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Abstract Type I collagen-containing fibrils are major structural components of the extracellular

matrix of vertebrate tissues, especially tendon, but how they are formed is not fully understood.

MMP14 is a potent pericellular collagenase that can cleave type I collagen in vitro. In this study, we

show that tendon development is arrested in Scleraxis-Cre::Mmp14 lox/lox mice that are unable to

release collagen fibrils from plasma membrane fibripositors. In contrast to its role in collagen

turnover in adult tissue, MMP14 promotes embryonic tissue formation by releasing collagen fibrils

from the cell surface. Notably, the tendons grow to normal size and collagen fibril release from

fibripositors occurs in Col-r/r mice that have a mutated collagen-I that is uncleavable by MMPs.

Furthermore, fibronectin (not collagen-I) accumulates in the tendons of Mmp14-null mice. We

propose a model for cell-regulated collagen fibril assembly during tendon development in which

MMP14 cleaves a molecular bridge tethering collagen fibrils to the plasma membrane of

fibripositors.

DOI: 10.7554/eLife.09345.001

Introduction
Matrix metalloproteinase 14 (MMP14, also known as membrane type I-MMP) is a member of the

family of MMPs and contains a transmembrane domain for insertion into the plasma membrane

(Sato et al., 1994). MMP14 has been implicated in cancer cell invasion (Hotary et al., 2003) and

embryonic development (Holmbeck et al., 1999; Zhou et al., 2000) because of its ability to degrade

extracellular matrix (ECM) macromolecules especially type I collagen (Overall, 2001; Tam et al.,

2002; Lee et al., 2006; Kessenbrock et al., 2010; Gialeli et al., 2011). Mice deficient in MMP14 die

within a few weeks of birth with generalized connective tissue abnormalities including osteopenia and

soft tissue frailty (Holmbeck et al., 1999; Zhou et al., 2000). We were curious why absence of

MMP14, which is an efficient collagenase in vitro, leads to connective tissue frailty rather than collagen

accumulation.

Collagens are a large family of triple helical proteins that are widespread throughout the

vertebrate body and are critical for tissue scaffolding (Huxley-Jones et al., 2007). More than 28

collagen and collagen-related proteins occur in vertebrate tissues of which type I collagen is the

archetypal member of the subfamily of fibril-forming collagens (Kadler et al., 2007). The fibrils

formed from type I collagen are the largest (with a mass per unit length up to ∼0.3 TDa/μm) and

most size pleomorphic (from ∼1 μm to >1 mm) protein polymers in vertebrates and are essential

for fibrous tissue development (Schnieke et al., 1983). Collagen fibril assembly has best been

studied in embryonic tendon, which contains narrow diameter (∼50 nm) fibrils in which one end of
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the fibril is located within actin-dependent (Canty et al., 2006) invaginations of the plasma

membrane called fibripositors (Canty et al., 2004). Fibripositors are points of fibril assembly and

sites of attachment of the cell to the ECM (Kalson et al., 2013) and exhibit a range of

morphologies depending on the presence or absence of a slender finger-like projection of the

plasma membrane. Protruding fibripositors exhibit the invagination and the finger-like projection

whereas recessed fibripositors only exhibit the invagination (Kalson et al., 2013). The transport of

collagen fibrils into fibripositors is powered by non-muscle myosin II and is not part of a fibril

degradation process in embryonic tendon (Kalson et al., 2013). Short collagen fibrils can be

found within membrane-sealed compartments termed fibricarriers (Canty et al., 2004; Kalson

et al., 2013).

The transition from a unimodal distribution of narrow (∼50 nm) diameter collagen fibrils in

embryonic tendon to a bimodal distribution in adult tissues with means of ∼50 nm and

∼200 nm diameter fibrils is a fascinating phenomenon (Parry et al., 1978; Derwin and Soslowsky,

1999). The presence of narrow-diameter collagen fibrils in fibripositors during E14.5 to birth (in mice)

signifies stage 1 of tendon development during which fibril number is determined (Kalson et al.,

2015). Stage 2 occurs soon after birth (in mice) and is characterized by the disappearance of

fibripositors, the release of fibrils to the ECM and the growth of fibrils in length and diameter (Kalson

et al., 2015). We show here that in the absence of MMP14, progression from stage 1–2 does not

occur, fibrils are retained by fibripositors, fibril diameters keep to ∼50 nm, and tendon development

stops at stage 1.

eLife digest A scaffold of proteins called the extracellular matrix surrounds each of the cells that

make up our organs and tissues. This matrix, which contains fibres made of proteins called collagens,

provides the physical support needed to hold organs and tissues together. This support is especially

important in the tendons—a tough tissue that connects the muscle to bone—and other ‘connective’

tissues.

An enzyme called MMP14 is able to cut through chains of collagen proteins. It belongs to a family

of proteins that are involved in breaking down the extracellular matrix to enable cells to divide and

for other important processes in cells. Some cancer cells exploit MMP14 to enable them to leave

their tissue of origin and spread around the body. Therefore, when researchers bred mutant mice

that lacked MMP14, they expected to see excessive growth of collagen fibres in the connective

tissues of the mice. However, these mice actually have extremely thin, fragile connective tissue and

die soon after birth.

Earlier in 2015, a group of researchers demonstrated that the first stage of tendon development

in mice involves the formation of collagen fibres, which are attached to structures that project from

tendon cells called fibripositors. Then, soon after the mice are born, the fibripositors disappear and

the collagen fibres are released into the extracellular matrix where they grow longer and become

thicker. Now, Taylor, Yeung, Kalson et al.—including some of the researchers from the earlier

work—have used electron microscopy to investigate how a lack of MMP14 leads to fragile tendons in

young mice.

The experiments show that MMP14 plays a crucial role in the first stage of tendon

development by detaching the collagen fibres from the fibripositors. MMP14 also promotes the

formation of new collagen fibres; the tendons of mutant mice that lack MMP14 have fewer

collagen fibres than normal mice. Further experiments revealed that the release of collagen fibres

from fibripositors does not require MMP14 to cleave the chains of collagen proteins themselves.

Instead, it appears that MMP14 cleaves another protein that is associated with the fibres, called

fibronectin.

Taylor, Yeung, Kalson et al.’s findings show that MMP14 plays an important role in the

development of tendons by releasing collagen fibres from fibripositors and promoting the formation

of new fibres. The next challenge is to find out how MMP14 regulates the number of collagen fibres

in mature tendons and other tissues, and how defects in this enzyme can lead to cancer and other

diseases.

DOI: 10.7554/eLife.09345.002
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Results

Mmp14-deficient mouse tendons are thinner and mechanically weak
Wild type (WT) and Mmp14 knockout (KO) littermates had similar birth weights but the KO mice were

growth retarded at 3 days after birth (P3) (Figure 1A, as reported previously [Holmbeck et al., 1999]).

Morphometric analyses at P0 showed that the tendons of the KO mice were thinner than those of WT

mice (Figure 1B) and had fewer bundles of fibrils (Figure 1C,D). In transverse section, Mmp14 KO

tendons had fewer fibrils that were organized into fewer and irregular bundles (Figure 1C,D). We

detected no difference in the number of cells per unit volume of the tendon betweenWT andMmp14 KO

tendon (Figure 1—figure supplement 1A–C). There was no difference in fibril volume fraction (FVF)

(Figure 1D); therefore, there was no evidence of abnormal fibril–fibril interactions. Mmp14 KO tendons

were mechanically weaker than WT tendon (Figure 1E). However, after adjustment for size, the KO

tendons had similar mechanical properties to those of tendons from WT animals, which was consistent

with the normal FVF. Quantitative PCR analysis showed no differences in Col1a1 gene expression at P0

(Figure 1F) and [14C]-proline labeling showed that procollagen processing was unaffected by loss of

MMP14 (at P7, Figure 1G). However, despite no differences in gene expression or procollagen processing

with MMP14 deficiency we found decreased collagen synthesis in KO samples, compared to WT animals

(Figure 1—figure supplement 1D). We next analyzed collagen fibril diameters. As shown in Figure 1H,

the diameters in P0 KO mouse-tail tendon were significantly larger (by ∼12%) than those in WT mice.

Conspicuous fibripositors in embryonic Mmp14-deficient cells
We used transmission electron microscopy (TEM), serial block face-scanning electron microscopy

(SBF-SEM), and serial section electron tomography to examine embryonic WT andMmp14 KO tendons.

We were careful to use tail tendon from anatomical site- and age-matched embryonic WT and KO mice.

TEM analysis showed E15.5 WT tendons contained collagen fibrils in the ECM and a small number of

collagen fibrils in fibripositors (Figure 2A and Figure 2—figure supplement 1A). In contrast, Mmp14

KO tendons contained conspicuous electron-lucent invaginations characteristic of recessed fibripositors

(Figure 2B and Figure 2—figure supplement 1B). There were ∼8 times the number of fibripositor

cross-sections per nucleus in KO tenocytes (Figure 3—figure supplement 3C). Tracing of fibrils in 3D

reconstructions from SBF-SEM and electron tomography (Figure 2—figure supplement 1C,D) showed

the presence of deep recessed fibripositors in Mmp14 KO cells (Videos 1, 2, respectively) with looped

collagen fibrils. Figure 2—figure supplement 2 shows a diagrammatic representation of a typical

recessed fibripositor containing looped collagen fibrils.

No apparent collagen fibril transport abnormalities in Mmp2 KO and
Mmp13 KO cells
MMP14 can activate proMMP2 (Sato et al., 1994) and proMMP13 (Knauper et al., 1996). Also, MMP2

inhibition blocked uptake and subsequent intracellular digestion of collagen fibrils in periosteal tissue

explants (Creemers et al., 1998). However, EM analysis of embryonic Mmp2 KO and Mmp13 KO tail

tendons showed no obvious changes to fibripositor occurrence (Figure 3—figure supplement 1).

Fewer collagen fibrils in Mmp14-deficient embryonic tendons
We used SBF-SEM to quantitate the numbers and mean lengths of collagen fibrils in embryonic

(E15.5) WT and Mmp14 KO tendon, using methods described previously (Starborg et al., 2013). WT

tendon contained numerous fibril tips and short fibrils (Figure 3A). In contrast, fibril tips were less

frequent in KO tendon (Figure 3A). We then calculated the mean length of fibrils based on the relative

frequency of tips-to-shaft numbers. The average fibril length in E15.5 WT tendon was 16 ± 3 μm
whereas that in an age-matched and anatomical-site-matched Mmp14 KO tendon was 38 ± 6 μm
(Figure 3B). At E15.5, the tendon cross-sectional area and the FVF in WT and KO samples were

not significantly different (Figure 3C,D). Therefore, given the same transverse area occupied by

collagen fibrils in WT and KO tissue, the difference in collagen mean fibril length equates to a

∼2.5-fold reduction in fibril number in KO tendon. Analysis at E16.5 confirmed that fibrils were, on

average, shorter in WT tendon than KO tendon (mean length 50 ± 9 μm) compared with 111 ± 26 μm
(n = 668 WT fibrils, 683 KO fibrils, respectively, each tracked over 10 μm).
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Figure 1. Neonatal Mmp14-deficient mice have small and weak tendons. (A) Weight of wild type (WT) and Mmp14

knockout (Mmp14 KO) littermates at birth (P0) and at 3 days postnatal (P3). (B) The cross-sectional transverse area of

P0 Mmp14 KO tendons is significantly smaller than WT tendons. (C) TEM images of P0 tail tendon demonstrate that

KO tendons are smaller and show dysmorphic, enlarged bundles of collagen fibrils (arrowhead). Scale bars 5 μm.

Figure 1. continued on next page
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MMP inhibition causes abnormal collagen fibril transport
MMP14 has non-proteolytic activities (Mori et al., 2013). Therefore, we treated cells cultured in 3D

tendon-like constructs (Kapacee et al., 2008) with the broad-spectrum MMP inhibitor GM6001 and

performed TEM. Previous studies had confirmed that GM6001 was an effective inhibitor of MMPs in

the tendon (Kalson et al., 2013). The addition of GM6001 to tendon-like constructs recapitulated the

fibripositor phenotype of the Mmp14-deficient mouse (Figure 3E,F). This indicated that the catalytic

activity of MMP14 is required for normal collagen fibril transport at fibripositors. Estimation of

collagen mean fibril lengths in the constructs showed that inhibition of MMPs resulted in increased

mean fibril length (Figure 3G), as was observed in embryonic Mmp14 KO tendon.

Newborn Mmp14-deficient mice have fewer collagen fibrils
SBF-SEM analysis showed that the mean length of fibrils in WT and Mmp14 KO was the same in P0

tendons (Figure 3—figure supplement 2). This was in contrast to what was seen in embryonic tendon

in which the fibrils were longer in KO tendons (Figure 3). Therefore, the more abundant but shorter

fibrils in WT tendon grow in length during later embryonic development so that at P0 the fibrils are of

equal mean length but there are more fibrils in the WT tendon than in Mmp14 KO tendon.

Embryonic Col-r/r mice have conspicuous fibripositors
The Col-r/r mouse carries a mutation in the MMP 3/4-

1/4 cleavage site in the triple helical domain of the

α1 chain of type I collagen (Liu et al., 1995) that renders both the α1(I) and α2(I) chains resistant to

cleavage by MMPs (Wu et al., 1990). Therefore, we were interested to compare collagen fibril transport

in Col-r/r and Mmp14 KO mice. In contrast to Mmp14 KO, there were no significant differences in

tendon size (Figure 3—figure supplement 3A) and collagen fibril diameter (Figure 3—figure

supplement 3B) between embryonic (E15.5) WT and Col-r/r mice. Analysis of the frequency of

fibricarrier profiles per nucleus (using methods used previously [Canty et al., 2006]) showed that

Mmp14 KO and Col-r/r tenocytes have significantly more fibripositor profiles than WT, with Mmp14 KO

cells having the most (Figure 3—figure supplement 3C). SBF-SEM analysis showed that Col-r/r

tenocytes contained conspicuous recessed fibripositors, as seen in the Mmp14 KO samples (Figure 2C

and Video 3). Electron dense vacuoles were also present, which appeared to contain fibrillar structures

in various stages of decomposition (Figure 2C, white arrows). Such compartments were rarely seen in

WT or Mmp14 KO samples.

Stage 1 to 2 transition occurs in Col-r/r mice but not in Scx-Cre::Mmp14
lox/lox mice
We wanted to study the requirement of MMP14 on the stage 1 to stage 2 transition in the tendon but

were unable to do so because the global Mmp14 KO mice were distressed shortly after birth.

Therefore, we generated a tendon-specific Mmp14 KO mouse by crossing Scleraxis-Cre (Scx-Cre)

mice with Mmp14 lox/lox mice (Figure 4—figure supplement 1). We examined the tendons at P0 by

TEM and confirmed that the Scx-Cre::Mmp14 lox/lox tendons also contained multiple fibripositors

with multiple fibrils, a similar phenotype observed for global Mmp14 KO mice (Figure 4A,B). At birth

the mice appear normal, however, the Scx-Cre::Mmp14 lox/loxmice exhibited a clear limb phenotype

∼1 week after birth, with dorsiflexion of the fore and hind paws (Figure 4C,D, arrowhead) and a

Figure 1. Continued

(D) KO tendons have fewer, larger fibril bundles, but the FVF is not different to WT tendons. (E) KO tendons are

weaker than WT tendons but have normal mechanical properties after adjusting for differences in size. (F) Analysis of

Col1a1mRNA by qPCR in P0 tendons revealed no difference in gene expression. (G) 14C-proline labeling of collagen

demonstrated normal collagen processing at P7 in WT and KO tail tendon. (H) Fibril diameter distributions of KO

and WT tail tendon at P0 revealed significantly increased fibril diameters in KO mice. Bars show SEM. *p < 0.05,
†p > 0.05 (t-tests).

DOI: 10.7554/eLife.09345.003

The following figure supplement is available for figure 1:

Figure supplement 1. Cell number and type I collagen synthesis in neonatal WT and Mmp14 KO tail tendon.

DOI: 10.7554/eLife.09345.004
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dome-shaped skull (Figure 4D, arrow). There was

no apparent impairment in movement of tail or

back muscles as observed in Scx-null mice

(Murchison et al., 2007). Difference in size was

apparent from 3 weeks postnatal concurrent

with hip dysplasia and reduced bone density

(Figure 4—figure supplement 2A), overgrowth

of soft tissues in the paws (Figure 4E) and severe

dorsiflexion of paws which was particularly

obvious in the hind paws (Figure 4F). Smaller

tendon (tail and Achilles) size and weaker bones

were also observed in 7-week-old Scx-Cre::

Mmp14 lox/lox mice. The mice became dis-

tressed from 7 weeks therefore analyses were

performed no later than 7 weeks postnatal.

Morphometric analysis of x-rays confirmed that

Scx-Cre::Mmp14 lox/lox mice had significantly

shorter cranium length and stunted skeletal

growth (Figure 4—figure supplement 2B).

EM analysis of adult (7 weeks old) WT tendons

showed the typical bimodal distribution of

collagen fibril diameters (Figure 5A). Cells lacked

fibripositors and were stellate in cross section

(Figure 5—figure supplement 1A). In contrast,

the tendons of Scx-Cre::Mmp14 lox/lox mice

contained a unimodal distribution of small di-

ameter fibrils (Figure 5B), and the cells were

engorged with fibrils in membrane-bound com-

partments (Figure 5—figure supplement 1B).

The inclusion of many fibrils into compartments

made it difficult to delineate the cell–matrix

interface. In comparison, cells in Col-r/r tendons

were similar in appearance to those in WT

tendons (Figure 5—figure supplement 1C) and

the ECM contained fibrils with a broad bimodal

distribution of diameters (Figure 5C).

ImmunoEM shows MMP14 in
recessed fibripositors
ImmunoEM of P7 (7 days postnatal) WT tendon

using an anti-MMP14 antibody showed labeling

of intracellular compartments without labeling

the ECM or plasma membranes in contact with

extracellular collagen fibrils (Figure 5—figure

supplement 2A). As expected, Mmp14-null

tendons were negative for MMP14 labeling

(Figure 5—figure supplement 2B). Labeling

using an anti-type I collagen antibody confirmed

that the fibrils within the recessed fibripositors of Scx-Cre::Mmp14 lox/lox tendons contained type I

collagen (Figure 5—figure supplement 2C).

Fibronectin levels were consistently elevated in Mmp14-deficient
tendons
To investigate why collagen fibrils were retained in fibripositors inMmp14-null tendons, we used mass

spectrometry LS/MS–MS to perform an unbiased comparison of proteins in Mmp14-deficient and WT

Figure 2. Fibricarrier analysis of wild-type, Mmp14 KO,

and Col-r/r embryonic tail tendon. Tail tendons at E15.5

of development from (A) wild-type, (B) Mmp14 KO, and

(C) Col-r/r mice. Black arrowhead, recessed fibripositor

(electron lucent)-containing collagen fibrils. White

arrow, enclosed electron-dense compartment. Scale

bars 500 nm.

DOI: 10.7554/eLife.09345.005

The following figure supplements are available for

figure 2:

Figure supplement 1. Mmp14-deficient mice have

prominent recessed fibripositors.

DOI: 10.7554/eLife.09345.006

Figure supplement 2. Schematic showing looping of

collagen fibrils in recessed fibripositors.

DOI: 10.7554/eLife.09345.007
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Achilles tendons. Care was taken to minimize

muscle contamination and to remove as much

associated loose connective tissue as possible.

Although not quantitative, the analysis identified

specific macromolecules that appear to be more

abundant in Scx-Cre::Mmp14 lox/lox and global

Mmp14 KO tendons than in WT (Supplementary

file 1). Peptides from FN were consistently more

abundant in Mmp14-deficient samples. We iden-

tified a unique peptide from FN that was found in

WT tendon in vivo and which contained an

additional alanine residue at its N-terminus in

Mmp14-deficient tendons (Figure 6A), suggest-

ing that MMP14 is responsible for cleaving FN

between Ala(1078) and Thr(1079). This was

confirmed by LS/MS–MS analysis of recombinant

human FN treated with recombinant human

MMP14 prior to digestion with trypsin (data not

shown). Immunofluorescence analysis at E15.5

showed accumulation of FN in Scx-Cre::Mmp14

lox/lox tendons compared to WT tendons and

the levels of FN appeared to progressively

accumulate in KO tendons at P0 and P10

(Figure 6B). The LS-MS/MS analyses also identified periostin and integrins including α11β1
(Supplementary file 1). Analysis of periostin in tendons showed similar intensities at E15.5 and P0

but was increased in the tendon epithelium at P10 Scx-Cre::Mmp14 lox/lox mice compared to WT

mice (Figure 6—figure supplement 1A). Subsequent western blot analysis of P7 mice confirmed

that levels of FN were higher in Scx-Cre::Mmp14 lox/lox tendons compared to WT littermates

(Figure 6C,D). We stripped and re-probed the blot for periostin detection and confirmed that it was

not accumulated to the extent FN was in Scx-Cre::Mmp14 lox/lox tendons (Figure 6—figure

supplement 1B).

Next, we wanted to determine if elevated levels of FN might account for the fibripositor phenotype

and retention of collagen fibrils at the cell surface. Thus, we formed tendon-like constructs in the

presence of 200 μg/ml exogenous human plasma

FN. The constructs formed within ∼10 days as

previously described (Kapacee et al., 2008).

TEM of the constructs showed pronounced

fibripositors in cells incubated in exogenous FN

(Figure 6—figure supplement 2).

Discussion
We show here that MMP14 is essential for the

stage 1–stage 2 transition of tendon develop-

ment (which occurs around birth in the mouse)

by catalyzing the release of collagen fibrils from

fibripositors. In WT mouse tendons, fibripositors

disappear and collagen fibrils are released to the

ECM soon after birth (marking the end of stage

1), and the fibrils grow in diameter and length

(marking the start of stage 2) (Kalson et al.,

2015). In the absence of MMP14, the fibrils are

retained within fibripositors and the number of

collagen fibrils formed during stage 1 is reduced.

As a result, tendons inMmp14-deficient mice are

thinner compared to WT. Although MMP14 is

capable of cleaving type I collagen at the 3/4-
1/4

Video 1. Step-through video generated from SBF-SEM

images of E17.5 embryonic WT mouse-tail tendon.

z-depth is 100 μm. Scale bar 2 μm.

DOI: 10.7554/eLife.09345.008

Video 2. Step-through video generated from SBF-SEM

images of E17.5 embryonic Mmp14 KO mouse-tail

tendon. z-depth is 100 μm. Scale bar 2 μm.

DOI: 10.7554/eLife.09345.009
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helical site, we show that cleavage at this site is not required for tendon development. Interestingly, FN

accumulates in Mmp14-deficient tendons. Thus, we propose that the ability of MMP14 to cleave

macromolecules other than type I collagen is essential for releasing collagen fibrils from fibripositors.

Collagen fibrils are assembled on the surface of embryonic tenocytes and pulled into fibripositors

by a mechanism powered by non-muscle myosin II (Kalson et al., 2013). The absence of fibripositors

in stage 2 shows that fibrils are ‘released’ from the plasma membrane for delivery to the ECM (Kalson

et al., 2015). We propose that collagen fibrillogenesis in embryonic tendon occurs via an ‘APR’

mechanism of collagen ‘attachment’ to the cell surface, non-muscle myosin II-powered ‘pulling’ on

fibrils into fibripositors, and MMP14-mediated ‘release’ of the fibrils to the ECM.

Mmp14-null mice had thinner tendons than WT mice. SBF-SEM analyses showed similar cell

numbers in embryonic WT and null mouse tendons; therefore, we excluded the possibility that

Figure 3. Deficiency in MMP14 activity results in fewer collagen fibrils. (A) 10 μm-deep (z-axis) slices of 3D reconstructions of SBF-SEM data taken from of

WT and Mmp14 KO embryonic tendons at E15.5 showing collagen fibrils (blue) with a tip (marked by asterisks) found within the volume. Purple fibrils

passed through the volume and so did not have tips in the reconstruction. Scale bars 500 nm. (B) Quantification of mean fibril length based on the number

of tips identified shows that E15.5 WT fibrils are shorter than fibrils in age- and anatomical position-matched tail tendons from KO mice (308 and 266 fibrils

tracked, respectively). (C) Tendon cross-sectional area and (D) FVF are not different at E15.5 KO tendons. (E, F) Electron microscopy of tendon-like

constructs cultured in the presence of MMP inhibitor GM6001 (10 μM in 0.1% DMSO) show increased number of recessed fibripositors (arrowheads)

compared to vehicle control. Scale bars 1 μm. (G) Increase in calculated mean fibril length in GM6001-treated tendon-like constructs. Bars show SEM.

*p < 0.05, †p > 0.05 (t-tests).

DOI: 10.7554/eLife.09345.010

The following figure supplements are available for figure 3:

Figure supplement 1. Embryonic tendons deficient in Mmp2 or Mmp13 do not have overt tendon phenotypes.

DOI: 10.7554/eLife.09345.011

Figure supplement 2. Deficiency in MMP14 activity results in fewer collagen fibrils tips at P0.

DOI: 10.7554/eLife.09345.012

Figure supplement 3. Quantitative analysis of Col-r/r embryonic tendons.

DOI: 10.7554/eLife.09345.013
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delayed development was the cause. However,

Mmp14-null tendons had fewer collagen fibrils.

As shown previously, the lateral size of the

tendon is established during embryonic devel-

opment when embryonic tenocytes assemble a

finite number of collagen fibrils at fibripositors

(Kalson et al., 2015). The fibrils are released

after birth and subsequently grow in length and

diameter in a process of matrix expansion.

Therefore, the fewer fibrils in Mmp14-deficient

tendons appear to be a direct result of the

inability of the cells to release collagen fibrils

to the ECM before a new cycle of fibril

assembly can begin. In the presence of continued

collagen synthesis (albeit at a reduced rate

[Figure 1—figure supplement 1D]), the existing

fibrils continue to grow in length and diameter at

the expense of nucleation of new fibrils. At P0

and soon after birth, the fibrils in WT tendon

grow in length to equal the length of fibrils in

Mmp14 KO tendons.

Tendon size was normal in Col-r/r embryos;

therefore, the absence of type I collagen cleav-

age was not the cause of reduced fibril number in Mmp14-deficient tendons. However, tenocytes in

embryonic Col-r/r tendons contained electron-dense vacuoles, which were morphologically similar to

those previously observed (Beertsen et al., 1978; Everts et al., 1996). Therefore, although type I

collagen is cleaved at the 3/4-
1/4 site during embryonic development, cleavage is not essential for tendon

development. While the Col-r/r mutation renders the triple helix resistant to cleavage by MMPs, rodent

MMP13 recognizes an additional cleavage site C-terminal to the N-telopeptide crosslink (Krane et al.,

1996). Liu et al. (1995) reported that the MMP13 cleavage site in type I collagen permits normal

remodeling during development and early postnatal life, but that cleavage at the 3/4-
1/4 site is needed for

subsequent remodeling and accounts for the observed progressive marked skin fibrosis in the Col-r/r. Our

data agree with these conclusions and show that MMP13 (and MMP2) is not essential for tendon

development. The fact that degradative vacuoles are rare in embryonic Mmp14 KO tenocytes and that fibril

numbers were reduced and fibril lengths are greater in Mmp14 KO cells, suggests that the vacuoles might

be part of a mechanism to regulate fibril number and/or length.

Two proteins, FN and periostin, stood out in the LC-MS/MS comparison of WT and Mmp14-null

tendons as proteins that could help to explain the Mmp14-null tendon phenotype (Supplementary

file 1 shows number of peptides from periostin and FN were over-represented inMmp14 KO tendon).

Periostin is a member of the matricellular family of secreted proteins that modulate cell–ECM

interactions (Sage and Bornstein, 1991; Murphy-Ullrich and Sage, 2014). Periostin is highly

expressed by epithelial cells, is bound by αvβ3 and αvβ5 integrins, is upregulated in epithelial tumors

to support adhesion and migration (Gillan et al., 2002; Yuyama et al., 2002; Liu and Du, 2015), and

is a prognostic marker for TH2-driven asthma (Parulekar et al., 2014) and lung fibrosis (Amara et al.,

2015). Additional studies have shown that periostin supports tendon formation in an ectopic mouse

model of the development of tenogenic tissue (Noack et al., 2014). Evidence also suggests that

periostin interacts with type I collagen to regulate collagen fibrillogenesis (Noack et al., 2014). It has

also been reported that periostin deficiency might cause collagen fibril disorganization and affect the

distribution of FN (Tabata et al., 2014). We showed that periostin was increased in the tendon

epithelium (Taylor et al., 2011) that surrounds the body of the tendon, in P10 Scx-Cre::Mmp14 lox/

lox mice compared to WT mice (Figure 6—figure supplement 1A). Periostin can be cleaved by

MMP14 in vitro (Stegemann et al., 2013) and therefore its accumulation in the epithelium could be a

direct result of substrate accumulation. It is also possible that the elevated levels seen in the

epithelium are an indirect result of MMP14 deficiency in the fibrous core of the tendon.

We observed elevated levels of FN in Mmp14 KO tendon, as shown by LC-MS/MS and by

immunofluorescence. MMP14 has been shown to cleave several macromolecules in vitro including FN

Video 3. Step-through video generated from SBF-SEM

images of E17.5 embryonic Col-r/r mouse-tail tendon.

z-depth is 100 μm. Scale bar 2 μm.

DOI: 10.7554/eLife.09345.014
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(d’Ortho et al., 1997; Ohuchi et al., 1997; Tam et al., 2004; Butler and Overall, 2007); therefore,

the accumulation of FN inMmp14-deficient tendon might be a direct result of the absence of MMP14.

We observed a potential cleavage site between Ala(1078) and Thr(1079) in FN that occurred in WT but

not in Scx-Cre::Mmp14 lox/lox tendon. FN is a core component of extracellular matrices (Mao and

Schwarzbauer, 2005) and has an important role in development (George et al., 1993) and wound

healing (Sakai et al., 2001). Mice lacking FN are embryonic lethal with defects in mesoderm formation

(George et al., 1993). Furthermore, FN co-distributes with type I and III collagen (Fleischmajer and

Timpl, 1984). To understand if the presence of elevated levels of FN could explain the fibripositor

phenotype, we incubated tendon-like constructs with exogenous FN. This resulted in a profound

increase in appearance of fibripositors. Taking the EM, LC-MS/MS, and tendon-construct data

together, we propose that FN forms a ‘molecular bridge’ between the cell and the collagen fibril.

Thus, cleavage of the bridge and removal of fibripositors triggers the onset of stage 2 of tendon

development and subsequent expansion of the matrix.

An unexpected observation was the effect on skeletal size of deleting MMP14 from tendon. The

shortened long bones in Scx-Cre::Mmp14 lox/lox mice suggests important consequences of tendon

Figure 4. Scx-Cre::Mmp14 lox/lox mice have limb and skeletal deformities. Tail tendons from littermates at P0 from

(A) WT and (B) Scx-Cre::Mmp14 lox/lox mice show Mmp14-null tendons have multiple fibripositors-containing

multiple fibrils (red box) than fibripositors in WT tendons (blue box). Black arrowhead, recessed fibripositor (electron

lucent)-containing collagen fibrils. Scale bars 500 nm. (C) Control pups at P8 showed normal limb development but

(D) Scx-Cre::Mmp14 lox/lox littermates show dorsiflexion of their limbs (arrowhead) and dome-shaped skull (arrow).

Adult (7 week old) Scx-Cre::Mmp14 lox/loxmice have (E) enlarged paws (open arrow) and (F) extreme dorsiflexion of

hind limbs (arrowhead) compared to control littermates. Scale bars 1 cm.

DOI: 10.7554/eLife.09345.015

The following figure supplements are available for figure 4:

Figure supplement 1. Genotyping the Scx-Cre::Mmp14 lox/lox colony.

DOI: 10.7554/eLife.09345.016

Figure supplement 2. Adult Scx-Cre::Mmp14 lox/lox mice have skeletal deformities.

DOI: 10.7554/eLife.09345.017
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development on skeletal growth. LC-MS/MS analyses showed under-representation of decorin,

COMP, PCOLCE, and TNXB inMmp14-null tendons. These proteins are directly involved in regulating

collagen fibril size and shape; mice lacking decorin have fibrils with irregular outlines (Danielson et al.,

1997), COMP can act as a catalyst for collagen fibril formation (Halasz et al., 2007), PCOLCE

enhances the cleavage of procollagen to collagen (Takahara et al., 1994) and mice lacking TNXB

have reduced numbers of collagen fibrils (Mao et al., 2002). In contrast, several proteins were over-

represented in Mmp14-deficient tendons. These included filamin A, which has functions in cell–ECM

adhesion (Nakamura et al., 2011) and mechanotransduction (Jahed et al., 2014). As tendons are

Figure 5. Deficiency in MMP14 activity inhibits bimodal fibril diameter distribution in tendons from adult mice. Tail

tendons from 7 week-old (A) WT, (B) Scx-Cre::Mmp14 lox/lox, and (C) Col-r/r mice. Larger diameter fibrils can be

observed in the ECM of WT and Col-r/r postnatal tendons but only narrow diameter fibrils are observed in Mmp14-

deficient postnatal tendons. Scale bars 500 nm.

DOI: 10.7554/eLife.09345.018

The following figure supplements are available for figure 5:

Figure supplement 1. Cleavage of the 3/4-
1/4 collagen-I site is not required for release of fibrils in tendons from

adult mice.

DOI: 10.7554/eLife.09345.019

Figure supplement 2. Immuno-electron microscopy of Scx-Cre::Mmp14 lox/lox tendon.

DOI: 10.7554/eLife.09345.020
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predominately ECM, changes in ECM composition and cell–ECM interactions are likely to have

profound effects on cell signaling (e.g., ECM growth factor presentation) as well as the growth and

mechanical properties of tendon leading to changes in musculoskeletal development. Finally, the

tendons, cartilage, muscle, and bone are peripheral circadian clocks, each with their unique circadian

Figure 6. Elevated FN in Mmp14-deficient tendons. (A) Sequence of a unique semi-tryptic peptide of FN identified

in neonatal (P7-10) WT tendon and the sequence of the corresponding peptide from Mmp14-deficient tendons

without the additional Ala(1078)-Thr(1079) cleavage. (B) Immunofluorescence analysis of FN in tendons of WT and

Scx-Cre::Mmp14 lox/lox mice at E15.5, P0, and P10 of development. Scale bars 200 μm. (C) Western blot analysis of

P7 WT and Scx-Cre::Mmp14 lox/lox tendons show elevated FN in Mmp14-deficient tendons. (D) Ponceau S-stained

membrane shows equivalent extractability of WT and Scx-Cre::Mmp14 lox/lox tendons.

DOI: 10.7554/eLife.09345.021

The following figure supplements are available for figure 6:

Figure supplement 1. Elevated periostin levels only in postnatal Scx-Cre::Mmp14 lox/lox tendons.

DOI: 10.7554/eLife.09345.022

Figure supplement 2. Exogenous FN induces recessed fibripositors in tendon-like constructs.

DOI: 10.7554/eLife.09345.023
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transcriptome (see [Yeung et al., 2014a] and reviewed by Dudek and Meng (2014)). Therefore,

changes in the organization and mechanical properties of the tendon might affect its circadian

entrainment and that of adjacent musculoskeletal tissues.

Materials and methods

Animals
The care and use of all mice in this study was carried out in accordance with UK Home Office

regulations, UK Animals (Scientific Procedures) Act of 1986 under the UK Home Office licence (PPL

40/3485). All animals were sacrificed by a Schedule 1 procedure by trained personnel. Mmp14 KO

mice were as described previously (Zhou et al., 2000). To generate mice in whichMmp14 is ablated in

tendon-lineage cells, we crossed mice-expressing Cre recombinase under the control of Scleraxis

(Scx-Cre; C57BL/6) (Blitz et al., 2013) with mice carrying the floxed exons (exons 2 to 4) of the

Mmp14 gene (Mmp14 lox/lox; C57BL/6) (Zigrino et al., 2012). Mmp13 KO embryos were a generous

gift from Zena Werb (Stickens et al., 2004). Mmp2 heterozygous mice were imported from RIKEN

BioResource Center (GelAKO/RBRC00398; C57) (Itoh et al., 1997) and bred to homozygosity. Col-r/r

mice were imported from Jackson Laboratory (B6;129S4-Col1a1tm1Jae/J) (Liu et al., 1995). X-ray

analyses were performed as described previously (Yeung et al., 2014b).

Mechanical testing
The methods used were as described previously (Kalson et al., 2010). Tendon (from tail) diameters

were measured from digital photographs. The diameter, d, was then used to calculate transverse area

according to the formula πd2/4. This assumed a circular transverse shape as used in mechanical testing

of tissue engineered ligament (Hairfield-Stein et al., 2007). An average of three diameter

measurements was recorded for each tendon. The original contour length of tendons was measured

from a digital photograph of the mounted construct. A tare load of 10 mN was applied at the start of

the tensile test to fully straighten the tendon. The length at failure was determined from the Instron

test (giving change in length LΔ). The tendons were tested to failure with a strain rate of 5 mm per

minute (equivalent to approximately 1% strain per second).

Electron microscopy
A minimum of 3 tail tendons was examined for each experiment. The tendons were prepared for TEM

and SBF-SEM as described (Starborg et al., 2013), with care being taken to maintain the length and

tension during fixation. Sections (70-nm thick) were examined for TEM using an FEI Tecnai 12

instrument fitted with a 2k × 2k-cooled CCD camera (F214A, Tietz Video and Image Processing

Systems, Gauting, Germany). Serial section electron tomography was completed as described using

semi-thick (300 nm) serial sections were collected on formvar-coated copper slot grids. Orthogonal tilt

series were then acquired on a FEI Tecnai Polara TEM operated at 300 kV (Kalson et al., 2013).

Tomograms were generated and contours modeled in IMOD (Kremer et al., 1996). The methods

used for SBF-SEM were as described (Starborg et al., 2013) using a Gatan 3View microtome within an

FEI Quanta 250 scanning microscope. Cell number measurements were made on 3 separate SBF-SEM

samples for WT and Mmp14 KO tail tendons at P0. The volume of the tendon tissue in each SBF-SEM

3D reconstruction was calculated and all the cells in the volume were reconstructed using IMOD. Each

cell nucleus contained within the reconstruction was identified and counted. Cells per 1000 μm3 of

tissue were calculated to allow comparison between samples. ImmunoEM was performed as

previously described using high-pressure freezing and freeze substitution into LR White resin (Canty

et al., 2004). A rabbit anti-Collagen-I antibody (T40777R; Meridian Life Science, Inc.) and a mouse

anti-MMP14 antibody (MAB3328; Merk Millipore) were used.

Mass spectrometry
Cleanly dissected neonatal (P7-10) mouse Achilles tendons were snap frozen in liquid nitrogen and

disrupted in 0.1 M Tris, pH 7.5 using a B Braun Mikro-dismembrator S (2 × 90 s, 2000 rpm). Tissue

samples were digested with trypsin (12.5 ng/μl; Sigma) overnight at 37˚C in 25 mM ammonium

bicarbonate (pH 7.5). Human rhFurin (2 ng/ml) in 100 μl activation buffer (50 mM Tris-HCl, 1 mM

CaCl2, 0.5% Brij-35, pH 9) was added to 4 μl human rhProMMP14 (0.37 μg/μl) and incubated for 1.5 hr
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at 37˚C. Recombinant human FN (1 μg/ml) was incubated with activated rhMMP14 (1 ng/ml) at 37˚C

for 1 hr. For gel-top analysis, MMP14-treated FN was briefly separated by electrophoresis under

reducing conditions. A gel top band was excised from the stained gel and processed using in-gel

tryptic digestion.

For in-gel tryptic digestion, proteins were excised from SDS-PAGE gels and dehydrated

using acetonitrile followed by vacuum centrifugation. Dried gel pieces were reduced with

10 mM dithiothreitol and alkylated with 55 mM iodoacetamide. Gel pieces were then washed

alternately with 25 mM ammonium bicarbonate followed by acetonitrile and dried by vacuum

centrifugation. Samples were digested with trypsin, as above. Digested samples were analyzed by

LC-MS/MS using an UltiMate 3000 Rapid Separation LC (RSLC, Dionex Corporation, Sunnyvale,

CA) coupled to an Orbitrap Elite (Thermo Fisher Scientific, Waltham, MA) mass spectrometer.

Peptide mixtures were separated using a gradient from 92% A (0.1% FA in water) and 8% B

(0.1% FA in acetonitrile) to 33% B, in 44 min at 300 nl/min, using a 250 mm × 75 μm i.d. 1.7 μM
BEH C18, analytical column (Waters). Peptides were selected for fragmentation automatically by

data-dependent analysis.

Mass spectrometry data analysis
Data produced were searched using Mascot (Matrix Science UK), against uniprot with taxonomy

of Mus musculus selected. Cysteine carbamidomethylation was selected as a fixed modification,

and lysine and proline oxidation included as variable modifications, for all enzymes. For trypsin,

methionine oxidation was additionally included as a variable modification and the enzyme

selected as ‘semi-trypsin’. Data were validated using Scaffold (Proteome Software, Port-

land, OR).

Western blot analysis
Mouse Achilles tendons (at P7) were dissected clean of contaminating the muscle, snap frozen in

liquid nitrogen and disrupted using a B Braun Mikro-dismembrator S (2 × 90 s, 2000 rpm). Proteins

were extracted directly into RIPA buffer (50 mM Tris, pH 7.6, 150 mM NaCl, 0.1% SDS, 1 mM

EDTA and 1% NP-40) containing EDTA-free protease inhibitor cocktail (Roche) and quantified

using a BCA assay. Samples (100 μg) were reduced and analyzed by western blotting and

densitometry. Western blots were stripped with 2% SDS, 62.5 mM Tris HCl pH 6.8 and 100 mM

2-mercaptoethanol for 50 min at 50˚C. Fibronectin (FN) was detected using a rabbit polyclonal

antibody (ab2413; Abcam), and periostin was detected using a goat polyclonal antibody (AF2955;

R&D Systems).

Immunofluorescence
From WT and Scx-Cre::Mmp14 lox/lox mice, whole hind limbs from E15.5 embryos, lower hind limbs

without the skin from P0 pups and dissected Achilles tendons from P10 pups were cryo-preserved in

OCT-embedding matrix (Thermo Scientific). Longitudinal sections of 8-μm thickness were fixed with

4% paraformaldehyde in PBS for 15 min, permeabilized with 0.2% Triton X-100 in PBS for 10 min and

then blocked with 2% BSA in PBS for 1 hr. FN was detected using a rabbit polyclonal antibody

(ab23750; Abcam; diluted 1:500), and periostin was detected using a goat polyclonal antibody

(ab14041; Abcam; diluted 1:500). Cy3-conjugated secondary antibodies (Invitrogen) were used and

sections were mounted using Vector Shield containing DAPI (Vector Laboratories). Fluorescent

images were taken using a digital camera attached to an Olympus BX51 and captured using MetaVue

imaging software (Molecular Devices).

14C labeling of type I collagen in the tendon
P7 tail tendons were labeled with 14C-proline for 1 hr and separate extracellular and intracellular

extracts prepared as described (Canty et al., 2004). The intracellular extract was analyzed by

electrophoresis using 4–12% pre-cast Bis-Tris gels and MES running buffer. The gels were divided

and the top half of the gel (>70 kDa) fixed, dried, and analyzed by autoradiography to detect
14C-collagen. The bottom half of the gel (<70 kDa) was analyzed by Western blotting with an

antibody to β-actin; signal was detected using a CCD camera system. The gels were analyzed by

Taylor et al. eLife 2015;4:e09345. DOI: 10.7554/eLife.09345 14 of 18

Research article Cell biology | Developmental biology and stem cells

http://dx.doi.org/10.7554/eLife.09345


densitometry with the relative band intensities determined by comparison to serial dilutions of an

independent sample.
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