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Abstract

BACKGROUND—Vagal hyperactivity promotes atrial fibrillation (AF), which has been almost 

exclusively attributed to acetylcholine. Vasoactive intestinal polypeptide (VIP) and acetylcholine 

are neurotransmitters co-released during vagal stimulation. Exogenous VIP has been shown to 

promote AF by shortening action potential duration (APD), increasing APD spatial heterogeneity, 

and causing intra-atrial conduction block.

OBJECTIVE—The purpose of this study was to investigate the effects of neuronally released 

VIP on atrial electrophysiologic properties during vagal stimulation.

METHODS—We used a specific VIP antagonist (H9935) to uncover the effects of endogenous 

VIP released during vagal stimulation in canine hearts.

RESULTS—H9935 significantly attenuated (1) the vagally induced shortening of atrial effective 

refractory period and widening of atrial vulnerability window during stimulation of cervical 

vagosym-pathetic trunks (VCNS) and (2) vagal effects on APD during stimulation through fat-pad 

ganglion plexus (VGPS). Atropine completely abolished these vagal effects during VCNS and 

VGPS. In contrast, VGPS-induced slowing of local conduction velocity was completely abolished 

by either VIP antagonist or atropine. In pacing-induced AF during VGPS, maximal dominant 

frequencies and their spatial gradients were reduced significantly by H9935 and, more 
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pronouncedly, by atropine. Furthermore, VIP release in the atria during vagal stimulation was 

inhibited by atropine, which may account for the concealment of VIP effects with muscarinic 

blockade.

CONCLUSION—Neuronally released VIP contributes to vagal effects on atrial 

electrophysiologic properties and affects the pathophysiology of vagally induced AF. Neuronal 

release of VIP in the atria is inhibited by muscarinic blockade, a novel mechanism by which VIP 

effects are concealed by atropine during vagal stimulation.
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Introduction

The intrinsic cardiac neural network is an integral part of the cardiac autonomic network and 

includes neurons that release noncholinergic and nonadrenergic neural transmitters such as 

polypeptide Y and vasoactive intestinal polypeptide (VIP).1–5 VIP is a 28-base polypeptide 

that is co-released with acetylcholine (ACh) during vagal stimulation.6,7 We recently 

reported that exogenous VIP affects multiple ionic channels and causes shortening of atrial 

effective refractory periods (AERPs) and action potential duration (APD), with 1353 

increased spatial heterogeneity, and slowing of intra-atrial conduction that precipitates 

conduction block.8 Furthermore, VIP perfusion increases the inducibility of atrial fibrillation 

(AF) by programmed stimulation.8 VIP also prolongs AF duration.9 However, data are 

lacking regarding the effects of neuronally released VIP on the atria during vagal hyper-

activity. Our current study aimed to test the hypothesis that, consistent with previously 

described ionic mechanisms of exogenous VIP effects,8 neuronally released endogenous 

VIP may alter the atrial electrophysiologic properties and thereby contributes to the 

increased vulnerability to AF during vagal stimulation.

Methods

Animal preparation

The experimental protocol was approved by the Institutional Animal Care and Use 

Committee of Texas Heart Institute in accordance with the Guidelines for the Care and Use 

of Laboratory Animals (National Research Council). Mongrel dogs (weight 30–35 kg) were 

randomly assigned among the in vivo and ex vivo groups (see Expanded Methods in Online 

Supplementary Material).

Vagal stimulation was performed either through decentralized bilateral cervical 

vagosympathetic trunks (VCNS) or through ganglionated plexuses (GPs) in the pericardial 

fat-pad (VGPS). The strength of VCNS, 2-ms pulse width at 20 Hz, was set to achieve a 

20% drop in heart rate or second-degree atrioventricular block. The strength of VGPS, 2-ms 

Appendix
Supplementary data
Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.hrthm.2015.03.003.

Xi et al. Page 2

Heart Rhythm. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1016/j.hrthm.2015.03.003


pulse width at 20 Hz, was set to achieve at least a 20-ms increase in PR interval. To assess 

the contributions of VIP and ACh effects during vagal stimulation, we used a specific 

competitive antagonist (H9935) of VIP receptors10 and atropine to block the receptor 

bindings of the respective transmitters.

Electrophysiologic experiments

During in vivo experiments, AERP was defined as the longest coupling interval (S1–S2) of 

the extrastimulus that failed to result in atrial capture, with the pacing output set at twice 

diastolic threshold. Atrial vulnerability window was defined as the range of the coupling 

intervals, during programmed stimulation from the proximal left inferior pulmonary vein, 

which resulted in AF lasting > 2 seconds.11

During ex vivo experiments with optical mapping in isolated atrial preparations with intact 

coronary supply,8 APD was quantified as APD75, which was defined as the interval between 

the time of local activation and the time when the optical signal had recovered by 75% from 

the peak value of upstroke. Local conduction velocity (CV) was calculated as previously 

described.12 AF dominant frequencies (DFs) were derived by fast Fourier transform (FFT) 

on 2-second recordings of optical during AF.13 The experimental protocol and methods are 

detailed in the Expanded Methods in the Online Supplementary Material.

Statistical analysis

All data are reported as mean ± SEM. Repeated measure analysis of variance was used for 

comparisons among multiple groups. A general linear mixed effect model was used to 

evaluate the effects of VIP antagonist and atropine. All statistical analyses were performed 

using SAS (version 9.3 for Windows, SAS Institute, Cary, NC). P ≤.05 was considered 

significant.

Results

Neuronally released VIP contributes to vagal effects on atrial electrophysiologic properties

In vivo experiment—The effects of vagal stimulation of the AERP were quantified by 

measuring the difference between the AERP values determined immediately before and 

during VCNS (ΔAERP). ΔAERP was measured at 3 drive cycle lengths of 250, 300, and 

350 ms at 3 sites: distal coronary sinus, right atrial appendage, and proximal left inferior 

pulmonary vein (n = 6; Figure 1). ΔAERP was determined during 3 episodes: (1) with 

infusion of normal saline (VCNS only), (2) with VIP antagonist (VCNS and H9935), and (3) 

with muscarinic blockade atropine (VCNS and atropine). H9935 significantly attenuated 

vagally induced ΔAERP at all 3 sites and 3 drive cycle lengths (P < .01), whereas atropine 

completely abolished ΔAERP (P < .001). Without VCNS, H9935 had no effect on AERP 

(see Online Supplementary Results, Table 1).

Ex vivo experiment—VGPS effect was quantified by ΔAPD75, that is the difference 

between APD75 determined with and without VGPS at a drive cycle length of 300 ms (n = 

8; Figures 2A–2C). H9935 reduced ΔAPD75 during VGPS by about 30%, from 31.49 ± 4.6 

ms to 21.24 ± 3.8 ms (P <.05 vs VGPS only), whereas atropine completely eliminated 
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VGPS-induced ΔAPD75 (1.34 ± 1.91 ms, P <.001 vs VGPS only, P < .05 vs VPGS with VIP 

antagonist; Figure 2D). H9935 eliminated VGPS-induced reduction of CV (ΔCV: 2.04 ± 

5.01 cm/s vs 18.04 ± 2.33 cm/s with VPGS only, P <.001) as well as atropine did (1.31 ± 

1.89 cm/s, P < .001 vs VPGS only; Figure 2E). In addition, VGPS increased both standard 

deviations of APD (APD-SD) and CV (CV-SD), as indexes of spatial heterogeneity, which 

was significantly attenuated by H9935 and essentially eliminated by atropine (see Online 

Supplementary Results, Figure 1).

Both ΔAPD and ΔCV recovered toward their baseline values after 15-minute washout 

(ΔAPD: 36.51 ± 4.38 ms, P = .95; ΔCV: 17.83 ± 4.01 cm/s, P = .95 compared with initial 

recording during initial VGPS without VIP antagonist or atropine). Without VGPS, H9935 

had no effect on APD or CV (see Online Supplementary Results, Tables 2 and 3).

Muscarinic modulation of neuronal VIP release during vagal stimulation

In vivo experiment—VCNS significantly increased VIP tissue content in both the

left atrium (LA) by 2.60 ± 0.57 ng/g (P < .01) and the right atrium (RA) by 2.07 ± 0.60 ng/g 

(P < .01; Figures 3A and 3B). However, with atropine, VCNS failed to significantly increase 

VIP tissue content (only by 0.67 ± 0.27 ng/g in LA, P = .20; and by 0.83 ± 0.48 ng/g in RA, 

P = .12). Atropine had no effect on baseline VIP tissue content without VCNS.

Blood samples from 3 sites (aorta root, coronary sinus, and superior vena cava) were 

collected before and during VCNS, with and without atropine perfusion (Figure 3C). 

Without atropine, VCNS increased plasma VIP concentration by 0.77 ± 0.45 ng/L at the 

aorta root (P < .01) and by 0.70 ± 0.41 ng/L at the coronary sinus (P < .01) but did not affect 

the concentration of VIP in the superior vena cava (0.24 ± 0.02 ng/L vs 0.23 ± 0.02 ng/L, P 

= .45). Atropine did not affect plasma VIP concentration at any of the 3 sites without VCNS 

but reduced VCNS-induced increase in plasma VIP concentration at the aorta root to 0.43 ± 

0.15 ng/L (P < .01 vs VCNS only) and at the coronary sinus to 0.31 ± 0.16 ng/L (P < .01 vs 

VCNS only).

Ex vivo experiment—Similarly, tissue VIP contents in LA and RA and VIP 

concentrations in coronary sinus were compared with and without VGPS in Langendorff-

perfused atria (Figure 4A). VGPS increased VIP tissue content by 3.62 ± 01.40 ng/g (P <.

01) in LA and by 3.67 ± 0.84 ng/g (P < .01) in RA, which was almost eliminated by atropine 

(0.33 ± 1.40 ng/g, P = .45, in LA and 0.62 ± 0.41 ng/g, P = .32 in RA, respectively; Figure 

4B).

In addition, atropine inhibited VGPS-induced increase of VIP concentration in outflow of 

coronary sinus from 4.49 ± 2.0 ng/ (L•100 g) to 1.35 ± 5.85 ng/(L•100 g) (Figure 4C).

After atropine washout, the VGPS-induced increases in VIP tissue contents and 

concentration in coronary sinus were recovered (Figures 4B and 4C). Atropine had no effect 

on VIP tissue content or concentration in coronary sinus outflow without VGPS.
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Neuronally released VIP contributes to vagal effects in atrial fibrillation

In vivo experiment—VCNS increased the atrial vulnerability window (AVW) from 3.3 ± 

1.7 ms to 38.0 ± 5.5 ms (ΔAVW: 34.2 ± 6.8 ms, P < .001, n = 6). H9935 significantly 

attenuated such vagally induced increase in AVW (ΔAVW decreased to 16.7 ± 5.1 ms, P < .

05). In contrast, atropine completely eliminated such increase in AVW (ΔAVW: −1.7 ± 2.1 

ms, P < .001). Without VCNS, H9935 had no effects on AVW (ΔAVW: 0.0 ± 2.2 ms, P = .

92).

Ex vivo experiment—Sustained AF was induced with rapid pacing from the proximal left 

inferior pulmonary vein in 6 dogs during VGPS. No sustained AF was induced without 

VGPS. Continued VGPS was required for AF maintenance during which the highest values 

of DFmax were seen in the LA–PV region (17.2 ± 0.94 Hz; Figure 5A). DFmax was lower 

in the left atrial appendage (LAA; 13.9 ± 0.89 Hz) and the lowest in the RA (11.8 ± 0.57 Hz; 

Figure 5B). H9935 decreased DFmax to 12.1 ± 0.78 Hz in the LA–PV region, 11.5 ± 0.64 

Hz in the LAA, and 9.0 ± 0.72 Hz in the RA (P < .01 vs VGPS only). Atropine decreased 

DFmax dramatically to 7.6 ± 0.68 Hz in LA–PV, 8.2 ± 0.67 Hz in LAA, and 5.9 ± 0.63 Hz 

in RA (P < .001 vs VGPS only, and P < .05 vs VGPS plus H9935). After washout, DFmax 

of AF recovered toward baseline (14.2 ± 1.56 Hz in LA–PV, 13.1 ± 1.06 Hz in LAA, and 

10.3 ± 1.04 Hz in RA, P = NS vs VGPS only; Figures 5C–5E)

The gradients of DFmax between LA–PV and LAA (LA/ PV-to-LAA gradient) and between 

LA–PV and right atrial appendage (RAA; LA/PV-to-RA gradient) were analyzed (Figures 

5F and 5G). Compared to VGPS only, H9935 decreased LA/PV-to-LAA gradient from 3.8 ± 

0.42 Hz to 1.7 ± 0.5 Hz (P < .05), and LA/PV-to-RA gradient from 4.2 ± 0.34 Hz to 1.6 ± 

0.41 Hz (P < .01). Atropine also decreased both gradients significantly (LA/PV-to-LAA 

gradient: 1.2 ± 0.46 Hz, P < .01 vs VGPS only; LA/PV-to-RAA gradient: 1.1 ± 0.48 Hz, P 

< .01 vs VGPS only). The decreases in the gradients in response to H3395 and to atropine 

were not significantly (P > .40). After washout, DFmax gradients were again raised back 

toward baseline with VGPS only (LA/PV-to-LAA gradient: 3.8 ± 0.59 Hz, P = .39 vs VGPS 

only; LA/PV-to-RAA gradient: 3.7 ± 0.52 Hz, P = .28 vs VGPS only).

Discussion

Our major findings are as follows. In the presence of endogenous ACh, neuronally released 

VIP (1) significantly contributes to vagally induced AERP and atrial APD shortening and 

conduction slowing and (2) may influence AF maintenance by affecting the DFs during AF. 

These findings confirm our previous report of exogenous VIP effects on ionic currents and 

support the physiologic relevance of VIP effects on ionic currents.8 Furthermore, we 

demonstrated that muscarinic blockade inhibits neuronal VIP release in the atria and 

conceals the VIP effects.

Effects of neuronally released endogenous VIP in the atria

Vagal stimulation results in shortened atrial APD and refractoriness with increased spatial 

heterogeneity and thereby increases vulnerability to AF, which has been mostly attributed to 

ACh.3,14–17 Our study provides the first evidence that endogenous VIP synergistically 
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contributes to vagally induced AERP/APD shortening (Figure 1 and 3), which can be 

accounted for by VIP effect on the slowly activating delayed rectifier potassium current IKs 

in the presence of ACh (see Online Supplementary Results, Figure 2). VIP increases the 

spatial heterogeneity of APD distribution, partly due to the uneven expression of VIP 

receptors among atrial myocytes8,18 and the difference in the expression of repolarizing 

currents, especially Ito and IKs, among different regions of the atria.8,19

Rosenshtraukh et al20,21 first described vagally induced conduction delay/block. ACh-

induced increase in sink-to-source mismatch was proposed to account for the vagally 

induced conduction block during AF.22 Hirose et al15 demonstrated that intra-atrial 

conduction delay/block was more evident during vagal stimulation, when both ACh and VIP 

are released, than during ACh infusion alone. This difference could be explained by the 

noncholinergic vagal effects mediated through VIP, which suppresses the sodium current 

INa.8 VIP antagonist could completely abolish the vagal effects on conduction velocity 

during pacing (Figure 3), supporting the hypothesis that vagally released VIP contributes 

significantly to the vagal effect on conduction.

Muscarinic receptor-mediated release of VIP in atria during vagal stimulation

Atropine abolishes all cardiac vagal effects with few exceptions, such as VIP effects on 

accelerating the sinus rhythm.7 However, our data during VCNS and VGPS support that 

VIP contributes to the vagal effects in atria. We further demonstrated that atropine inhibits 

neuronal VIP release in atrial tissues during vagal stimulation (Figures 3 and 4). This 

represents a novel mechanism by which intra-cardiac neuronal VIP release is mediated and 

helps to explain how atropine could conceal the effects of VIP in the atria during vagal 

stimulation.23,24 Our data also indicate that a portion of neuronal VIP release may not be 

mediated by muscarinic receptors as suggested by a trend toward an increased VIP 

concentration sampled from (1) the aortic root during VCNS, which could be extracardiac as 

VIP is released from the pulmonary circulation,25 and (2) the coronary sinus during both 

VCNS and VGPS with muscarinic blockade. Previous reports have shown that release of 

VIP into the sinoatrial and atrioventricular nodes is not affected by atropine and that VIP 

innervations in the sinoatrial and atrioventricular nodes are different from those in the 

atria.2,26,27 Our hypothesis is further corroborated by previous reports that atropine 

inhibited vagally induced VIP release from the gastrointestinal track in pigs28 and in dogs.29

Furthermore, our data also suggest that VIP-releasing neurons in atria may be governed by a 

second-order system and, therefore, may be an important component of the local circuit 

neuron network.30 This is particularly interesting and potentially significant because VIP 

release is also increased during acute ischemia and heart failure where local circuit neuron 

network signaling may be activated and even dysfunctional but parasympathetic tone usually 

is not increased.

Synergistic effects of VIP and ACh in AF

Both atropine and VIP antagonist decreased the DFs of AF and the gradient of DFs between 

LA and RA during vagal stimulation, although to a lesser degree. Our data indicate that VIP 

and ACh may synergistically increase DFs and affect AF maintenance.9 This observation 
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may be explained by VIP effects that (1) enhance IKs and abbreviate APD/ AERP and (2) 

suppress INa and slow intra-atrial conduction.8 Theoretically, slow conduction could result 

in reduced speed of revolution of rotor(s) and thereby decrease DFs. However, it was shown 

that DFs are primarily determined by refractoriness of atrial myocardium that limits the 

maximum frequency of resolution of rotors31.

Study limitations

Uncovering the effects of endogenous neural transmitters in vivo or ex vivo depends on the 

availability of specific receptor antagonist. In addition to evidence reported in the 

literature,10,32 use of H9935 as a specific VIP antagonist was supported by the following: 

(1) it had no direct effects on the atria without vagal stimulation, (2) the results of our 

current study with H9935 are consistent with the effects of exogenous VIP in both human 

and canine atria,8 and (3) H9935 completely reversed the effects of exogenous VIP (see 

Online Supplementary Material, Table 3).

Pituitary adenylate cyclase-activating polypeptide (PACAP) is the only known non-VIP 

neural transmitter that may bind with VIP receptors.33 Previous experiments indicate that 

PACAP shortens AERP and induces AF by activating postganglionic parasympathetic 

nerves and, thereby, enhancing ACh release rather than by its direct effect on atrial tissue.34 

PACAP does not affect intra-atrial conduction velocity.34

We stimulated vagal hyperactivity by neural stimulation but did not examine the effects of 

ACh perfusion on VIP release. It is possible that an overwhelming amount of exogenous 

ACh effects could completely overshadow endogenous VIP effects. Furthermore, neuronal 

VIP release is modulated by the frequency of vagal impulses and might be affected only 

minimally by ACh perfusion as tonic stimulation.7 Further studies may be warranted to 

identify the subtype(s) of muscarinic receptors responsible for modulating neuronal VIP 

release.

Only the superior and inferior left GPs were simultaneously stimulated in our current study, 

although there are differences in cardiac response to stimulation of different GPs.35 It will 

be important to investigate the role of individual GPs in modulating VIP release in the atria 

in future studies.

Conclusion

Our study provides the first evidence that neuronally released VIP contributes to vagally 

induced changes in atrial electro-physiologic properties in the presence of concomitantly 

released ACh. We further demonstrated that neuronally released VIP may participate in the 

pathophysiology of vagally induced AF, as suggested by previous studies.5,8,9 Neuronal VIP 

release in the atria during vagal stimulation is mediated by muscarinic receptors, a novel 

mechanism by which the effects of neuronally released VIP in the atria are concealed by 

atropine administration.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

ACh acetylcholine

AERP atrial effective refractory period

APD action potential duration

AVW atrial vulnerability window

CV conduction velocity

DF dominant frequency

GP ganglionated plexus

LA left atrium

LAA left atrial appendage

RA right atrium

RAA right atrial appendage

VCNS vagal stimulation through cervical vagosympathetic trunks

VGPS vagal stimulation through ganglionated plexus

VIP vasoactive intestinal polypeptide
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CLINICAL PERSPECTIVES

Autonomic dysfunctions, including abnormally increased vagal tone, have been shown to 

promote atrial fibrillation (AF). Vagal effects in AF have been attributed to the effects of 

acetylcholine. Our study demonstrated that vagally released noncholinergic neural 

polypeptide (vasoactive intestinal polypeptide [VIP] also contribute to vagal effects in 

the atria and provided the first evidence that VIP release in the atria is mediated by 

muscarinic receptors, a novel mechanism that atropine could conceal VIP effects. A full 

understanding of all the factors, such as those described in our study, that contribute to 

the pathogenesis of AF is necessary to provide a mechanistic foundation for advancement 

of AF management and development of new therapeutic innovations. Further studies of 

the interaction among various components of the cardiac innervations and the molecular 

basis of VIP effects including signal transduction pathways will be required to identify 

potential pharmacologic interventions and to facilitate the translation of research results 

into clinical practice.
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Figure 1. 
Neuronally released vasoactive intestinal polypeptide (VIP) contributes to atrial effective 

refractory period (AERP) shortening during vagal stimulation through cervical 

vagosympathetic trunks (VCNS). A: Schematic representation of experiment protocol. 

Changes of atrial effective refractory periods (ΔAERP) were defined as the difference 

between AERP determined before and during vagal stimulation VCNS at cycle lengths of 

250,300, and 350 ms from the coronary sinus (B), right atrial appendage (C), and left 

inferior pulmonary vein (D), respectively. Propranolol was used to block sympathetic 
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effects. *P < .05, **P < .01 vs VCNS only. The absolute AERP values are presented in 

Online Supplementary Material, Table 2.
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Figure 2. 
Neuronally released vasoactive intestinal polypeptide (VIP) contributes to shortening of 

action potential duration (APD) and slowing of local conduction velocity (CV) during vagal 

stimulation through the ganglionated plexus (VGPS). A: Anatomic photograph of recording 

areas from the left atria. B: Schematic illustration of the recording area. C: Optical 

recordings from a representative experiment. Top row: APD maps recorded without VGPS 

in the following sequence (from the left to the right): at baseline, with VIP antagonist 

perfusion, with atropine perfusion, and after washout, respectively. Middle row: Same 
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recordings as in the top row except VGPS was turned on. Bottom row: Pixel-by-pixel 

difference in APD by subtracting the middle row from the top row, indicating the amplitude 

and spatial distribution of APD changes in response to VGPS. Color bars indicate the range 

of APD in milliseconds. D: Composite data from 8 canine left atria indicating the effects of 

vagal stimulation on changes of APD (ΔAPD). Note VIP antagonist only partially blunted 

the effect of vagal stimulation on APD. E: Composite data from 8 canine left atria indicating 

the effects of vagal stimulation on changes in local conduction velocity (ΔCV) determined 

during pacing at 300 ms. Note both VIP antagonist and atropine could abolish vagal effect 

on CV. ILGP = inferior left ganglionated plexus; LAA = left atrial appendage; LIPV = left 

inferior pulmonary vein; LSPV = left superior pulmonary vein; SLGP = superior left 

ganglionated plexus. *P < .05, **P <.01 vs baseline (VGPS only); P < .05 vs VIP antagonist 

plus VGPS. N = 8 dogs. CL = cycle length.
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Figure 3. 
Neuronal release of vasoactive intestinal polypeptide (VIP) during stimulation through 

cervical vagosympathetic trunks (VCNS) in vivo. A: Schematic representation of experiment 

protocol and sample collection time-points. B: Changes of VIP content in atrial tissue from 

the appendages. C: Changes of VIP concentrations in plasma VIP releases, as reflected by 

tissue content in left and right atria and plasma concentrations (in aortic root and coronary 

sinus), were increased by vagal stimulation at the cervical level, and such increased VIP 

release was inhibited by atropine (ATR) except that vagal stimulation had little effect on 
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VIP concentration sampled from the superior vena cava. No sample was collected with 

washout because of the prolonged half-life of atropine in vivo. *P < .05; **P < .01.
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Figure 4. 
Neuronal release of vasoactive intestinal polypeptide (VIP) during stimulation through the 

ganglionated plexus (VGPS) ex vivo. A: Schematic representation of experiment protocol 

and sample collection time-points. B: Changes of VIP content in atrial tissue. C: Changes of 

VIP concentrations in plasma. VIP releases, as reflected by tissue content in left and right 

atria and plasma concentration (coronary sinus), were increased by vagal stimulation at the 

GP level, but such increased VIP release was inhibited by atropine (ATR). Note that 

muscarinic inhibition of VIP release seemed to be more complete with vagal stimulation at 
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the GP level compared with preganglionic vagal stimulation (Figure 4) and was reversible 

once atropine was washed out. *P < .05; **P < .01.
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Figure 5. 
Neuronally released vasoactive intestinal polypeptide (VIP) affects the dominant frequency 

(DF) of induced atrial fibrillation (AF) during vagal stimulation through the ganglionated 

plexus (VGPS). A: Anatomic photograph and schematic illustration of recording and 

analysis area in biatrial preparation. B: Maps of DFs in pacing-induced AF during VGPS 

only, VGPS with VIP antagonist perfusion, VGPS with atropine perfusion, and VGPS after 

washout of atropine obtained in a representative experiment. Note that both VIP antagonist 

and atropine reduced DFs, although the effect of atropine was quantitatively more 
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pronounced than that of VIP antagonist. Color bar indicates the range of DFs. C, D: 
Composite data showed similar results in all 3 regions of the atria. C: DF distribution in the 

left atrium and its junction with pulmonary veins (LA–PV; encircled by blue dashed line in 

A). D: DF distribution in the left atrial appendage (LAA; encircled by yellow dashed line in 

A). E: DF distribution in the right atrium (RA; encircled by red dashed line in A). The 

gradient of DFmax between LA–PV and RA and that between LA–PV and RA also was 

decreased by either VIP antagonist or atropine as shown in F and G, respectively). *P < .05; 

**P < .01; ***P < .001. N = 6 dogs. AO = aorta; LAA = left atrial appendage; LSPV = left 

superior pulmonary vein; PA = pulmonary vein; RAA = right atrial appendage; RSPV = 

right superior pulmonary vein; SVC = superior vena cava.
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