
RESEARCH ARTICLE

Brachyury, Foxa2 and the cis-Regulatory
Origins of the Notochord
Diana S. José-Edwards, Izumi Oda-Ishii¤a, Jamie E. Kugler, Yale J. Passamaneck¤b,
Lavanya Katikala, Yutaka Nibu, Anna Di Gregorio¤c*

Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New
York, United States of America

¤a Current address: Division of Biological Science, Graduate School of Science, Kyoto University,
Kitashirakawa-Oiwake, Sakyo, Kyoto, Japan
¤b Current address: Kewalo Marine Laboratory, University of Hawaii, Honolulu, Hawaii United States of
America
¤c Current address: Department of Basic Science and Craniofacial Biology, College of Dentistry, New York
University, New York, New York, United States of America
* adg13@nyu.edu

Abstract
Amain challenge of modern biology is to understand how specific constellations of genes

are activated to differentiate cells and give rise to distinct tissues. This study focuses on elu-

cidating how gene expression is initiated in the notochord, an axial structure that provides

support and patterning signals to embryos of humans and all other chordates. Although

numerous notochord genes have been identified, the regulatory DNAs that orchestrate

development and propel evolution of this structure by eliciting notochord gene expression

remain mostly uncharted, and the information on their configuration and recurrence is still

quite fragmentary. Here we used the simple chordate Ciona for a systematic analysis of

notochord cis-regulatory modules (CRMs), and investigated their composition, architectural

constraints, predictive ability and evolutionary conservation. We found that most Ciona
notochord CRMs relied upon variable combinations of binding sites for the transcription fac-

tors Brachyury and/or Foxa2, which can act either synergistically or independently from one

another. Notably, one of these CRMs contains a Brachyury binding site juxtaposed to an

(AC) microsatellite, an unusual arrangement also found in Brachyury-bound regulatory

regions in mouse. In contrast, different subsets of CRMs relied upon binding sites for tran-

scription factors of widely diverse families. Surprisingly, we found that neither intra-genomic

nor interspecific conservation of binding sites were reliably predictive hallmarks of noto-

chord CRMs. We propose that rather than obeying a rigid sequence-based cis-regulatory
code, most notochord CRMs are rather unique. Yet, this study uncovered essential ele-

ments recurrently used by divergent chordates as basic building blocks for notochord

CRMs.
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Author Summary

Transcription factors control the spatial and temporal expression of a multitude of genes
by binding their cis-regulatory modules (CRMs). In this study, we investigated the archi-
tecture and composition of CRMs that direct gene expression in the notochord, a structure
necessary for the support and patterning of the embryonic body plan of all chordates. We
used the simple chordate Ciona to carry out a comparative study of notochord CRMs and
we identified the sequences necessary for their function. These sequences, in turn,
highlighted the existence of multiple mechanisms that enable gene expression in the noto-
chord. Surprisingly, combinations of binding sites identical to those found in active CRMs
were not necessarily able to direct notochord gene expression and were often poorly con-
served among cogener species. These results challenge the concept of a notochord-specific
cis-regulatory “code”, and outline the limitations of methods for CRM identification that
rely upon interspecific conservation of non-coding sequences. Nevertheless, a broad com-
parison of the structure of the Ciona CRMs with that of the notochord CRMs character-
ized thus far from all chordates outlines the existence of essential evolutionarily conserved
building blocks, such as binding sites for the transcription factors Brachyury and Foxa2,
that are shared by subsets of these regulatory modules.

Introduction
Cis-regulatory modules (CRMs), or enhancers, are genomic DNA regions that dictate location,
timing and rate at which one or more genes are expressed [1]. These regions have variable
length and contain a flexible number of binding sites for transcription factors that function as
either activators or repressors [2]. Point mutations in one or more of the functional binding
sites within a CRM can alter its spatial and temporal properties, or cause its partial or complete
inactivation. Recent estimates suggest that the human genome contains hundreds of thousands
of CRMs that are believed to be mainly responsible for the developmental and functional com-
plexity of different cells, tissues, and organs [3]. Notably, mutations and deletions of human
enhancers have been associated with developmental defects, disease, and cancer [4–6]. How-
ever, in the human genome, as well as in several others, CRMs can be located up to thousands
of kilobases away from the genes that they control and are brought closer to their target pro-
moters after being bound by specialized proteins that bend the DNA [7]. Furthermore, CRMs
can be located within introns and/or other untranslated regions [8], or can be grouped into
synergistically acting clusters called super-enhancers [9]. The crucial roles of CRMs, their com-
plexity and their elusive nature, render a cis-regulatory code a highly desirable tool that would
greatly simplify the genome-wide identification of CRMs with related properties. Studies
aimed at identifying tissue-specific cis-regulatory codes have focused on genome-wide searches
of clusters of known transcription factor binding sites [10] and on interspecific conservation of
clusters of binding sites and/or larger non-coding sequences [11]. Nevertheless, recent research
suggests that conserved clusters of binding sites are often non-functional [12] and that even
evolutionarily ultraconserved genomic regions do not necessarily possess cis-regulatory activity
[13].

The aim of the present study was to determine the structure and the functional binding sites
of CRMs that shared comparable cis-regulatory activity and were presumably co-regulated,
and to look for elements that could define a tissue-specific cis-regulatory code. We centered
our analysis on CRMs active in the notochord, the most distinctive of chordate synapomor-
phies [14,15]. In all chordates, the notochord is the main source of support for the developing

Origins of Notochord cis-Regulatory Sequences

PLOS Genetics | DOI:10.1371/journal.pgen.1005730 December 18, 2015 2 / 16

Competing Interests: The authors have declared
that no competing interests exist.



embryo and an essential patterning center for many of its structures and organs [16]. In verte-
brates, the notochord is replaced by the vertebral column and its remnants form the nuclei pul-
posi of the intervertebral discs [17]. For the present study we used as a model system the
tunicate Ciona, an invertebrate chordate that couples a compact, fully annotated genome with
ease of transgenesis and tractable notochord [18,19]. According to phylogenomics data, tuni-
cates are the invertebrate chordates most closely related to vertebrates [20], and thus provide
an opportunity to reconstruct the genetic circuitry and the evolutionary origins of the noto-
chord through the identification of cis-regulatory sequences that enable gene expression in this
structure [21–23].

We began this analysis with the characterization of fourteen notochord CRMs from Ciona.
After isolating the minimal sequences necessary for their function, we tested whether these
minimal sequences could be used to predict related notochord CRMs. We also evaluated the
evolutionary conservation of CRM sequences between two Ciona species, C. intestinalis and C.
savignyi, and compared the structure of the Ciona notochord CRMs to fully characterized
notochord CRMs from other chordates, including mouse and zebrafish.

Rather than a sensu stricto cis-regulatory code, this study elucidated various combinations
of functional transcription factor binding sites that function in a context-dependent fashion.
These binding sites are often poorly conserved interspecifically, and therefore would have been
missed by conservation-based methods of enhancer detection. However, despite the intraspe-
cific and interspecific variability in their composition and function, binding sites for Brachyury
and Foxa2 emerged as recurrent hallmarks of notochord CRMs from highly divergent
chordates.

Results and Discussion
We identified fourteen CRMs that can induce gene expression in the Ciona notochord. To
avoid sequence and/or positional biases, all but one of the notochord CRMs (Fig 1) were iso-
lated through testing of random genomic regions (S1 Table). Minimal notochord enhancers
spanning 80–547 bp were subsequently identified through sequence-unbiased truncation anal-
yses, involving in vivo testing of ~200 constructs (S1, S2 and S3 Figs). Lastly, we assessed the
effects of site-directed mutations targeting either known putative transcription factor (TF)
binding sites or uncharacterized sequences. The results of these studies are condensed in Fig 1.

We found that the majority of the CRMs (9/14, 64.3%) require binding sites for the TFs
Ciona Brachyury (Ci-Bra) and/or Ci-FoxA-a (Foxa2/fkh/HNF3beta ortholog; hereinafter Ci-
Fox); in contrast, binding sites for TFs of widely different families were responsible for the
function of the remaining five notochord CRMs. This analysis also revealed unexpected char-
acteristics of these regulatory elements. For instance, enrichment for a particular binding site
was not a reliable predictor of either functionality or cooperativity (e.g., all Ci-Fox sites in Ci-
CRM70 are dispensable; Figs 1 and S1). In some instances, only one of the multiple copies/vari-
ants of a given TF binding site was required for notochord gene expression (e.g., only one of
the seven Ci-Bra sites in Ci-CRM99 is necessary; Figs 1 and S3). Furthermore, even CRMs
necessitating the same types of binding sites could function differently: a Myb-like site worked
individually in one CRM (Ci-C6ST-like7), and in combination with a related Myb-like site in
another (Ci-CRM76) (Figs 1 and S1).

We had previously described a notochord CRM, associated with the gene Ci-tune, activated
by synergistic Ci-Bra and Ci-Fox binding sites [24]. In this study, we found that Ci-CRM96
relies on the same type of synergism (Fig 2A), and although the sequences of the Ci-Bra and
Ci-Fox sites differ between these two CRMs, their spacing is comparable (48 bp in Ci-CRM96,
46 bp in Ci-tune). In contrast, the multiple Ci-Bra and Ci-Fox sites in Ci-CRM24 act
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Fig 1. A comparative study of notochord CRMs inCiona. a-n:Microphotographs of transgenicCiona embryos expressing the LacZ reporter in the
notochord (red arrowheads) under the control of 14 CRMs. (Right) Schematic representations of the 14 minimal notochord CRMs. Putative transcription
factor binding sites are mapped along the length of each enhancer (tan bar), as indicated in the key (bottom). Point mutations uncovered site(s) required for
notochord expression (colored and opaque) as well as sites that did not evidently contribute (colored, but transparent). Putative binding sites deemed
dispensable through truncations are colored and hatched. Untested putative sites are outlined in gray. Additional staining domains are indicated by
arrowheads, colored as follows: blue: CNS, yellow: endoderm, orange: muscle, purple: mesenchyme, green: epidermis. Embryos are oriented with dorsal up
and anterior to the left. Scale bar: 40 μm. See also S1, S2 and S3 Figs

doi:10.1371/journal.pgen.1005730.g001
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redundantly, as individual mutations (e.g., Fox1 and Bra4, Fig 2F) are not detrimental to noto-
chord staining (Fig 2F–2I), and reduction/loss of notochord staining is only obtained through
compound mutations (Fig 2F, 2J, 2K and 2L). Unlike the previous CRMs, Ci-CRM112 is
devoid of Ci-Bra sites (Fig 2M). In this case, putative homeodomain (HD) and activator pro-
tein 1 (AP1) sites appear to work cooperatively with a Ci-Fox site, since all single mutations
decrease notochord staining (Fig 2M–2Q), and simultaneous mutations of the functional Ci-
Fox site and either the HD or AP1 sequences result in loss of staining (Figs 2M, 2R, 2S and S2).

Six CRMs rely on individual Ci-Bra binding sites (Figs 1, S1 and S3). Counterintuitively, the
sequences of indispensable Ci-Bra sites differ for each Ci-Bra-dependent CRM, and sites with
identical core sequences may be necessary in one context, but not in another (e.g., the
TTGCAC sites in Ci-CRM109 and Ci-Fkbp9; S1 and S3 Figs). To uncover the molecular foun-
dations of such differences, we assessed the roles of sequences directly adjacent to the necessary
Ci-Bra binding sites. For Ci-CRM66, which lies within an intron of Ci-Ephrin3, we found that
mutation of a single Ci-Bra binding site drastically decreased, but did not abolish, notochord
staining (Figs 3A, 3E, 3J and S3). Linker-scanning mutagenesis revealed that the most detri-
mental mutations were those affecting an (AC)6 microsatellite [25] directly abutting the TCA-
CAC Ci-Bra site (Fig 3B). Mutation of the first two (AC) pairs (Fig 3C) caused a sharp drop in
notochord expression (Fig 3H and 3J), as did a mutation that caused a “frame-shift” of the
microsatellite sequence (Fig 3B and 3F), suggesting that uninterrupted periodicity between the
Ci-Bra binding site and this sequence may be required for the function of this CRM. The num-
ber of intact repeats also influenced activity (Fig 3B), and the mutation of the entire microsatel-
lite abolished notochord expression (Fig 3C, 3I and 3J). Notably, ChIP-chip studies of genomic
targets of Brachyury in differentiating mouse embryonic stem cells showed that this TF often
binds (AC) repeats [26]. The Ciona intestinalis genome contains only nine copies of an (AC)�6

microsatellite abutting a TCACAC Ci-Bra binding site; however, despite their reported occu-
pancy by Ci-Bra in early embryos [27], none of the remaining eight regions directed notochord
gene expression (S2 Table).

We also searched the sequences of the remaining five CRMs that rely on single Ci-Bra bind-
ing sites for clues on the mechanisms that might create the appropriate context for their func-
tion. Even though mouse Brachyury was initially found to bind the palindromic sequence T(G/
C)ACACCTAGGTGTGA [28], it was later shown that TNNCAC core half-sites are efficiently
bound by Brachyury proteins from mouse and other organisms, including Ciona [29–32]. Our
results confirm that a palindromic organization is not required; instead, we observed that 50%
of the required Ci-Bra sites matched either the TNNCACCTAM or the CTAMGTGNNA con-
sensus (core sites underlined) (Fig 3K). Consequently, we selectively mutated the adjacent
nucleotides while leaving the TNNCAC cores intact and found that in the case of Ci-CRM109
and Ci-CRM99 disruption of the CTAM sequence had the same effect as the mutation of the
cores (Fig 3L–3S). Similar results were obtained through the mutation of this stretch in the Ci-
ABCC10 CRM [33]. In contrast, mutation of the CTAM sequence within Ci-CRM86 left noto-
chord staining unaffected (Fig 3T–3W) and a CTAM-containing Ci-Bra binding site within
Ci-CRM9 was found to be dispensable (S3 Fig). We conclude that the CTAM extension is not

Fig 2. Alternative regulatory mechanisms of notochord CRMs requiring Ci-Bra and/or Ci-Fox binding sites. a,f,m: (Left) Schematic representations of
wild-type (WT) and site-directed mutant CRMs; TF binding sites are as in Fig 1, with the mutant sequences indicated at the bottom of each panel. Mutated
binding sites are colored in white and covered by “X” signs. Maroon bars represent constructs able to elicit notochord expression, while configurations
exhibiting weak or no notochord staining are depicted by yellow and gray bars, respectively. (Right) Quantification of the fraction of the total stained embryos
showing notochord expression after electroporation of the constructs at the left of each bar. n: number of fully developed stained embryos. Error bars denote
standard deviation from the mean. b-e, g-l, n-s:Microphotographs of embryos expressing the transgenes indicated at the bottom right of each panel.
Arrowheads are color-coded as in Fig 1. Abbreviations: WT: wild-type, F: Fox binding site, B: Brachyury binding site, HD: homeodomain, AP1: activator
protein 1, mut: mutated, noto: notochord. In f, “S” stands for C/G. See also S2 Fig.

doi:10.1371/journal.pgen.1005730.g002
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Fig 3. The function of individual Ci-Bra binding sites can be modulated by either an (AC) microsatellite or a flanking sequence. a,c: Schematic
representations of wild-type (WT) and mutant CRMs, as described and colored in Fig 2; the (AC) microsatellite sequence is schematized as a segmented
brown rectangle. b:Mutational series of the area boxed in orange in the 253-bp construct. Red and blue nucleotides correspond to the Ci-Bra and Ci-Fox
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entirely predictive of whether a CRM will necessitate a single Ci-Bra site, and the binding sites
that possess it are not always necessary. It is also conceivable that a fraction of the binding sites
that we tentatively attributed to Ci-Bra might be interchangeably or exclusively utilized by Ci-
Tbx2/3, the only other T-box protein present in the Ciona notochord, which acts as a mediator
of Ci-Bra [34]. The sequences flanking the core TNNCAC site might therefore be required for
binding specificity of either T-box factor, Ci-Bra or Ci-Tbx2/3.

In the last group of five minimal CRMs, the sequences required for notochord expression
were neither Ci-Bra nor Ci-Fox binding sites (Fig 1), but instead resembled sites for bHLH (Ci-
CRM26), Klf/Sp1 (Ci-CRM90), and Myb-like factors (Ci-CRM70, Ci-CRM76 and Ci-C6ST-
like7) (S1 Fig). These results are consistent with previous reports of notochord-expressed
bHLH, Klf6 and Klf15 TFs [35–37], and of aMyb-related gene in Ciona [38]. The requirement
for two short Myb-like sites in Ci-CRM76 (Fig 1) led us to hypothesize that its activity might
require a specific architecture. Accordingly, we found that while reversing the orientation of
one of the Myb-like sites (abbreviated as “M”), M2-2, had no effect, transposing the order of
the two required Myb-like sites, M1-5 and M2-2, largely decreased notochord staining (S4
Fig). Furthermore, increasing the spacing between M1-5 and M2-2 (4 bp) to that of the dis-
pensable sites, M2-1 and M1-4 (8 bp), caused an even more substantial reduction of reporter
gene expression in the notochord (S4 Fig). Nevertheless, seven genomic regions containing
Myb-like sites with the identical composition, orientation and spacing as Ci-CRM76, all of
which mapped near notochord genes, did not yield detectable notochord expression when
tested in vivo (S3 Table).

Additional sequence inspection identified non-microsatellite repeats in various CRMs.
Combinations of recurring motifs and/or evolutionarily conserved TF binding sites have
guided the identification of CRMs active in the Cionamuscle [21,39–42] and central nervous
system (CNS) [41,43], as well as in various tissues/embryonic territories of Drosophila
[10,44,45] and in the zebrafish notochord [46]. For these reasons, we sought to investigate
whether these repeats could aid in the prediction of novel notochord CRMs in Ciona intestina-
lis. We noticed that Ci-CRM90 features two nearly identical 73-bp sequence blocks, each con-
taining two copies of a smaller 20-bp repeat; moreover, a sequence motif related to the 20-bp
repeat was found in Ci-CRM9 (S4 Fig). Ci-CRM26 contains a 19-bp tandem repeat, whose first
copy overlaps with the E-box required for activity. The exact sequences of both of these repeats
are unique in the Ciona intestinalis genome; however, shorter variations of the Ci-CRM26
repeat are seen in four other notochord CRMs (S4 Fig). To assess the predictive ability of func-
tional binding sites and motifs, we tested 36 genomic fragments containing arrangements of
binding sites and/or motifs identical or similar to those found in the Ci-CRMs (Fig 1). We only
detected notochord expression in one construct (S3 Table, S4 Table): the short motif found in
Ci-CRM26, which occurs ~3,017 times in the Ciona intestinalis genome, led us to the identifi-
cation of a novel notochord CRM within the Ci-Noto2 locus (S4 Fig and S4 Table).

We also tested whether interspecific sequence homology could improve the prediction of
notochord CRMs, since evolutionary conservation is widely used to pinpoint Ciona cis-regula-
tory regions (e.g., [47–49]). The CRMs presented here were isolated using a conservation-

sites, respectively, and orange nucleotides indicate the bases changed in each mutant plasmid. The (AC)6 microsatellite sequence is boxed in green. The
relative ability of each construct to direct notochord gene expression is shown by plus signs at the right of each sequence. d-i: Photos of embryos
electroporated with the constructs depicted in a,b,c; arrowheads are color-coded as in Fig 1. j:Quantification of notochord-stained embryos harboring the
constructs in a,c. Error bars indicate standard deviation from the mean. k: Identification of an extended CTAM sequence (colored) shared by a subset of
individually-acting Ci-Bra binding sites. l-w:Microphotographs of embryos carrying wild-type CRMs (l,p,t) compared to embryos carrying various mutant
versions of Ci-CRM109 (m-o) Ci-CRM99 (q-s) and Ci-CRM86 (u-w). Core Ci-Bra binding sites are capitalized. Mutations are depicted in red. Abbreviations:
FSM: “frame-shift”mutation, LSM: linker scanning mutation. See also S3 Fig.

doi:10.1371/journal.pgen.1005730.g003
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independent approach, but when we retrospectively assessed this parameter, we observed sur-
prising interspecific variability among their sequences. Indeed, many of these Ciona intestinalis
CRMs display limited conservation, if any, with Ciona savignyi (S4 Fig). In addition, even
though some binding sites, such as the Ci-Fox and E-box sites of Ci-CRM76, are perfectly con-
served between the two Ciona species, neither is required for activity (S4 Fig); this suggests that
even interspecifically conserved notochord TF binding sites are not reliable indicators of func-
tionality. These results concur with studies in Drosophila that suggest that clustered binding
sites within CRMs might be retained over evolution for reasons other than selection or func-
tional necessity [12].

In sum, the unexpected variety and flexibility of the mechanisms that we have described
here limited our ability to predict notochord CRMs from sequence alone. Yet, although our
results seem to question the existence of a straightforward notochord cis-regulatory code, this
study uncovered recurring grammatical elements shared by notochord CRMs. In particular,
Brachyury and Foxa2 binding sites emerge as the basic building blocks of most Ciona noto-
chord CRMs (Fig 4A), and these results are consistent with findings in other chordates. In fact,
Brachyury binding sites have been found to be critical for the function of notochord in different
animals (e.g. [29,50]), and our previous studies in Ciona show that they can act either individu-
ally or cooperatively [33,34,53]. Their association with (AC) microsatellites in Ci-CRM66 and
in the mouse genome [26] might represent a recurring feature of a distinct class of notochord
CRMs (Fig 4A). Foxa2 sites are required in notochord CRMs from zebrafish and mice [46,54],
although they are rarely sufficient to initiate expression when in single copy, and often necessi-
tate additional sequences [46,58,61] whose identity appears to be lineage-specific (Fig 4A and
4C). These observations and our previous results [33] reflect the reported pioneer chromatin-
opening ability of Fox proteins [62], which may not able to activate gene expression per se but
are required to increase the accessibility of CRMs to other transcription factors, such as Bra-
chyury and/or other notochord-specific activators.

The basic cis-regulatory repertoire that we have uncovered was likely expanded via verte-
brate-specific evolutionary events; such events include the notochord deployment of additional
TFs, such as homeobox and Hox proteins and their co-factors, which are remarkably underrep-
resented in the tunicate notochord, [63] along with the duplication and consequent divergence
of regulatory regions.

Materials and Methods

Embryo culture, fixation, electroporation and staining
Adult Ciona intestinalis were purchased fromMarine Research and Educational Products
(M-REP; Carlsbad, CA) and kept in an aquarium in recirculating artificial sea water at 17–
18°C. Culturing and electroporations were carried out as previously described [64]. After elec-
troporation, transgenic embryos were fixed in 0.2% glutaraldehyde and stained at 37°C with
5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) [64]. Stained embryos were
washed in 500 μL PBST (1X PBS, 0.1% Tween 20), post-fixed in 300–500 μL of 4% paraformal-
dehyde in PBST, and stored at 4°C. To determine the comparative activities of wild-type and
mutated constructs, the proportions of X-gal stained embryos exhibiting notochord staining
were determined from at least three independent experiments. Data presented in graphs repre-
sent average values, with error bars denoting the standard deviation.

Plasmid construction
Genomic fragments for enhancer discovery and analyses were cloned into the pFBΔSP6 plas-
mid, which contains the LacZ reporter gene [64]. After the initial characterization of each
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notochord CRM, subsequent deletions and mutations were made either by utilizing unique
restriction enzyme sites or by Polymerase Chain Reaction (PCR), using the smallest active
DNA fragment as a template. A list of the oligonucleotides employed for PCR amplifications
and the restriction sites used for cloning the most relevant constructs is provided in S5 Table.

For the predictions of notochord CRMs, suitable genomic regions were first identified by
searching either the Ciona genome or a database of validated Ciona notochord genes for tran-
scription factor binding sites, motifs or other sequence signatures present in notochord CRMs,
using the GUFEE program [24]. Our database of Ciona notochord genes contained the
sequences of the putative genomic loci of 300 notochord genes. We manually annotated the
gene models from expression data present in the ANISEED database [38] and from our results.
The sequences included in the database were extracted from the UCSC genome browser
(Ciona intestinalis version 1) by Dr. John R. Edwards (Washington University, St. Louis).

Supporting Information
S1 Fig. Initial characterization of a subset of the notochord CRMs described in Fig 1. a-f:
Schematic representations of wild-type notochord CRMs and site-specific mutants of selected
binding sites (see Fig 1 for key). Maroon bars represent constructs capable of directing noto-
chord expression of the LacZ reporter, while inactive configurations are depicted by gray bars.
Mutagenized sites are colored in white and marked by “X” signs, and the mutant sequences are
shown in red. Each panel contains microphotographs of representative transgenic embryos
carrying selected plasmids. Colored arrowheads indicate stained domains as follows: red: noto-
chord, blue: CNS, yellow: endoderm, orange: muscle, purple: mesenchyme, green: epidermis.
Graphs display the percentage of embryos showing notochord staining among all stained
embryos; error bars indicate the standard deviation. Abbreviations: B, Brachyury; E, E-
box (presumptive bHLH binding site); F, Fox; HD, homeodomain; M, Myb-like; S/K1, Sp1/Klf.
(TIF)

S2 Fig. Deletion/mutation analysis of the notochord CRMs described in Fig 2. a,b,d: Sche-
matic representations of wild-type notochord CRMs and site-directed mutants of the binding
sites shown in the key (top right). The color-coding of the bars representing the DNA regions
is the same as in Fig 2. “X” signs indicate mutagenized sites, and mutant sequences are shown
in red. c,e,f: Representative embryos carrying a selection of the plasmids depicted in a,b,d. Col-
ored arrowheads indicate stained domains as in S1 Fig. Abbreviations: AP1: Activator protein
1, Bra: Brachyury, HD: homeodomain.
(TIF)

S3 Fig. Deletion/mutation analysis of the notochord CRMs described in Fig 3 and of Ci-
CRM9. a-e: (Left) Schematic representations of notochord CRMs and their mutant versions.

Fig 4. The cis-regulatory building blocks of notochord CRMs in chordate phylogeny. Schematic representation of all 46 experimentally validated and
fully characterized notochord CRMs published in any chordate [24,29,30,33,34,46,51–59], grouped into 24 structural types. Among the 35CionaCRMs, 14
were described for the first time in this study (Fig 1). Notochord CRMs are symbolized by black lines, with arrows representing transcription start sites.
Colored shapes depict putative transcription factor binding sites. Only experimentally validated binding sites required for the in vivo activity of each CRM are
reported. The numbers in parentheses denote the number of related CRMs identified thus far that display each cis-regulatory arrangement. a: Chordate-wide
cis-regulatory features of Ciona notochord CRMs (left column) and vertebrates (right column). The area highlighted in yellow encompasses notochord CRMs
from Ciona and from vertebrates that show directly comparable binding sites and arrangements. Notochord CRMs above and below the yellow area rely on
either reiterative or alternate configurations of Brachyury (B) and Foxa2 (F) functional binding sites. b: Notochord CRMs that, thus far, do not seem to have
counterparts in other chordates, and are therefore tentatively classified as Ciona-specific. c: Notochord CRMs that currently do not appear to have
counterparts inCiona or other invertebrate chordates and are provisionally classified as vertebrate-specific. TF binding sites are abbreviated as follows: AP1:
activator protein 1, B: Brachyury, F: Fox, E: E-box, HD: homeodomain, K: Krüppel-like, M, Myb-like, m2, Motif 2, OBS: orphan binding site. A brown pentagon
and a yellow hexagon in the mouse Foxa2 notochord CRM indicate required orphan binding sites. * this study; § notochord CRM associated with theCi-
quaking gene (KH.S115.4) [60].

doi:10.1371/journal.pgen.1005730.g004
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Putative binding sites are depicted as shown in the key on the top right in a. Color-coding is as
in S1 Fig. Mutagenized sites are indicated by “X” signs and the mutant sequences are in red.
(Middle) Transgenic embryos carrying a selection of informative plasmids. Arrowheads are
color-coded as in S1 Fig. Note that in c the B4 mutation was inserted in the 749-bp fragment
since the minimal CRM (547-bp) exhibits a less consistent staining pattern. (Right, b-e)Quan-
tification of notochord stained embryos harboring either wild-type or mutant constructs; error
bars denote the SD. Abbreviations are as in S1 Fig.
(TIF)

S4 Fig. Architectural constraints, sequence motifs and interspecies conservation of Ciona
notochord CRMs. Related to Figs 1 and 3. a-d: Impact of the alteration of structural features
on the function of Ci-CRM76 in notochord cells. (Left) schematic representations of wild-type
(WT) and mutant versions of Ci-CRM76 containing the changes in enhancer architecture
highlighted in red. Putative Myb-like binding sites are named as in S1 Fig. Symbols for all other
binding sites are as in Fig 1. The necessary Myb-like sites are marked by “1” and “2”. Arrows
show the orientation of the binding sites of interest. (Right) Representative transgenic embryos
obtained from the same batch of animals, harboring the plasmids summarized at their left.
Arrowheads mark stained territories, as in S1 Fig. The percentage of embryos exhibiting noto-
chord staining is reported in the lower right corner. M: Myb-like binding site. e-g: Sequence
motifs shared by subsets of notochord CRMs. e,f: Schematic representations of notochord
CRMs sharing distinctive sequence blocks. Tan bars symbolize notochord CRMs and diagonal
parallel lines depict genomic regions that are present in the constructs but omitted from the fig-
ure for clarity. In Ci-CRM90, a 73-bp sequence, boxed in yellow, is imperfectly repeated in the
245-bp region shown here. Within this 73-bp sequence, four motifs were identified (#1–4)
using the MEME software (http://meme.nbcr.net). A related motif was identified in the Ci-
CRM9 sequence (boxed in yellow), adjacent to the Ci-Bra binding site necessary for its func-
tion. The sequences of all these motifs, and the derived consensus, are reported on the right. f:
Another motif (light blue boxes) was found to be present in one or two copies in a different
subset of CRMs. The sequences of its iterations, and the derived consensus, are reported on the
right. The distances between the necessary site(s) and each motif are shown, unless they over-
lap. A closely related motif was found in Ci-CRM99. The CRMs included in this figure are
depicted in a slightly different scale compared to the previous figures, to provide a more accu-
rate representation of the distances among binding sites. g:Microphotograph of a transgenic
embryo electroporated with the Ci-Noto2 notochord CRM, which was predicted using the Ci-
CRM26 motif. h,i: Variability in the interspecific conservation of notochord CRMs sequences
between Ciona intestinalis and Ciona savignyi. (Top) VISTA plots (http://pipeline.lbl.gov/cgi-
bin/gateway2) illustrating the sequence conservation across the “full-length” Ci-Fkbp9 (h) and
Ci-CRM76 (i) notochord CRMs between Ciona intestinalis (Ci) and Ciona savignyi (Cs),
obtained utilizing the following parameters: calculation window, 80 bp; minimum conservation
width, 50 bp; conservation identity, 70%. Conserved non-coding regions are depicted as pink
peaks, conserved coding regions as blue peaks. The areas corresponding to the minimal CRMs
identified and described in Fig 1 are boxed in red. (Bottom) Sequence alignment of the Cimini-
mal notochord CRMs with the corresponding regions of Cs. In Ci, binding sites are highlighted
as in Fig 1, whereas related non-syntenic putative binding sites, whenever present, are indicated
in lighter colors in the Cs sequence.
(TIF)

S1 Table. Genomic locations of minimal notochord CRMs.
(DOCX)
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S2 Table. Properties of (AC) microsatellite clusters tested for notochord activity.
(DOCX)

S3 Table. Properties of genomic regions near notochord genes showing arrangements of
sites resembling those found in selected notochord CRMs.
(DOCX)

S4 Table. Properties of genomic regions containing sequence motifs found in subsets of
notochord CRMs.
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S5 Table. Primers utilized for the PCR amplification of the most relevant constructs used
for CRM characterization.
(DOCX)
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