” cross validation strategy. In this study, we test the ability of our method to classify 

patients whose nuclei were not used in the training process. Therefore, to classify a given 

patient, the nuclei belonging to that patient are removed from the training dataset and kept 

separated as testing data. A classifier is then trained using training data only and then used to 

compute the projection score of the separated patient’s nuclei. In all classification confusion 

matrices shown in Table 1, each patient was diagnosed by using the LDA-based K-nearest 

neighbor voting classifier (computed as described above) trained without using nuclei from 

that patient. In summary, no testing data is used in the training process, whereas the LOT 

embedding procedure above is the same for every image, and does not use class labels. 

Because the error between the average image calculated over the entire set and the average 

images calculated over just the training sets (one-patient-out) are negligible, we take the 

reference image to be the empirical mean of the entire dataset and calculate LOT just once. 

Because the averaging operation does not use class labels, we note that this procedure does 

not violate the common assumptions related to supervised learning, that is, the same 

operation can be performed for classifying a patient whose class is unknown.

Table 1 contains a summary of the classification results obtained for our diagnostic 

challenges. Results using the LOT-based approach are shown in Table 1a. For comparison 

purposes, in this study, we have also included results obtained using a numerical feature-

based approach described earlier, which are given in Table 1b. Results computed using the 

transport-based approach are clearly superior in accuracy to those computed using the 

standard numerical feature-based approach.

In our diagnostic challenge, we also sought to display and learn what discriminative nuclear 

properties exist between nuclei of benign and malignant classes. Figure 4 contains a 

visualization of the most discriminant direction between benign and malignant cells. In this 

figure, the height of each bar corresponds to the number of nuclei (within each class), which 

were most closely associated (in the sense of the transport metric described above) to the 

nuclear configuration directly beneath it. Hence, it is a projection of the data onto the pLDA 

direction computed as described above. We note that this computation is also performed 

using held out data. That is, the pLDA direction was computed using training data, whereas 

the histograms shown are computed using separate test data using 10% of the data. Student’s 

t-test is calculated between two populations of patients (benign vs. malignant) on the most 

discriminant direction of pLDA, and the P-value associated with the t-test for differences of 

means in this computation was P = 0.0004 (computed using test data only), which 

corresponds to significance between set of nuclei belonging to benign patients and set of 

nuclei belonging to malignant patients. The figure therefore conveys that, in traversing from 
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benign to malignant nuclei, the chromatin distribution is changing. On average, malignant 

cells tend to have more of their chromatin distributed toward the center of the nuclear 

envelope, whereas benign cells, relatively speaking, tend to have their chromatin more 

concentrated toward the border of the nucleus.

DISCUSSION

In this study, we presented a computer-aided diagnosis approach for classification of 

malignant mesothelioma based on nuclear structure of mesothelial cells in the effusion 

cytology specimens. The procedure we described combines a transport-based linear 

embedding for each image together with simple LDA-based K-nearest neighbor voting 

classifier. The proposed approach was able to achieve 100% predictive accuracy (perfect 

specificity and sensitivity) from effusion cytology of 34 patients, whose clinical diagnosis is 

known. The quantitative results are promising and therefore the proposed approach has a 

potential to eliminate the need for an invasive procedures for diagnosis. In addition, this 

method is capable of showing nuclear morphology differences between benign and 

malignant mesothelial nuclei. Such differences are difficult to visualize from the raw, 

unprocessed, data.

Our future directions include, expanding the dataset for better analysis of the methodology 

in terms of robustness and reliability. With the increase of data size, an automated nuclei 

segmentation algorithm will be beneficial in terms of time management. We also plan to 

include additional diagnostic challenges, such as differentiating malignant mesothelioma 

from adenocarcinoma involving the pleura, which is also a well-known problem in surgical 

pathology and effusion cytology (35). There are also an increasing number of studies in 

immunohistochemistry especially focused on mesothelioma detection. However, there is still 

no standard test that perfectly discriminates mesothelioma from carcinoma. We also mention 

there is significant room for improvement in automating the nuclear segmentation 

procedure. In this work, we have used guidance from a trained pathologist for selecting 

mesothelial cells from the image field of view, and initializing the segmentation procedure. 

Potentially, these procedures could be automated using a variety of nuclear segmentation 

methods (36), whereas the selection of nuclei pertinent to mesothelial cells can be performed 

using classification approaches.

In addition, we have shown that certain standard numerical feature-based methods may not 

perform and the LOT approach described earlier. We hypothesize that the reason for the 

improvement in accuracy is related to the fact that the existing numerical feature-based 

approaches, as detailed above, are not invertible operations, which means it is not possible to 

regenerate images from feature space. Thus they are likely to ‘discard’ information which, at 

times, may be relevant to the problem at hand. In contrast, the LOT approach we have used, 

in theory (if enough approximating particles are used), can be seen as an invertible 

transformation and thus is more likely to preserve more information relevant to the 

discrimination task at hand. Moreover, because the process of obtaining LOT embedding 

constitutes an invertible nonlinear transformation, as explained in (25), this nonlinearity 

potentially increases the linear separability of the data, thus allowing for higher 
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classification accuracies with relatively simple classifiers. Future work also includes a more 

theoretical investigation to describe this phenomenon.

Finally, we also note that the voting-based classifier presented above is one option amongst 

several other possible ones. The strategy consisted of classifying nuclei individually 

(independently of each other) first, and then aggregating results through a voting procedure. 

The (testing set classification) accuracy for individual nuclei was 73.3% using the LOT 

method, and 59.8% using the numerical feature approach. In our work, we have chosen the 

majority vote, though one could also use a different “threshold” in the voting procedure, at 

the expense of a decrease in accuracy (data not shown for brevity). In a more general sense, 

the strategy of classifying nuclei individually (independently of each other) first, and then 

aggregating results through a voting procedure can be seen as an implementation of the 

Naïve Bayes method for classification. When dependency exists between samples, alternate 

strategies already exist and can be used (37). Future work will include expanding our patient 

database to test the method with a larger cohort, improving the automation of our 

segmentation method, and testing other set classification strategies for determining the class 

of each patient.

In conclusion, our results show that the recently developed transport-based morphometry 

approach can reliably tell apart malignant from benign sets of mesothelial cells, by only 

looking at effusion cytology specimens. In contrast, feature-based approach fails to get 

correct classification for seven patients. According to our pathologist reports, five 

misclassified malignant patients were also misdiagnosed by cytopathologists when they 

made the diagnosis by only looking at effusion cytology. These cases turned out to be 

malignant on biopsy. The reason is that cytopathologists may be reluctant to make the 

diagnosis of malignant mesothelioma based on cytology alone, because no information is 

available from tissue structure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sample mesothelial nuclei are show in this figure. The left-most image is taken from a 

benign effusion, and the rightmost image is taken from a mesothelioma patient. Sample 

selected nuclei from each type are given in the center, showing the similarity of different 

types of nuclei. [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Figure 2. 
Example images showing segmentation process. First row (A–F) shows the initial digital 

images acquired each having a field of view, second row (G–L) shows sample segmented 

nuclei from digital images of the first row, and third row (M–R) shows the final images after 

normalization process. [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Figure 3. 
Transport-based morphometry framework is summarized. Step 1 illustrates the particle 

approximation on a single nucleus image. Step 2 shows an example optimal transport 

solution over particles of two sets of particles. In Step 3, a demonstration of LOT embedding 

from OT manifold is given. Finally, in Step 4 the projection of data in LOT space on to first 

LDA direction is depicted for the purpose of classification. [Color figure can be viewed in 

the online issue, which is available at wileyonlinelibrary.com.]
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Figure 4. 
Nuclei distribution histograms for benign and malignant mesothelioma comparison. The row 

of nuclei images beneath the histogram bins are the normalized grayscale (upper row) visual 

representations of nuclei along the optimal transportation pathway (geodesic) that best 

discriminate between these two groups of nuclei.
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