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Abstract

Objective—Currently, depression diagnosis relies primarily on behavioral symptoms and signs, 

and treatment is guided by trial and error instead of evaluating associated underlying brain 

characteristics. Unlike past studies, we attempted to estimate accurate prediction models for late-

life depression diagnosis and treatment response using multiple machine learning methods with 

inputs of multi-modal imaging and non-imaging whole brain and network-based features.

Methods—Late-life depression patients (medicated post-recruitment) [n=33] and elderly non-

depressed individuals [n=35] were recruited. Their demographics and cognitive ability scores were 

recorded, and brain characteristics were acquired using multi-modal magnetic resonance imaging 

pre-treatment. Linear and nonlinear learning methods were tested for estimating accurate 

prediction models.

Results—A learning method called alternating decision trees estimated the most accurate 

prediction models for late-life depression diagnosis (87.27% accuracy) and treatment response 

(89.47% accuracy). The diagnosis model included measures of age, mini-mental state examination 

score, and structural imaging (e.g. whole brain atrophy and global white mater hyperintensity 

burden). The treatment response model included measures of structural and functional 

connectivity.

Conclusions—Combinations of multi-modal imaging and/or non-imaging measures may help 

better predict late-life depression diagnosis and treatment response. As a preliminary observation, 

we speculate the results may also suggest that different underlying brain characteristics defined by 
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multi-modal imaging measures—rather than region-based differences—are associated with 

depression versus depression recovery since to our knowledge this is the first depression study to 

accurately predict both using the same approach. These findings may help better understand late-

life depression and identify preliminary steps towards personalized late-life depression treatment.
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INTRODUCTION

In a given year, approximately 2 million people aged 65+ suffer from late-life depression 

(LLD) (Mental Health America). The current diagnosis and treatment of LLD is based on 

behavioral symptoms and signs. It lacks the reliability and validity that could accrue from 

biomarkers of underlying brain characteristics. To advance towards personalizing medicine, 

it is important to identify biomarkers reflecting the neural circuit abnormalities that 

characterize LLD.

Past studies have associated LLD diagnosis and treatment response with select few of the 

demographic (Blazer, 2012; Chang-Quan et al., 2010; Forlani et al., 2013; Katon et al., 

2010; Luppa et al., 2012; Wild et al., 2012; Wu et al., 2012), clinical (Andreescu et al., 

2008), cognition ability (Bhalla et al., 2005; Ganguli et al., 2006; Kohler et al., Apr 2010; 

Ribeiz et al., 2013; Wilkins et al., 2009), MR structural (Alexopoulos et al., 2008; 

Aizenstein et al., 2011; Change et al., 2011; Colloby et al., 2011; Crocco et al., 2010; 

Disabato et al., 2012; Firbank et al., 2012; Gunning et al., 2009; Gunning-Dixon et al., 2010; 

Kohler et al., Feb 2010; Mettenburg et al., 2012; Sexton et al., 2013; Shimony et al., 2009; 

Taylor et al., 2008; Taylor et al., 2011; Teodorczuk et al., 2010), and/or MR functional 

measures (Alalade et al., 2011; Alexopoulos et al., 2012; Andreescu et al., 2011; Andresscu 

et al., 2013; Bohr et al., 2012; Colloby et al., 2012; Liu et al., 2012a; Steffens et al., 2011; 

Wang et al., 2008; Wu et al., 2011). In this study, we use a broader spectrum of measures 

hoping to gain a more complete and accurate understanding of underlying brain mechanisms 

associated with LLD. Using a unique set of measures as features, we aimed to estimate 

accurate prediction models of LLD diagnosis and treatment response via machine learning; 

the goal being to improve the understand of LLD and take preliminary steps towards 

personalized treatment. Past studies have successfully done so in younger populations 

(Costafreda et al., 2009; Fu et al., 2008; Hahn et al., 2011; Liu et al., 2012b; Marquand et 

al., 2008; Mwangi et al., 2012a; Mwangi et al., 2012b; Nouretdinov et al., 2011; Zeng et al., 

2012), but not for LLD.

Compared with mid-life depression, LLD has a different neural signature including gray 

matter (GM) and white matter (WM) structural changes (Aizenstein et al., 2014) and a more 

difficult treatment response (Andreescu and Reynolds, 2011). Considering the age- and 

disease-related complexity of brain structure and function in the elderly, we studied 

prediction models via generalized linear (L1 Regularized Logistic Regression (L1-LR) and 

Support Vector Machines with Linear Kernel (SVM-L)) and nonlinear (Alternating Decision 

Tree (ADTree) and Support Vector Machines with Radial Basis Function Kernel (SVM-
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RBF)) classification-based learning methods to accurately learn the nature of the data. SVM 

methods were chosen for their popularity in current literature (Costafreda et al., 2009; Fu et 

al., 2008; Liu et al., 2012b; Marquand et al., 2008; Mwangi et al., 2012a; Nouretdinov et al., 

2011; Zeng et al., 2012), versatility in classifying data using linear and nonlinear functions, 

and ability to well classify data containing a large set of input features (Cortes and Vapnik, 

1995). L1-LR and ADTree were chosen for their embedded feature selection abilities (i.e. 

inherent ability to select the most relevant features for estimating prediction models that best 

fit the data), easy-to-interpret resulting prediction models, and fast convergence speed (Yuan 

et al., 2010; Pfahringer et al., 2001). These three methods also differ in their resulting 

prediction models: SVMs estimate a function that optimally separates the data, L1-LR 

estimates a logistic function that optimally fits the data, and ADTree estimates a decision 

tree that optimally classifies the data.

Additionally, we focus on resting state networks (e.g. dorsal default mode network (dDMN) 

and anterior salience network (aSN)) associated with LLD by previous studies (Alalade et 

al., 2011; Alexopoulos et al., 2012; Andreescu et al., 2011; Andreescu et al., 2013; Bohr et 

al., 2012; Gunning et al., 2009; Steffens et al., 2011; Wu et al., 2011). Unlike past studies, 

which used region-based approaches (e.g. regions resulting from voxel-wise analysis 

(Costafreda et al., 2009; Fu et al., 2008; Hahn et al., 2011; Marquand et al., 2008; Liu et al., 

2012b; Mwangi et al., 2012a; Mwangi et al., 2012b; Nouretdinov et al., 2011) or anatomical 

regions of interest (ROIs) (Zeng et al., 2012)), we perform a whole brain and network 

analyses using functional ROIs to reduce data complexity and more precisely represent the 

brain areas activated during a functional activity (e.g. resting state) of interest (Nieto-

Castanon et al., 2003).

To our knowledge, this is the first study to estimate prediction models for LLD diagnosis 

and treatment response by evaluating: [1] the potential of multimodal magnetic resonance 

imaging (MRI) measures as biomarkers; [2] combinations and interactions between potential 

imaging and non-imaging predictors; [3] multiple learning methods; and [4] whole brain and 

network analyses using functional ROIs.

METHODS

Subject Recruitment

Non-psychotic, unipolar LLD patients (n=33) and elderly non-depressed (ND) (n=35) 

individuals were recruited from Pittsburgh’s Advanced Center for Intervention and Services 

Research for Late-Life Mood Disorders, and Alzheimer Disease Research Center’s healthy 

controls registry respectively. Each participant provided written informed consent after 

receiving a full description of the study. All participants were paid $50. Participants were 

evaluated using the Structured Clinical Interview for Diagnostic and Statistical Manual of 

Mental Disorders 4th edition (First et al., 1995). Exclusion criteria included history of Axis I 

disorders other than major depressive disorder and anxiety disorders, stroke, significant head 

injury, Alzheimer’s, Parkinson’s, and/or Huntington’s disease. Patients received 12 weeks of 

open-label treatment trials with duloxetine, venlafaxine, nimodipine, or escitalopram. Before 

treatment, participants were assessed for LLD severity using the Hamilton Depression 

Rating Scale (HAM-D). HAM-D score <10 after treatment defined treatment responder 
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(Roose et al., 1994). Table 1 summarizes additional participants-related information (see 

Aizenstein et al. (2011) for more details). After all omissions, n>50 and n>19 participants 

were examined for LLD diagnosis and treatment response analyses respectively.

Image Acquisition and Processing

Before treatment, a Siemens 3T TIM TRIO scanner and 12-channel head coil was used to 

acquire T1-weighted high resolution (Hi-Res), T2-weighted, T2-weighted fluid attenuated 

inversion recovery (FLAIR), diffusion tensor imaging (DTI) and resting state fMRI (rs-

fMRI)—for which participants were asked to stay awake, think of nothing in particular and 

rest with eyes focused on a fixation cross—images. See Table 2 and Supplementary Table 

S1 for more details.

Feature and ROI Selection

Thirteen different feature sets (see Table 3) selected by force (i.e. a feature(s) was explicitly 

chosen to be removed from the full set of features) were analyzed using the machine 

learning methods. Forced feature selection using these specific 13 feature sets was 

performed to study the influence of different MRI modalities, imaging vs. non-imaging 

measures, and each individual feature on the prediction of LLD diagnosis and treatment 

response.

All methods were repeated for the dDMN, aSN, and combined network analyses. Network-

related functional ROIs were obtained from the FIND Lab at Stanford University (Shirer et 

al., 2012). The regions used to compute whole network measures for the dDMN analysis 

include: medial prefrontal cortex, anterior and posterior cingulate cortex, left and right 

thalamus, left and right hippocampus, left and right angular gyrus, orbitofrontal cortex, 

angular gyrus, right superior frontal gyrus, precuneus, and midcingulate cortex. The regions 

used to compute whole network measures for the aSN analysis include: left and right middle 

frontal gyrus, left and right insula, anterior cingulate cortex, medial prefrontal cortex, 

supplementary motor area, left and right lobule VI, and crus I.

Machine Learning Methods

Each learning method was used to estimate prediction models for two expected outcome 

variables separately: depression and treatment response. A nested leave-one-out cross-

validation method was used to perform parameter selection and determine classification 

accuracy of each outcome variable. Resulting average training and test set classification 

accuracies—along with respective specificity, sensitivity, and receiver operating 

characteristic (ROC) curve measures—were recorded for all tests performed.

For L1-LR, a coordinate descent method using one-dimensional Newton directions 

described by Yuan et al. (2010) was coded and implemented in-house using Python. To 

improve the results, we added an input feature of constant value equal to one for each data 

instance. This additional feature acts as a bias or intercept term that also affects the 

regularization term. To implement SVM methods, the scikit-learn Python library (Pedregosa 

et al., 2011) was used. To improve the results, we also implemented a feature selection filter 

technique using Kendall tau correlation coefficient presented by Zeng et al. (2012). The 

Patel et al. Page 4

Int J Geriatr Psychiatry. Author manuscript; available in PMC 2015 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



optimized version of ADTree described by Pfahringer et al. (2001) was coded and 

implemented in-house using Python. To improve results, we restricted the tree depth to 3 

branches and minimized the number of weak hypotheses tested per boosting iteration to half 

the number of unique values for each feature. See Supplementary Methods for more details 

RESULTS

Figure 1 and Supplementary Figure S1 display a summary of all the results discussed below 

and in the supplemental material. Below we evaluate potential optimal biomarkers for LLD 

diagnosis and treatment response. First, we evaluate the performance of the different 

learning methods. Then, we study the prediction models of the learning method that 

produced the greatest classification accuracy. From the prediction models, we analyze the 

specific features selected and their interdependent relationship for each outcome variable. 

Evaluation of results across features sets to identify common results amongst all learning 

methods can be found in the Supplementary Results section. We were not able to 

appropriately evaluate results between the different networks analyses due the variance in 

sample sizes.

Comparing Learning Methods

To compare learning methods, we look for optimal test set classification accuracies. Also, 

we look for signs of overfitting or underfitting by focusing on feature set 1. A greater 

difference between the training and test set classification accuracies indicates a greater 

probability of overfitting. An improvement of classification accuracies with nonlinear 

compared to linear methods indicates a greater probability of underfitting by the linear 

methods. An improvement of classification accuracies with linear compared to nonlinear 

methods indicates a greater probability of overfitting by the nonlinear methods. See 

Supplementary Results for more details.

Diagnosis—The ADTree produced the optimal prediction model with an accuracy of 

87.27% (sensitivity = 88.89%, specificity = 85.71%) using feature set 4 in dDMN analysis 

(see Supplementary Figure S1A) for predicting LLD diagnosis (see corresponding ROC 

curve in Supplementary Figure S2A). Overall, the linear classification methods showed 

signs of less overfitting than the nonlinear classification methods, among which ADTree 

overfits less. Overfitting is observed most in the aSN analysis. However, in the dDMN 

analysis ADTree outperforms the linear methods, suggesting a possibility of underfitting 

among the linear models. This may also be an indicator of ADTree being a better learning 

method for predicting LLD diagnosis.

Treatment Response—Again, the ADTree produced the optimal prediction model with 

an accuracy of 89.47% (sensitivity = 88.89%, specificity = 90.00%) using feature set 2 in 

combined network analysis (see Figure 1) for predicting LLD treatment response (see 

corresponding ROC curve in Supplementary Figure S2B). Overall, the linear classification 

methods showed signs of less overfitting than the nonlinear classification methods, among 

which ADTree overfits less. Overfitting is observed most in the dDMN analysis. Generally, 

all methods show signs of greater overfitting compared to LLD diagnosis—possibly due to 
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the smaller sample size. In the dDMN and aSN analysis L1-LR outperforms the nonlinear 

methods, suggesting a possibility of overfitting among the nonlinear models. However, since 

ADTree produced the best prediction model, the problem may be a lack of relevant features 

in individual network analyses.

Optimal Prediction Models

We evaluate the features selected by the ADTree prediction models that produced the 

optimal classification accuracy for each outcome variable. These optimal models are 

presented below and were obtained by retaining only the most frequently splitting criterion 

and corresponding most frequent rules amongst all the ADTree models created during the 

LOOCV iterations. For interpreting these models, one must sum up the rule values 

associated with each splitting criterion and if the total is positive, the individual is more 

likely to be an LLD patient or a positive responder to treatment for LLD depending on the 

model’s outcome variable. See Table 3 to better understand what each feature represents in 

the optimal ADTrees and the interpretations provided below. The superlatives added to the 

measures when interpreting the models are based on the inequalities estimated by the 

corresponding ADTree.

Diagnosis—The optimal ADTree model selected mini-mental state examination (MMSE) 

score, age, Hi-Res whole brain atrophy, and FLAIR global white matter hyperintensity 

(WMH) count to be the optimal features for predicting LLD diagnosis (see Figure 2a). The 

selected features are not dependent on dDMN even though the optimal model was acquired 

during the dDMN analysis; possibly due to its larger and more evenly distributed sample of 

participants.

Based on this model, an individual who is more likely to be diagnosed with LLD will have 

one of the following attributes: (1) poor cognitive ability + younger old adult, (2) poor 

cognitive ability + older old adult + high global WMH burden + high whole brain atrophy, 

or (3) strong cognitive ability + low global WMH burden + high whole brain atrophy.

Conversely, an individual who is not likely to diagnosed with LLD will have one of the 

following attributes: (1) poor cognitive ability + older old adult + low global WMH burden, 

(2) poor cognitive ability + older old adult + high global WMH burden + low whole brain 

atrophy, (3) strong cognitive ability + low global WMH burden + low whole brain atrophy, 

or (4) strong cognitive ability + high global WMH burden.

Treatment Response—The optimal ADTree model selected DTI number of tracks from 

aSN and rs-fMRI functional connectivity index (FCI) from dDMN to be the optimal features 

for predicting LLD treatment response (see Figure 2b).

Based on this model, an individual who is more likely to be a positive responder to treatment 

for LLD will have fewer structural connections—indicative of a lower WM integrity—in the 

aSN before treatment administration. Additionally, an individual who had a lower functional 

connectivity in the dDMN before treatment administration is less likely to be a negative 

responder to treatment for LLD.
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DISCUSSION

In this study, we showed how nonlinear combinations of multimodal MRI and/or non-

imaging measures can successfully estimate prediction models for diagnosis (87.27% 

accuracy) and treatment response (89.47% accuracy) of LLD. The optimal prediction 

models for both outcome variables were strikingly distinct in nature with no overlap of 

selected features. Additionally, the diagnosis prediction model was network-independent, 

while the treatment response prediction model depended on information from the dDMN 

and aSN. Below we evaluate our findings further using past studies for comparison.

Optimal Predictors/Biomarkers

LLD Diagnosis vs. Treatment Response Prediction Models—Non-imaging (i.e. 

MMSE and age) and global volume-based imaging (i.e. whole brain atrophy and global 

WMH burden) measures combined were found to be the optimal predictors/biomarkers of 

LLD diagnosis. Agreeing with past studies, poor cognitive ability (Ganguli et al., 2006; 

Kohler et al., Apr 2010; Wilkins et al., 2009) and/or greater whole brain atrophy (Chang et 

al., 2011; Ribeiz et al., 2013; Sexton et al., 2013) indicated LLD. Possibly explaining the 

discrepancies between past studies, age (Forlani et al., 2013; Luppa et al., 2012; Wild et al., 

2012; Wu et al., 2012) and global WMH burden (Aizenstein et al., 2011; Greenwald et al., 

1998; Gunning-Dixon et al., 2010; Firbank et al., 2012; Teodorczuk et al., 2010) were fully 

dependent on the other measures in regards to their association with LLD diagnosis. We 

speculate that the primary role of non-imaging measures in predicting diagnosis suggests 

that current neuroimaging methods cannot – yet – capture the neural complexity associated 

with the etiopathogenesis of LLD. The involvement of structure-related neural biomarkers 

(global atrophy and WM burden) in diagnosing LLD supports past studies that suggest 

vascular and atrophic changes trigger mood disorder in late-life (Aizenstein et al., 2014).

Contrarily, for LLD treatment response, connectivity-based imaging measures were found to 

be the optimal biomarkers. Specifically, lower structural connectivity—supported by the 

more recent of the two (Taylor et al., 2008) contradicting past findings (Alexopoulos et al., 

2008; Taylor et al., 2008)—and lower functional connectivity—supporting compensation 

theories (Stern et al., 2003)—indicate a greater probability of treatment remission. This 

dependency of LLD treatment response on global network health (i.e. communication 

strength between network regions) may serve as a biomarker for future personalized care 

studies. A potential interdependence between biomarkers may explain the contradictions in 

results between past studies and the heterogeneity in the pathophysiology of LLD patients 

suggested by Taylor et al., 2008.

Overall, the mix of features predictive of diagnosis likely reflects that LLD is 

heterogeneous. Our observation that these particular features were not predictive of 

treatment response suggests that there may be a more proximal mediator of depression 

recovery, and perhaps the features reflecting LLD heterogeneity lead to a set of global 

network changes (indexed by rs-fMRI and DTI). It is intriguing that these global network 

biomarkers were identified as most predictive of treatment response.
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Mid-Life vs. Late-life Depression Prediction Models—Unlike past studies of 

depression in younger populations involving prediction models, this is the first study to 

accurately model both diagnosis and treatment response using the same approach. While 

past studies have used a single imaging modality and region-based approach (Costafreda et 

al., 2009; Fu et al., 2008; Hahn et al., 2011; Marquand et al., 2008; Liu et al., 2012b; 

Mwangi et al., 2012a; Mwangi et al., 2012b; Nouretdinov et al., 2011; Zeng et al., 2012), we 

used a multi-modal imaging with whole brain and network-based approach that also 

included non-imaging measures. Our results may suggest that biomarkers of disease 

diagnosis and remission possibly differ on the basis of brain structure and function—i.e. the 

different representations of MRI modalities—as opposed to brain regions. It is possible that 

regional changes do not fully reflect the underlying neural vulnerabilities associated with 

LLD. This is supported by recent studies (Ajilore et al., 2014; Tadayonnejad et al., 2013) 

that describe associations of global brain networks alterations with LLD.

Past prediction model studies of mid-life depression diagnosis have shown accurate 

classifications can be obtained using functional (Fu et al., 2008; Hahn et al., 2011; 

Marquand et al., 2008; Nouretdinov et al., 2011; Zeng et al., 2012) or structural (Costafreda 

et al., 2009; Mwangi et al., 2012a; Mwangi et al., 2012b) imaging. Our study in LLD found 

structural volume-based measures in conjunction to non-imaging measures to be better 

predictors. We speculate that these differences in prediction factors may suggest that LLD 

diagnosis is primarily related to impaired structure (GM and WM), while midlife depression 

may stem from aberrant communication/activation of various brain regions. This hypothesis 

will require further testing.

Past prediction model studies of mid-life depression treatment response have primarily 

utilized T1-weighted Hi-Res structural imaging measures (Costafreda et al., 2009; Liu et al., 

2012b; Nouretdinov et al., 2011). One study (Marquand et al., 2008) that attempted to use a 

task-based functional imaging measure did not achieve very high accuracy. Our study in 

LLD found structural and functional connectivity measures to be better predictors. Since 

connectivity-related imaging measures have not been tested for prediction models of mid-

life depression treatment response, it is difficult to draw any conclusions.

Learning Methods

Based on our findings, modified versions of decision tree and logistic regression are 

potential alternative learning methods—to the traditionally used SVM—for prediction 

depression, particularly in late-life, diagnosis and treatment response. Modified decision tree 

methods with embedded feature selection capabilities, especially, may be useful for studying 

real-world nonlinear relationships in high-dimensional (i.e. large number of features) data.

Limitations and Future Work

Limitations to this study include: small sub-sample size for treatment response prediction 

(nevertheless the results were cross checked using four different learning methods), varying 

sample sizes for the different network analysis (this prevents us from accurately analyzing 

network-based effects and may be causing feature set 13 results to vary across networks 

despite its network-independent features), higher percentage of women (reflecting the 
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naturalistic gender distribution in LLD (Luppa et al., 2012)), and lack of other potential 

cognitive ability measures and covariates (due to limited available data). Another limitation 

is the heterogeneous treatment. However, this may not have affected our LLD treatment 

response prediction results since all administered antidepressants are either selective 

serotonin reuptake inhibitors or serotonin-norepinephrine reuptake inhibitors, and the 

efficacy difference between the two is still a matter of debate (Papakostas et al., 2007; 

Taylor et al., 2004; Taylor et al., 2006; Thase et al., 2011). Future work includes extensive 

studies verifying, improving as necessary, and testing the real-world applicability of the 

optimal prediction models found in our study. It would also be beneficial to test other 

imaging and non-imaging (e.g. cognitive ability, medical comorbidities, covariates, etc.) 

measures as potential biomarkers. Potential clinical applications may include using machine 

learning and imaging to predict treatment efficacy and recommend personalized treatment 

for LLD. While diagnosis of LLD is not a potential application, the prediction model for 

LLD diagnosis can help us gain a better understanding of LLD and consequently lead to a 

better model for predicting treatment response.

CONCLUSIONS

Preliminary results of this study suggest that LLD diagnosis and treatment response may be 

better predicted using a combination of multi-modal MRI measures. The results also suggest 

that the incorporation of non-imaging predictors could also help improve prediction, at least 

for LLD diagnosis. Additionally, we speculate that whole brain and network related multi-

modal MRI measures—as opposed to region-based single modality measures—may be more 

appropriate for comparing LLD diagnosis and treatment response in terms of associated 

underlying brain changes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Combined network analysis results—training and test classification accuracies—of the 

thirteen feature sets for late-life depression diagnosis and treatment response from all 

learning methods.

Patel et al. Page 14

Int J Geriatr Psychiatry. Author manuscript; available in PMC 2015 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Optimal prediction models in the form of alternating decision trees for predicting late-life 

depression (A) diagnosis and (B) treatment response [Legend: Square = Splitting Criterion; 

Oval = Rule]
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