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Abstract

Heart failure is a complex clinical syndrome and has become the most common reason for adult 

hospitalization in developed countries. Two subtypes of heart failure, ischemic heart disease 

(ISCH) and dilated cardiomyopathy (DCM), have been studied using microarray platforms. 

However, microarray has limited resolution. Here we applied RNA sequencing (RNA-Seq) to 

identify gene signatures for heart failure from six individuals, including three controls, one ISCH 

and two DCM patients. Using genes identified from this small RNA-Seq dataset, we were able to 

accurately classify heart failure status in a much larger set of 313 individuals. The identified genes 

significantly overlapped with genes identified via genome-wide association studies for 

cardiometabolic traits and the promoters of those genes were enriched for binding sites for 
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transcriptions factors. Our results indicate that it is possible to use RNA-Seq to classify disease 

status for complex diseases such as heart failure using an extremely small training dataset.
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Introduction

Heart failure, defined as the inability of the heart to pump sufficient blood to meet the 

body’s demands, is a syndrome associated with high morbidity and mortality. An estimated 

five million Americans are diagnosed with heart failure every year, causing more than 

250,000 deaths annually. Heart failure is a complex disease that involves multiple genetic 

and environmental factors. Two of the most common subtypes of heart failure include 

ischemic heart disease (ISCH), which is caused by reduced blood supply to heart muscle, 

and dilated cardiomyopathy (DCM) in which the heart becomes weakened and enlarged 

despite normal blood flow [1]. Although ISCH and DCM can lead to similar symptoms of 

heart failure, emerging evidence suggest that the two subtypes may produce different 

structural and/or functional phenotypes and may respond differently to therapy [1–3]. In 

addition, patients with ISCH generally have reduced survival compared to those with DCM 

[1, 2].

Most human genomic studies in heart failure are limited by insufficient clinical samples 

from patients with advanced heart failure [1]. As such, researchers have used animal models 

in combination with functional genomics to study the molecular underpinnings of heart 

failure [4, 5]. Attempts have also been made to link gene signatures in human blood with 

heart failure outcomes [6, 7]. Recently, several studies have been published based on human 

myocardium. Tan et al. [8] showed that end-stage heart failure is associated with an increase 

in expression levels for genes encoding for matrix/cytoskeletal and proteolysis/stress 

proteins based on a comparison of eight hearts from patients with end-stage heart failure and 

seven non-failing controls. Kittlesonet al. [2] used microarray with a machine learning 

approach to distinguish patients with histological evidence of ischemic injury from those 

without a history of myocardial infarction, revascularization, or coronary artery disease. 

Using a much larger dataset derived from 185 failing and 14 non-failing hearts, Margulies et 

al. [9] identified 3,088 differentially expressed transcripts with only a small subset 

demonstrating improvements that was correlated to the favorable remodeling observed 

during mechanical circulatory support. Using this dataset, Hannenhalli et al. [3] explored 

transcription factors that are associated with heart failure.

All of the aforementioned studies were based on microarrays. Although microarrays have 

been the predominant method for gene expression studies due to their ability to measure 

thousands of transcripts simultaneously, they are subject to biases in hybridization strength, 

and potential for cross-hybridization to probes with similar sequences. Additionally, they are 

unable to identify novel genes or novel splicing events because of their reliance on existing 

gene models. RNA sequencing (RNA-Seq) is a newer approach for transcriptome profiling 
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[10–12]. It is the first sequencing-based method that allows an unbiased survey of the entire 

transcriptome in a high-throughput manner. Briefly, RNA-Seq involves fragmenting poly-A 

selected RNA molecules into small fragments and converting into a cDNA library with 

adaptors attached to cDNA fragments. The cDNA library is then sequenced to obtain short 

sequences, which are subsequently aligned to a reference genome and/or transcriptome or 

assembled de novo without the reference sequence. The expression level for a gene is 

determined by counting the number of reads that are mapped to it. With RNA-Seq data, 

transcripts spanning multiple exons can be directly observed. Moreover, RNA-Seq has a 

greater dynamic range than microarrays, which suffer from non-specific hybridization and 

saturation biases [13].

Motivated by the advantages of RNA-Seq technology for gene expression profiling, we 

sequenced the transcriptomes of six human individuals’ left ventricle tissue to identify genes 

that are associated with heart failure. Our study includes one ISCH patient, two DCM 

patients and three individuals with non-failing hearts (NF). Based on these six individuals, 

we identified genes that were differentially expressed between ISCH and NF, DCM and NF, 

and ISCH and DCM. A remarkable finding of our study is that using genes identified from 

this small RNA-Seq dataset, we were able to classify a much larger set of 313 individuals 

with failing or non-failing hearts. Our results suggest that, with highly accurately measured 

gene expression levels using RNA-Seq, it is possible to classify disease status for complex 

diseases such as heart failure using an extremely small training dataset.

Materials and Methods

Sample collection

Samples of cardiac tissue (n = 6 for RNA-Seq, n = 313 for microarrays) were acquired from 

subjects from the MAGNet consortium (http://www.med.upenn.edu/magnet/). The heart was 

perfused with cold cardioplegia prior to cardiectomy to arrest contraction and prevent 

ischemic damage. Left ventricular free-wall tissue was harvested and snap frozen with liquid 

nitrogen at the time of cardiac surgery from subjects with heart failure undergoing 

transplantation and from unused donor hearts. Cause of heart failure (ISCH or DCM) was 

determined by medical history and pathological examination of the explanted hearts. All the 

samples were stored in −80°C freezer until analyses. This study was approved by the 

University of Pennsylvania Institutional Review Board and the Cleveland Clinic 

Institutional Review Board. All participants were 18 years or older and provided written 

informed consent.

RNA extraction, library preparation and sequencing

RNAs for six selected individuals were extracted using RNeasy Lipid Tissue total RNA mini 

kit (Qiagen, Valencia, CA). Extracted RNA samples underwent quality control (QC) 

assessment using the Agilent Bioanalyzer (Agilent, Santa Clara, CA) and all RNA samples 

submitted for sequencing had an RNA Integrity Number (RIN) > 6, with a minimum of 1μg 

input RNA. Poly-A library preparation and RNA sequencing were performed at the Penn 

Genome Frontiers Institute’s High-Throughput Sequencing Facility per standard protocols. 

Briefly, we generated first-strand cDNA using random hexamer-primed reverse 
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transcription, followed by second-strand cDNA synthesis using RNase H and DNA 

polymerase, and ligation of sequencing adapters using the TruSeq RNA Sample Preparation 

Kit (Illumina, San Diego, CA). Fragments of ~350 bp were selected by gel electrophoresis, 

followed by 15 cycles of PCR amplification. The prepared libraries were then sequenced 

using Illumina’sHiSeq 2000 with four RNA-seq libraries per lane (2×101 bp paired-end 

reads).

Analysis of RNA-Seq data

The RNA-Seq data were aligned to the hg19 reference genome using Tophat with default 

options [14]. In order to eliminate mapping errors and reduce potential mapping ambiguity 

due to homologous sequences, several filtering steps were applied. Specifically, we required 

(1) the mapping quality score of each read is 30, (2) reads from the same pair were mapped 

to the same chromosome with expected orientations and the mapping distance between the 

read pair was < 500,000 bp, and (3) each read was uniquely mapped to the genome. All 

subsequent analyses were based on filtered alignment files.

Transcripts were assembled using Cufflinks [15, 16]. For each gene, we compared the 

expression levels between two individuals for each of the three categories, including ISCH 

vs. NF, DCM vs. NF, and ISCH vs. DCM. To test for differential expression, Cufflinks first 

computes the logarithm of the ratio of Fragments Per Kilobase of exon per Million 

fragments mapped (FPKMs) between the two subjects, and then uses delta method to 

estimate the variance of the log ratio. The test statistic is log ratio of the FPKMs divided by 

the standard deviation of the log ratio. It is possible to estimate the standard deviation based 

on a single subject because of the availability of multiple reads per subject. To ensure 

reliable expression estimates, we required the FPKM value to be greater than or equal to 3 

for at least one of the two individuals under comparison [17]. A gene was considered 

differentially expressed if the FDR adjusted p-value was < 0.05.

For differentially expressed genes, we carried out functional annotation analysis using 

DAVID [18, 19]. Differentially expressed genes were used as input gene list, and all human 

genes that were expressed in heart were used as the background. We looked for enrichment 

for genetic association with disease class, KEGG pathways, and biological processes in 

Gene Ontology (GO). Multiple testing was adjusted using Benjamini approach, and 

enrichment was declared if Benjamini adjusted p-value was less than 0.05.

To search for evidence of over representation of transcription factor binding sites in heart 

failure, we used a computational approach previously developed by Hannenhalli et al. [3]. 

First, a set of cardiac genes was determined from RNA-Seq data by selecting genes with 

FPKM > 3. Each cardiac gene was then mapped to its corresponding promoter region 

sequence, defined as the 5 kb of genomic sequence upstream from the transcription start site, 

based on the RefSeq annotation. Transcription factor binding sites were determined within 

these promoters with the TRANSFAC database [20] of vertebrate transcription factor 

binding sites, with a focus on promoter regions that show human-mouse evolutionary 

sequence conservation. We then determined which binding sites were statistically over 

represented among genes that showed altered expression in heart failure.
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For differentially expressed genes, we further examined whether they were more likely to 

overlap with GWAS findings. Our analysis was based on all GWAS signals summarized in 

the NHGRI GWAS catalogue (http://www.genome.gov/gwastudies). We only considered 

GWAS signals for cardiometabolic traits (Supplementary Table 6). Enrichment analysis was 

investigated using Fisher’s exact test.

RNA preparation and processing of microarray data

RNAs for 313 subjects, including 95 ISCH patients, 82 DCM patients, and 136 individuals 

with normal hearts were hybridized with Affymetrix Human Exon ST1.1 arrays using 

manufacturer instructions. The resulting CEL files were normalized with the robust 

multiarray analysis using Bioconductor to generate transcript-level intensity estimates [21]. 

To remove residual batch effect, expression values were further adjusted using ComBat [22, 

23], an empirical Bayes method that estimates parameters for location and scale adjustment 

of each batch for each gene independently. Probe sets were removed if the log2-transformed 

expression values were less than four on all arrays. This filtering yielded sets of genes 

present well above background levels in the human heart. For the remaining probe sets, their 

Affymetrix probe annotations were cross checked by mapping probe sequences to the hg19 

reference genome. Only uniquely mapped probes with no mismatches were kept for 

subsequent analysis.

Classification of disease status using gene signatures identified from RNA-Seq

Our goal was to use those differentially expressed genes identified from RNA-Seq as feature 

vectors to classify disease status for the 313 individuals with microarray data. In order to 

classify the ISCH/NF (n = 231) individuals, we used genes that were differentially expressed 

in all pairwise comparisons (defined as globally differentially expressed) of ISCH vs. NF in 

RNA-Seq as the feature vector. Similarly, globally differentially expressed genes were used 

as the feature vectors to classify DCM/NF individuals (n = 218), and ISCH/DCM 

individuals (n = 177). After the feature vectors were determined, the K-means clustering 

algorithm implemented in R’s “amap: Another Multidimentional ” package was used to 

classify the individuals into two groups, and Pearson correlation distance metric was used in 

the clustering with a maximum of 50 iterations.

Data Access

RNA-Seq and microarray data have been deposited in the Gene Expression Omnibus (GEO) 

database (accession number GSE57345).

Results

RNA-Seq data alignment

The RNA-Seq data were aligned and filtered as described in Methods. We obtained a high 

mapping rate with 76–83% of reads mapped to the reference genome, and 66–71% were 

uniquely mapped, properly filtered, and used in subsequent analysis (Supplementary Table 

1). All RNA-Seq samples passed FastQC’s basic statistics test (Supplementary Figure 1).
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Analysis of differential expression using RNA-Seq

First, we compared the gene expression profiles of the ISCH and NF individuals. Our RNA-

Seq experiment includes one ISCH patient and three individuals with non-failing hearts, 

yielding three possible pairwise comparisons for differential expression analysis. Using 

Cufflinks, we identified 492, 522 and 418 differentially expressed genes in the three pairs, 

respectively (Table 1; Supplementary Table 2A–C). Union of these gene lists gave 983 

genes that were differentially expressed in at least one of the three pairs, among which 531 

(54%) had higher expression levels in ISCH and 452 (46%) had higher expression levels in 

NF (Supplementary 3A). By intersecting differentially expressed genes across all three pairs, 

70 genes were retained and we call these genes as globally differentially expressed and used 

them as feature vector for the K-means clustering of the 231 ISCH/NF individuals with 

microarray data (Supplementary Table 4A).

Next, we compared DCM and NF individuals. With two DCM and three NF individuals, 

there were six possible pairwise comparisons for differential expression analysis. Using 

Cufflinks, we identified 361, 393, 491, 482, 343 and 491 differentially expressed genes, 

respectively, for the six pairs (Table 1; Supplementary Table 2D–I). Union of these gene 

lists gave 1,109 genes that were differentially expressed in at least one of the six pairs 

(Supplementary 3B). Among these genes, 844 (76%) had higher expression levels in DCM 

and 265 (24%) had higher expression levels in NF. By intersecting differentially expressed 

genes across all six pairs, we identified 12 genes that were globally differentially expressed 

(Supplementary 4B). These genes were used as feature vector in the K-means clustering of 

the 218 DCM/NF individuals with microarray data.

We also compared the two subtypes of heart failure. Two possible combinations were 

considered based on one ISCH and two DCM individuals. We found 484 and 492 

differentially expressed genes in the two pairs (Table 1; Supplementary Table 2J–K), 

respectively, yielding a total of 825 differentially expressed genes in at least one pair, 

including 476 (58%) with higher expression levels in ISCH and 349 (42%) with higher 

expression levels in DCM (Supplementary Table 3C). Interaction of the gene lists yielded 

129 genes that were differentially expressed in both pairs and they were used as the feature 

vector in the K-means clustering of the 177 ISCH/DCM individuals with microarray data 

(Supplementary Table 4C).

Categories of differentially expressed genes

To investigate what categories of genes were differentially expressed, we carried out 

functional annotation analysis using DAVID. For each set of differential expression 

analysis, genes that were expressed (FPKM 3) in at least one individual under comparison 

were used as the background. These include 9,919 genes for ISCH vs. NF comparison, 

10,462 genes for DCM vs. NF comparison, and 10,190 for ISCH vs. DCM comparison.

ISCH vs. NF comparison—For genes that had higher expression levels in ISCH, they 

were enriched and only enriched for CARDIOVASCULAR (p-value = 0.0028) in disease 

class and ECM-receptor interaction pathway (p-value = 0.000152) in KEGG. For Gene 

Ontology (GO), these genes were significantly enriched for extracellular matrix formation 
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processes (p-value < 10−25) (Supplementary Figure 2 (A)–(C)). ECM-receptor interaction 

and their formation related processes had been shown to play critical roles in ischemic heart 

remodeling.[24] For genes that had higher expression levels in the NF individuals, they were 

enriched for CARDIOVASCULAR (p-value = 0.011) and RENAL (p-value = 0.0024) in 

disease class, but no significant enrichment was found in KEGG. For GO, these genes were 

significantly enriched for terms related to system development (p-value = 8.68×10−8) and 

organ development (p-value = 9.34×10−6) (Supplementary Figure 2 (D)).

DCM vs. NF comparison—For genes that had higher expression levels in DCM, they 

were enriched for CARDIOVASCULAR (p-value = 0.00022) in disease class. They were 

also enriched for focal adhesion pathway (p-value = 0.029) in KEGG. For GO, these genes 

were significantly enriched for terms related to plasma membrane (p-value < 10−10) and 

extracellular region (p-value < 10−6) (Supplementary Figure 2 (E)–(G)). For genes that had 

higher expression levels in NF, no significant enrichment was found in disease class and 

KEGG, but for GO, these genes were significantly enriched for terms related to extracellular 

matrix (Supplementary Figure 2 (H)).

ISCH vs. DCM comparison—Genes that had higher expression levels in ISCH were 

enriched for CARDIOVASCULAR (p-value = 0.0015) and IMMUNE (p-value = 0.0001) in 

disease class. In KEGG, only the ECM-receptor interaction pathway was significantly 

enriched (p-value = 1.85×10−6). For GO, terms related to extracellular matrix formation 

processes (p-value < 10−28), response to external stimulus (p-value = 2.06×10−14) and 

inflammatory response (p-value = 6.99×10−12) were significantly enriched (Supplementary 

Figure 2 (I)–(K)). Extracellular matrix formation process was again found highly enriched, 

indicating that extracellular matrix related genes were not only differentially expressed in 

ISCH vs. NF, but also differentially expressed in subtypes of heart failure. No significant 

enrichment was found for genes that had higher expression levels in DCM.

Overrepresented transcription factor binding sites in heart failure

To investigate whether there is a discrete set of cardiac transcription factors potentially 

driving the observed gene expression changes in heart failure cases relative to controls, we 

examined whether certain transcription factor binding sites are over- or under-represented 

among those that showed altered gene expression patterns in heart failure using a 

computational approach developed by Hannenhalli et al. [3]. Specifically, we determined 

enrichment of TRANSFAC motifs by counting the frequency with which a given binding 

site was present in the promoters of differentially expressed genes relative to the frequency 

in the reference set of genes (i.e., genes expressed in heart). We performed analysis 

separately for genes that were up-regulated or down-regulated in heart failure cases.

For the comparison of ISCH vs. NF, the binding sites of NKX2-5, MAZ, and MZF1 were 

over-represented in down-regulated genes in all three pairs. Further examination of the gene 

expression of these transcription factors suggests that gene that encodes NKX2-5 was 

differentially expressed between the ISCH subject 234 and the NF subject 1256 (p-value = 

0.0062), with subject 234 showing lower expression level than subject 1256, which is 

consistent with the fact that the target genes of NKX2-5 were down-regulated in ISCH. The 
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expression level of subject 234 was also lower than the other two NF subjects, 1207 and 

D111, but the gene expression difference was not statistically significant (Supplementary 

Table 5). We did not find evidence of differential expression in genes that encode MAZ and 

MZF1. Several factors may affect the lack of differential expression in transcription factor 

genes. First, transcription factor genes are generally expressed at very low levels, and this 

affects the statistical power in detecting their differential expression. Second, transcription 

factors are often regulated at post-translational levels and are not expected to exhibit 

differential expression [26]. Third, a large fraction of the observed differences in target gene 

expression is likely due to genotype differences in cis-elements and not differential 

expression of the transcription factor regulators. Fourth, it is entirely possible that certain 

transcription factors can both activate certain genes and repress others, depending on the 

genomic context and also whether the binding site is polymorphic between cases and 

controls and the effect of the corresponding polymorphisms. We performed similar 

enrichment analysis for up-regulated genes in the ISCH vs. NF comparison and both up- and 

down-regulated genes for the DCM vs. NF comparison, but did not identify transcription 

factor motifs that were significantly enriched in all pairs.

Overlap of differentially expressed genes with GWAS loci for cardiometabolic traits

We queried our differentially expressed genes against published GWAS loci for 

cardiometabolic traits as derived from the NHGRI GWAS catalogue (Supplementary Table 

6). Compared to genes that were not differentially expressed, we found a statistically 

significant overlap with GWAS loci for cardiometabolic traits for the ISCH vs. NF 

comparison (p-value = 0.00029), and the DCM vs. NF comparison (p-value = 0.0012). The 

overlap was less significant for the ISCH vs. DCM comparison (p-value = 0.0093) (Table 2). 

Our results suggest that the identified differentially expressed genes might play a specific 

role for cardiometabolic disease.

RNA-Seq selected genes classify heart failure status in samples with microarray data

Genes that were globally differentially expressed were used as feature vectors to classify the 

313 individuals with microarray data, which include 95 with ISCH, 82 with DCM, and 136 

with NF. In the classification of the 231 ISCH/NF individuals, the K-means clustering 

algorithm using the RNA-Seq determined feature vector with 70 genes correctly classified 

216 of the individuals, yielding a misclassification rate of 6.5% (Figure 1 (A)). In the 

classification of the 218 DCM/NF individuals, the RNA-Seq determined feature vector with 

12 genes was used in the K-means clustering algorithm and this led to the correct 

classification of 194 individuals, yielding a misclassification rate of 11.0% (Figure 1 (B)). 

Notably, all six individuals who had both RNA-Seq and microarray data were correctly 

classified into the right group. Our results suggest that by using feature vectors determined 

from a training set with six individuals only, we were able to correctly classify nearly 200 

individuals in the testing dataset into the correct clinical phenotype category. It is 

remarkable to achieve such high classification accuracy with datasets of extremely small 

training/testing ratio (4:231 for ISCH/NF and 5:218 for DCM/NF) (Table 3A).

As a comparison, we repeated the classification analysis based on feature vectors determined 

from the microarray data. We focused on the six individuals that had both RNA-Seq and 
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microarray data, but the genes were selected by mean fold change of expression levels based 

on the microarray data. We used a different method to select signature genes because there 

is only a single intensity measure per probe, which disallows pairwise comparisons due to 

the lack of variance estimate for gene expression. For the ISCH/NF classification, we used 

the top 70 genes that had the largest fold change on gene expression as the feature vector. 

The clustering algorithm with this feature vector gave a misclassification rate of 12%, which 

is about twice as high as the misclassification rate when the RNA-Seq determined feature 

vector was used (Supplementary Figure 3). Similarly, for the DCM/NF classification, the 

clustering algorithm with microarray determined feature vector gave a misclassification rate 

of 46%, which is about four times as high as that for RNA-Seq determined feature vector 

(Supplementary Figure 4). The reduced misclassification rates using RNA-Seq determined 

feature vectors indicate the much higher accuracy of RNA-Seq in quantifying gene 

expression levels than microarray (Table 3B).

To evaluate the confidence of our classification results, we performed random sampling. For 

the classification of the ISCH/NF individuals, we randomly selected 70 genes from the 

union of the 9,919 expressed genes obtained from RNA-Seq and used this list of genes as 

the feature vector for classification. We repeated this process 100 times and obtained an 

empirical distribution of the misclassification rate, which ranges from 8.2% to 49%. Similar 

analysis was carried out for the classification of the DCM/NF individuals, and the range of 

the misclassification rate was 16% to 49%. Results from these analyses suggest that the low 

misclassification rates observed in our original analysis are unlikely due to random 

variation.

We also attempted to classify the ISCH/DCM individuals. However, with the 129 RNA-Seq 

selected differentially expressed genes serving as the feature vector, the accuracy for 

classification was only slightly better than random (misclassification rate was 45%, 

Supplementary Figure 5 (A)). The misclassification rate based on genes selected from 

microarray based on mean fold change of expression was also 45% (Supplementary Figure 5 

(B)). In the case of heart failure subtype classification, the differentially expressed genes 

could not distinguish between ISCH and DCM in an independent dataset. This failure of 

classification might be due to several reasons: 1) all of the ISCH and DCM individuals had 

end-stage heart failure, and this had obviated their initial differences [27]; 2) the relative 

small sample size of the training dataset; 3) gene expression levels in the testing dataset 

were not accurately measured by microarray. A recent study also reported the difficulty of 

discriminating between cardiomyopathies of different causes [17].

Discussion

Heart failure results from abnormalities in multiple biological processes that contribute to 

cardiac dysfunction. In this study, we tested the hypothesis that a small set of genes with 

distinct expression patterns between failing and non-failing hearts can accurately classify 

disease status for complex diseases such as heart failure. Using RNA-Seq data on six 

individuals, we identified genes that were differentially expressed between ISCH and NF, 

DCM and NF, and ISCH and DCM individuals. A remarkable finding of our study is that 

using the gene signatures identified from this small RNA-Seq dataset, we were able to 
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classify a much larger set of 313 individuals with failing or non-failing hearts, and the 

misclassification rates for the classification of ISCH/NF and DCM/NF individuals were one 

to three times lower than those obtained from microarray data. Such remarkable results are 

likely due to the highly accurate gene expression measurements obtained from RNA-Seq 

and careful selection of feature vectors in classification.

The unbiased RNA-Seq approach as we employed in this study identified genes that were 

differentially expressed between individuals with heart failure and those with non-failing 

hearts. Typical differential expression analysis involves group-wise comparison, i.e., 

comparing gene expression levels between two groups (each with multiple biological 

replicates), and searching for genes with different mean expression levels. Instead of 

searching for such overall differentially expressed genes between heart failure cases and 

controls, we did pairwise comparisons between every two individuals that have different 

disease status. We then took the intersection of the identified genes and used them as feature 

vectors for downstream clustering of microarray data. By so doing, we achieved a high 

accuracy with extremely small training: testing ratio (4:231 for ISCH/NF and 5:218 for 

DCM/NF); in other words, using ~2% of the samples, we correctly classified disease status 

for the remaining ~98% of the samples.

The advantage of the pairwise comparison lies in its ability to identify sets of genes that 

were differentially expressed in all pairs, i.e., globally differentially expressed, and this 

minimizes the contribution of less informative genes in the classification. To demonstrate 

this point, we compared the misclassification rates from pairwise comparisons with those 

obtained from group-wise comparisons (Supplementary Table 7). As expected, the group-

wise comparisons identified more differentially expressed genes; for the ISCH vs. NF 

comparison, 50 more differentially expressed genes were identified but the misclassification 

rate increased from 6.5% to 13.4%, which almost doubled the misclassification rate obtained 

from pairwise comparison; for the DCM vs. NF comparison, the number of differentially 

expressed genes increased more than four times and the misclassification rate reduced 

slightly from 11% to 7.8%; for the ISCH vs. DCM comparison, the number of differentially 

expressed genes was almost doubled, but the misclassification rate was only 1% lower than 

that from pairwise comparison. Taken together, these results indicate that pairwise 

comparisons significantly reduced the number of signature genes but achieved similar level 

or even better classification accuracy than group-wise comparisons.

In our comparison with microarray, we have used the same number of individuals (n = 6) in 

the training set as RNA-Seq. Since the cost of microarray is lower than RNA-Seq on a per-

sample basis, it is of interest to compare the performance of RNA-Seq with microarray when 

larger number of training individuals is used in microarray data analysis. We randomly 

selected half of the microarray samples for the training set and used the other half for 

testing. The misclassification rates for each comparison were shown in Supplementary Table 

8. The number of signature genes identified from this analysis was much larger than that 

from the pairwise RNA-Seq analysis (~8 times more for the ISCH vs. NF comparison and 

~48 times more for the DCM vs. NF comparison). Although using much larger number of 

genes in the feature vector, the misclassification rate for the ISCH vs. NF comparison was 

still higher than that from RNA-seq: 7.9% vs. 6.5%; for the DCM vs. NF comparison, 
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microarray had slightly lower misclassification rate: 7.4% vs. 11.0%. However, it is worth 

noting that the cost of generating microarray data for 165 subjects is much higher than that 

for six RNA-Seq samples. Therefore, the 3.6% reduction in misclassification rate represents 

a modest improvement.

Since we only had one ISCH patient, to assess the robustness of our conclusion, we analyzed 

two recently sequenced ISCH subjects from our ongoing MAGNet study. We repeated our 

analyses using these two new subjects, and obtained misclassification rates of 6.5% and 

7.8%, respectively, which are comparable to the 6.5% misclassification rate obtained from 

the original ISCH subject. Although preliminary, this result suggests that our conclusion is 

robust to the choice of different ISCH patients.

Although RNA-Seq has demonstrated its superior power in studying the complexity of 

eukaryotic transcriptomes, this approach is still relatively new for cardiovascular genomics 

research. Here we report an RNA-Seq study of advanced heart failure together with a 

microarray study of the same population. Most studies reporting gene expression variations 

in heart failure have focused on small numbers of samples with advanced heart failure. 

Because of the relative small sample size, the resulting genes have frequently failed to be 

replicated. Our study represents the largest heart failure transcritpomic study reported to 

date. An important implication of our findings is the identification of myocardial genes 

associated with heart failure in humans.

RNA-Seq is a recently developed approach for transcriptome profiling that uses deep-

sequencing technologies. Studies using this approach have already altered our view of the 

extent and complexity of eukaryotic transcriptomes. As shown by our results, RNA-Seq 

provides a far more precise measurement of levels of gene expression than microarray. In 

this study, we focused on gene expression quantification. However, using RNA-Seq, we can 

also quantify gene expression at the isoform level [28]. Additionally, we can examine 

differences of alternative splicing between two conditions, and integrate with DNA 

sequence data to examine allelic imbalance and RNA editing. In contrast to gene expression 

quantification, these analyses require a much higher sequencing depth to yield reliable 

results [29]. We will explore these various aspects of transcriptomic variations as we 

generate RNA-Seq data with higher sequencing depths.

In conclusion, we have utilized the RNA-Seq technology to identify genes with distinct 

expression patterns between failing and non-failing hearts. Our study demonstrates how 

knowledge gained from a small set of samples with accurately measured gene expressions 

using RNA-Seq and creative selection of classifier genes can be leveraged as a 

complementary strategy to discern the genetics of complex diseases. We note that analysis 

methods for RNA-Seq data are continuing to evolve. Additional studies employing 

improved analytical methods hold the potential to reveal a more complete picture of the 

genetic architecture of heart failure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

We applied RNA-Seq to identify gene signatures for heart failure from six individuals. 

Using genes identified from pairwise differential expression analysis, we accurately 

classified heart failure status in a much larger set of 313 individuals. Our results indicate 

that it is possible to use RNA-Seq to classify disease status for complex diseases such as 

heart failure using an extremely small training dataset.

Liu et al. Page 14

Genomics. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Liu et al. Page 15

Genomics. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. K-means clustering results based on RNA-Seq determined feature vectors
(A) Clustering results for the 231 ISCH/NF individuals. (B) Clustering results for the 218 

DCM/NF individuals.
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Table 1

Summary of differentially expressed (DE) genes for comparisons of ISCH vs. NF, DCM vs. NF, and ISCH vs. 

DCM.

Comparison Pair No. of DE genes No. of overlapping DE genes No. of union DE genes

ISCH vs. NF 234 vs. 1207 522 70 983

234 vs. 1256 418

234 vs. D111 492

DCM vs. NF 333 vs. 1207 491 12 1,109

333 vs. 1256 482

333 vs. D111 343

X2182 vs. 1207 361

X2182 vs. 1256 393

X2182 vs. D111 491

ISCH vs. DCM 234 vs. 333 484 129 825

234 vs. X2182 492
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