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Abstract

The Mild Cognitive Impairment (MCI) stage of AD may be optimal for clinical trials to test 

potential treatments for preventing or delaying decline to dementia. However, MCI is 

heterogeneous in that not all cases progress to dementia within the time frame of a trial, and some 

may not have underlying AD pathology. Identifying those MCIs who are most likely to decline 

during a trial and thus most likely to benefit from treatment will improve trial efficiency and 

power to detect treatment effects. To this end, employing multi-modal imaging-derived inclusion 

criteria may be especially beneficial. Here, we present a novel multi-modal imaging marker that 

predicts future cognitive and neural decline from [F-18]fluorodeoxyglucose positron emission 

tomography (PET), amyloid florbetapir PET, and structural magnetic resonance imaging (MRI), 

based on a new deep learning algorithm (randomized denoising autoencoder marker, rDAm). 

Using ADNI2 MCI data, we show that employing rDAm as a trial enrichment criterion reduces 

the required sample estimates by at least five times compared to the no-enrichment regime, and 

leads to smaller trials with high statistical power, compared to existing methods.
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1. Background

Recent clinical trials designed to evaluate new treatments and interventions for Alzheimer’s 

disease (AD) at the mild to moderate dementia stage have largely been unsuccessful and 

there is growing consensus that trials should focus on the earlier stages of AD such as mild 

cognitive impairment (MCI) or even the presymptomatic stage[1, 2], if such stages can be 

accurately identified in individual subjects[3–5]. However, MCI is a clinical syndrome with 

heterogeneous underlying etiology that may not be readily apparent from a clinical workup, 

posing a major challenge in reliably identifying the most probable beneficiaries of a putative 

effective treatment [6]. For example, MCI patients may have clinical but not biomarker 

evidence of incipient AD, may have biomarker evidence in some modalities but not others, 

or may despite biomarker presence not show symptomatic progression during the trial time-

period. An efficient MCI trial would ideally include only those patients most likely to 

benefit from treatment; who possess AD pathology based on a constellation of amyloid, tau 

and neural injury biomarker assessments, and who are most likely to progress clinically to 

symptomatic AD. The typical annual conversion rate to dementia among MCI due to AD is 

3–20% across several studies [7], where the relatively lower rates are observed in 

population-based cohorts, and higher rates are in clinical settings. The implication is that 

over a two year trial, at best only 40% of participants would have naturally progressed and 

the ability to detect the true efficacy of the intervention is perhaps diminished.

To this end, several ongoing AD trials “enrich” their population by using one or more 

disease markers as inclusion criteria [2, 8]. The general framework here is to effectively 

screen out subjects who are weak decliners (i.e., MCI who may not convert to AD) [9]. 

Unless there is a natural phase change (i.e., an elbow) in the distribution for distinguishing 

the at-risk and not-at-risk subjects on this scale, a fixed fraction of the total cohort are 

filtered out based on the study design. Imaging-based markers (e.g., Fluorodeoxyglucose 

(FDG), hippocampal and ventricular volume) and cerebrospinal fluid (CSF) profiles have 

been shown to be effective in screening out low-risk subjects, due to the fact that disease 

manifests much earlier in imaging data compared to cognition [1, 2]. However, these 

markers are uni-modal while several studies have shown the efficacy of multimodal data 

[10, 11]. Furthermore CSF cannot be used in practice as a screening instrument because 

assays typically need to be performed in a single batch and are highly lab specific [12]. To 

this end, several recent studies have used support vector machines (SVMs) and other 

machine learning models to design such multimodal markers [8, 13–16]. Although most of 

these approaches use longitudinal data, a practical enrichment criterion should only use 

baseline (trial start-point) data. We argue that existing approaches to trial enrichment, 

including state-of-the-art machine learning based techniques, cannot guarantee the optimal 

enrichment behavior which is to optimally correlate with the spectrum of dementia with high 

confidence, while simultaneously ensuring small intra-stage variance.

In this work, we report the design of a novel multimodal imaging marker that is especially 

tuned to yield accurate predictions of future decline to AD at the level of individual subjects 

with small intra-stage variance. This new disease marker (which we refer to as randomized 

denoising autoencoder marker, rDAm) is a machine learning module based on certain 

extensions of recent ideas in “deep learning” that yield state-of-the-art results in computer 
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vision, natural language processing and machine learning [17, 18]. We provide extensive 

empirical evidence that this new marker efficiently filters out low-risk subjects from the 

MCI population and consequently requires much smaller sample sizes per arm (for detecting 

a given treatment effect at some desired power) compared to any of the existing imaging-

based markers. The main contributions of the paper are: (a) We design a novel predictive 

multimodal imaging-based disease marker, based only on baseline acquisitions, that 

correlates very strongly with future decline (i.e., disease progression); (b) We show via 

extensive analyses using imaging, cognitive and clinical data that this new marker results in 

efficient clinical trials when used as trial inclusion criterion.

2. Methods

2.1 Theoretical approach

Randomized denoising autoencoders (rDA)—Our multimodal imaging marker 

attempts to capture, i.e., learn from a set of training images, the pattern of differences across 

different dementia stages. Clearly, in the neuroimaging literature, such an objective has been 

tackled by numerous studies in the AD setting using well known machine learning methods 

like SVMs [10, 11, 19]. But using such SVM approaches for clinical trials has limitations 

(additional details provided below); instead, we present a method that differentiates various 

stages of AD (i.e., correlates with the dementia spectrum), while simultaneously obtaining a 

small intra-stage prediction variance (the prediction variance is simply the variance of the 

predictions given by the trained machine learning model). Such an approach gives results 

which are competitive with SVM based methods (in terms of accuracy) but aligns much 

better with our final goal of using these ideas for clinical trials design. The basic statistical 

behavior of our model is a reduction in the variance at no cost of approximation bias (or 

accuracy). To do this, we adapt the so-called deep-learning architectures that have been 

shown to yield state of the art performance in several computer vision and machine learning 

applications [17, 18, 20, 21]. The main methodological challenge we overcome is to make 

deep architectures “generalize” well (i.e., yield accurate predictions on previously unseen 

subjects/images) in this application, which is important due to the high dimensionality of 

neuroimaging data accompanied by smaller training dataset sizes (at most a few hundred 

subjects).

We first provide a very brief overview of our model, which we call randomized denoising 

autoencoders (rDA) [22]. Please refer to the appendix for a complete description and 

additional mathematical details. Our solution consists of first constructing simple deep 

learning architectures (referred to as weak learners). Each such weak learner is a neural 

network learned according to a new deep learning algorithm called stacked denoising 

autorncoders (SDA) [20]. Since the number of dimensions (voxels) is large, each such weak 

learner corresponds to inspecting only a small portion (e.g., 3D local neighborhood) of the 

image and/or using different model hyper-parameters (the network architecture and learning 

parameters of SDAs [20], refer to Section 2 in the appendix). Although the issue of scaling 

to high dimensions is handled by learning only small portions of the image, these weak 

learners by themselves are not useful. However, using a large number of these weak 

learners, each of which is learned from different portions of the image, we can generate an 
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“ensemble” which is much more expressive in modeling the targets/outputs compared to the 

weak learners themselves [23]. The ensemble outputs can correspond to uniform or 

weighted combination of the outputs from this suite of weak learners, and are known to be 

less sensitive to model hyper-parameters [23]. Such an ensemble learner also comes with 

guarantees in terms of reducing the variance of model outputs without any loss in 

approximation bias (i.e., overall output is un-biased whenever the weak learners are un-

biased).

Our new model rDA is then constructed by the following procedure. First, the set of voxels 

are divided into B number of blocks (given a priori) by randomly assigning each voxel to 

one or more of the B blocks. Second, within each block T different SDAs (again, given a 

priori) are constructed by randomly sampling T different hyper-parameters. The BxT 

different SDA outputs are finally combined using ridge regression. This two level 

“randomization” over voxels and hyper-parameters motivates the name “randomized” 

denoising autoencoders. The expressive power of deep architectures ensures that rDA can 

successfully learn complex concepts, which provide the ability to differentiate multiple 

stages of AD, while forcing the output variance to be as small as possible due to the 

ensemble structure [23]. The framework of rDA can be extended to multiple modalities by 

generating weak learners specific to each imaging modality and combining them across all 

the modalities. The rDA outputs are guaranteed to lie between 0 and 1 [20]. Hence, by 

training a rDA with healthy controls labeled as 1 and AD subjects as 0, we can project the 

scale of dementia to [0,1]. These projections then serve directly as imaging-derived 

continuous predictors of the disease, referred to as rDA markers (rDAm), that provide the 

confidence of the learning model that a given subject is close to “healthy” or “diseased”. In 

particular, rDAm values closer to 0, on previously unseen MCI subjects, are expected to 

convey a stronger sign of dementia than those that are closer to 1. Please refer to the 

Sections 1–2 in the appendix for additional details about the rDA model (including the 

required background on SDAs), its training and the calculation of rDAm.

rDAm for sample enrichment—Sample enrichment in AD clinical trials entails filtering 

out those subjects who are not expected to have a higher risk of progressing to dementia. In 

other words, enrichment entails including only the strong decliners who are most likely to 

benefit from the treatment. To formalize the characteristics of a “good” sample enricher, 

consider the setting where we want to design a 2-year clinical trial on a MCI population 

using a certain outcome measure. Let δ denote the mean longitudinal change on this 

outcome measure due to disease. We intend to induce the treatment and reduce this change 

to ηδ, where η is the hypothesized induced treatment effect. Within this setting, the number 

of subjects required per arm is computed by applying a two sample t-test which tests for the 

difference of mean outcome between the treatment and placebo groups[24], as follows,

where σ2 denotes the pooled variance of the outcome i.e., average of the variances at 

baseline and 2-year trial end point. η is the hypothesized induced treatment effect (i.e., 1- η 
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denotes the expected percentage of reduction in the outcome measure). The Null hypothesis 

then corresponds to no difference between the two groups. For a fixed α and β, the above 

equation shows that the sample estimates increase with σ2 and decrease with a large δ. If the 

trial cohort includes subjects at low risk of decline (weak decliners), then δ is expected to be 

small. Enrichment entails removing such weak decliners, thereby increasing δ. However, 

this might have the undesirable effect of increasing σ2, because the latter is the pooled 

variance of the outcome. Hence, one must ensure that the enriched cohort has smaller 

variance (with respect to some outcome) but also has large δ i.e., we need to recognize the 

pool of very strong decliners whose outcomes have smaller variance.

The natural way of ensuring small σ2 with large δ, is by designing an outcome with precisely 

these characteristics. However the trial outcomes are generally cognitive scores, or may be 

individual image or CSF measures whose statistical properties may not be altered readily. 

But recall that the multi-modal imaging marker, rDAm, is explicitly designed to ensure 

smaller variance while yielding prediction scores that correlate well with existing cognitive 

measures, which are used as the basis for defining multiple stages of dementia: from healthy 

to early/late MCI to completely demented. Therefore, by using rDAm at baseline (trial start-

point) as an inclusion criterion to remove the probable weak decliners, we expect the 

enriched cohort to have large δ and smaller variance σ2 with respect to any outcome measure 

that may be desired. This directly follows from the ability of rDAm to predict many of these 

scores (outcomes) with high confidence. Section 3 of the appendix presents more details on 

reducing sample sizes by designing enrichers with strong correlation to dementia spectrum 

and small prediction variance. Note that we use the word prediction variance because rDA is 

trained on ADs and CNs, and offers prediction scores on MCIs. Ideally, and to be practically 

deployable, this enrichment must be performed only at baseline or the trial start-point. 

Hence, our first sanity check in terms of the efficacy of rDAm and using it as enricher will 

focus on whether rDAm computed at baseline correlates with cognitive and other imaging-

derived disease biomarkers[25, 26]. If the correlations turn out to be significant, this is 

evidence of convergent validity, and using baseline rDAm as an inclusion criterion for 

enriching a clinical trial population is, at minimum, meaningful. Observe that the scale of 

rDAm (closer to 0 corresponds to higher confidence that a subject will decline) implies that 

the trial population can be enriched by screening in subjects whose baseline rDAm is 

smaller than some cut-off. If the enrichment threshold is denoted by t (0 <t< 1), then the 

enriched cohort would include only those subjects whose baseline rDAm is smaller than t. 

One way to choose such a threshold t is by comparing the mean longitudinal change of some 

disease markers (MMSE, CDR and so on) for the enriched cohort as t goes from 0 to 1. An 

alternative is to include a fixed fraction (e.g., 1/4th or 1/3rd) of the whole population whose 

baseline rDAm is closest to 0.

2.2 Experimental Setup

Participant Data and Preprocessing—Imaging data including [F-18]Florbetapir 

amyloid PET (AV45) singular uptake value ratios (SUVR), FDG PET SUVRs and gray 

matter tissue probability maps derived from T1-weighted magnetic resonance imaging 

(MRI) data, and several neuropsychological measures and CSF values from 516 individuals 

enrolled in Alzheimer’s disease Neuroimaging Initiative-II (ADNI2)1 were used in our 
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evaluations. Of these 516 persons (age 72.46± 6.8, female 38%), 101 were classified as AD 

(age 75.5 ± 5.1), 148 as healthy controls (age 70.75 ± 7), and 131 and 136 as early and late 

MCI (age 74.3 ±7.1 and 75.9 ± 7.7) respectively at baseline2. Among the MCI subjects, 174 

had positive family history (FH) for dementia, and 141 had at least one APOE e4 allele. CSF 

measures were only available at baseline, and three time point data (baseline, 12 months and 

24 months) was used for the rest.

The imaging protocols follow the standards put forth by ADNI. MRI images are MP-

RAGE/IR-SPGR from a 3T scanner. PET images are 3D scans consisting of four 5-minute 

frames3,4 from 50 to 70 minutes post-injection for [F-18]Florbetapir PET, and six 5-minute 

frames from 30 to 60 minutes post injection for FDG PET. Modulated gray matter tissue 

probability maps were segmented from the T1-weighted MRI images (other tissue maps are 

not used in our experiments) using the SPM8 New Segment function. The segmented map 

was then normalized to MNI space, smoothed using 8mm Gaussian kernel, and the resulting 

map was thresholded at 0.25 to compute the final grey matter image. All PET images were 

first co-registered to the corresponding T1 images, and then normalized to the MNI space. 

Manually constructed masks of pons, vermis and cerebellum were then used to scale these 

PET maps by the average intensities in pons and vermis (FDG PET SUVR) and cerebellum 

(florbetapir PET SUVR). All preprocessing was done in SPM8.

Evaluations—We train the rDA model using only baseline imaging data (from all the three 

modalities, MRI, FDG PET, and florbetapir PET) for AD and CN (cognitively normal) 

subjects where the AD class is labeled as 0 and the CN class is labeled as 1. When tested on 

MCI subjects, the trained model outputs a multi-modal rDAm, which is a marker 

representing the confidence of the learning model that a given MCI subject is (or is not) 

likely to decline. We only use baseline imaging data for training (hence making the model 

deployable in practice), while the predictions can be performed on MCIs at baseline or 

future time-points. Within this setup, our evaluations are two-fold. We first evaluate the 

premise whether rDAm is a good disease progression marker. We demonstrate this by 

computing the dependence of well-known outcome measures including Mini Mental State 

Examination (MMSE), Alzheimer’s Disease Assessment Scale (ADAS Cognition 13), 

Montreal Cognitive Assessment (MOCA), Rey Auditory Verbal Learning Test (RAVLT), 

Neuropsychological summary score for Memory (PsyMEM), summary score for Executive 

Function (PsyEF), hippocampal volume, Clinical Dementia Rating sum of boxes (CDR-

SB)), conversion from MCI to AD (0 – no conversion, 1 – conversion; denoted by DxConv 

hereafter), CSF levels (τ, pτ, Aβ42, τ/Aβ42, pτ/Aβ425), and APOE allelle4 and maternal/

paternal Family history (FH), on rDAm computed at baseline. We used the Spearman Rank 

1The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and 
Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical companies and non-profit organizations, 
as a $60 million, 5-year public-private partnership. The primary goal of ADNI has been to test whether serial magnetic resonance 
imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can 
be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimers disease (AD).
2There was a significant age difference across the four groups with F>10 and p <0.001.
3http://adni.loni.usc.edu/methods/documents/mri-protocols/
4http://adni.loni.usc.edu/methods/pet-analysis/pet-acquisition/
5τ: CSF Tau, pτ: CSF Phospho-Tau, Aβ: Amyloid Beta-42, τ/Aβ: Ratio of CSF Tau and Amyloid Beta-42, pτ/Aβ: Ratio of CSF 
Phospho-Tau and Amyloid Beta-42
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Order Correlation coefficient to assess these dependencies and accepted as significant those 

statistics where the p-value was less than 0.05. Note that we are interested in evaluating the 

predictive power of baseline rDAm, i.e., we report the correlations of baseline rDAm with 

these markers at say, 12-months and 24-months, and also the longitudinal changes providing 

evidence that whenever rDAm is closer to 0, the subject’s longitudinal changes are in fact 

steeper. Once this construct is appropriately validated, it is meaningful to evaluate the use of 

baseline rDAm for sample enrichment. To this end we compute the sample sizes required 

when using the above cognitive, neuropsychological, diagnostic and other imaging-based 

outcome measures with (and without) rDAm based enrichment. We also compute the 

performance improvement given by rDAm relative to alternative imaging-derived enrichers 

(including ROI summaries from FDG and florbetapir images6), with particular attention to 

the current state-of-the-art imaging based summary measure which we refer to as MKLm 

[10]. MKLm is based on Multi-Kernel SVM (MKL) [10], which tries to harmonize 

contributions from multiple imaging modalities for deriving a maximum margin classifier in 

the concatenated Hilbert spaces. That is, a linear combination of kernels is used unlike 

traditional SVMs that use one single kernel, and MKL solves for both the weights on the 

kernels as well as the normal to the hyper-plane concurrently. Similar to rDA, MKL is 

trained using AD and CN subjects, and the corresponding predictions on MCIs is referred to 

as MKL measure (MKLm). Please refer to the appendix (Section 4) for more details. For 

better interpretation of the estimates from the perspective of a practitioner, we estimate the 

effect size as a function of rDAm enrichment cut-off for a given (fixed) sample size. Note 

that all results (correlations and the sample size calculations) only use rDAms from MCI 

subjects; no AD and CN subjects are included in these calculations since they were used to 

train the rDA model itself.

3. Results

Table 1 corresponds to the predictive power of baseline rDAm. It shows the Spearman 

correlations and t-statistics of rDAm at baseline with cross-sectional (baseline, 12 and 24 

months) scores and longitudinal change (12 and 24 months) in other disease markers. 

Negative correlations indicate that the corresponding markers (ADAS errors, τ, pτ, τ/Aβ42, 

pτ/Aβ42) increase with progression of the disease. Large correlations (r>0.5 and p << 10−4) 

were observed with baseline summary measures (column 2, Table 1), specifically with 

ADAS, neuropsychological (memory and executive function) composite scores, 

hippocampal volume and CSF levels involving Aβ42. FH (t=2.16, p=0.03) had a smaller 

influence on baseline rDAm compared to APOE (t=3.47, p=0.0006). All the cross-sectional 

correlations (columns 2– 4, Table I) were significant (r>0.48 and p << 10−4). The 

correlations of baseline rDAm with longitudinal change (columns 5 and 6, Table 1) were 

significant (r>0.21, p < 0.001) for all the measures, except PsyEF and MOCA at 12 months 

time. Beyond predictive accuracy of baseline rDAm in Table 1, Figure 1 evaluates its 

relevance for enrichment. Each plot corresponds to the mean longitudinal change of some 

disease marker after the total MCI population is enriched by removing weak decliners 

6FDG ROIs include Left Angular Lobe, Right Angular Lobe, Left Temporal Lobe, Right Temporal Lobe and Cingulate. AV45 ROIs 
include Frontal Lobe, Temporal Lobe, Parietal Lobe and Cingulate gray matter. The corresponding ROI measures are summed up to 
obtain single global summary for each of FDG and AV45.
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(subjects with baseline rDAm above certain cut-off t, which is shown on the x-axis). The 

plots show that MMSE, CDR-SB and DxConv have large changes when weak decliners are 

progressively removed. Specifically, the changes are much steeper for 24 months compared 

to baseline and 12 months (black and blue colored lines in each plot). RAVLT and PsyEF 

resulted in irregular changes at different time points. Figure 6 at the end of the Appendix 

presents the means of the disease markers (in contrast to the mean change as shown in 

Figure 1), and the trends support the observations in Figure 1.

Tables 2 and 3 present samples estimated using rDAm as a sample enricher at 80% 

statistical power (significance level of 0.05) and inducing a treatment effect of 25%. Recall 

that higher rDAm implies closer to being healthy. Hence, enrichment entails filtering out all 

subjects with baseline rDAm above some cut-off. Results show that compared to the no-

enrichment regime (column 2, Table 2), the sample estimates from rDAm enrichment are 

significantly smaller, with more than 5 times reduction when using bottom 20% and 25% 

percentiles (columns 3 and 4, Table 2). In particular, MMSE, CDR-SB and DxConv give 

consistently smaller estimates (200 to 600) across all columns (the four different 

percentiles). ADAS and PsychEF still required very large sizes (774 and >2000 respectively) 

even at 20% enrichment percentile. Using extra covariate information in the form of FH and 

APOE7, in tandem with baseline rDAm, the sample estimates further decrease as shown in 

Table 3 (last three columns). APOE as a covariate resulted in smallest possible estimates 

(<350 per arm) across all the outcomes except PsyEF (last two columns in Table 3), 

although the last column represents using both APOE and FH as covariates. DxConv as an 

outcome with rDAm + APOE enrichment yields a sample size of 170. Figure 2 shows the 

detectable effect sizes as rDAm enrichment cut-off is varied, for a fixed sample size of 500 

per arm. The detectable effect size (1-η) decreases as more weak decliners are filtered out. 

This can be seen by the “increase” of η (y-axis) as rDAm cut-offs (x-axis) decrease, 

specifically for MMSE, CDR-SB and DxConv outcomes. Finally, Table 4 compares rDAm 

with other imaging-derived inclusion criteria (the cut-off for all the enrichers corresponds to 

including the strongest 20% decliners in their respective scales). rDAm consistently 

outperformed other alternatives, with up to 2 times smaller estimates than MKLm (multi-

modal generalization of SVM), and much larger reductions compared to uni-modal 

summaries (hippocampal volume, FDG ROIs and florbetapir ROIs).

4. Discussion

The ability to design clinical trials with smaller sample sizes but sufficient statistical power 

will enable the implementation of affordable, tractable and hopefully, conclusive trials. 

Efficiency is seriously compromised in trials where there is poor biomarker specificity of 

disease progression and when the outcomes contain relatively high amounts of error 

variance. Determining whether promising treatments are effective in the MCI phase of AD 

requires accurate identification and inclusion of only those MCI participants most likely to 

convert to AD and selection of outcomes that are both disease related and possess optimal 

measurement properties. We have shown that the sample size required to detect a treatment 

7We slightly abuse the term covariate here in the sense that we explicitly “filter” out those MCI subjects who are ‘not’ FH and/or 
APOE positive before performing baseline rDAm enrichment.
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effect can be substantially reduced using the proposed inclusion strategy. The central 

message of our empirical evaluations is that the baseline rDAm has good predictive power 

in identifying future disease progression as shown in Table 1 and Figure 1. Together with 

rDA’s capacity to reduce prediction variance, we see smaller sample estimates compared to 

existing imaging-derived enrichers as shown in Table 4.

Table 1 supports the general consensus that imaging data captures disease progression [10, 

26]. This can be seen from the very strong correlations of baseline rDAm with longitudinal 

change in several cognitive scores (last four columns in Table 1). It should be noted that 

high correlations with hippocampal volume (across all time-points) are expected because T1 

MRI image at baseline is used in the construction of baseline rDAm. Although hippocampus 

voxels are used in the rDA model, its inclusion (as an outcome) in our experiments is 

primarily for completeness. That is, hippocampal volume has been used extensively in 

previous AD imaging studies [14, 16, 25, 26], and including it ensures continuity with this 

literature. Interestingly, FH had a lower dependence on rDAm which might be because its 

influence is superseded by actual neurodegeneration once a subject reaches MCI stage (i.e., 

FH may play a much stronger role in the asymptomatic phase). Note that we did not correct 

for age (and other covariates like brain volume) because the markers reported in Table 1 are 

used directly with no covariate correction in our later evaluations on sample enrichment 

(Tables 2–4). This is based on the assumption that an actual clinical trial design with 

randomized treatment assignment would not need to correct for the individual’s age to 

evaluate eligibility and rDAm is agnostic to all such variables.

Observe that most classification based measures which are used as disease markers are 

generally unbounded[13]. These include the prediction score from a SVM based 

classification model on a test subject, or summary measures like S-score, t-score, F-score 

etc. Unlike these measures, rDAm is bounded to 0 and 1, using which we can visualize its 

predictive power without any post-hoc normalization (as shown in Figure 1). Except for 

RAVLT, all other markers used as outcomes (in Table 2 and 3) had steeper changes over 

time as baseline rDAm decreased, and in none of the cases was there a clear elbow 

separating weak and strong decliners. This shows that the disease progression is gradual 

from healthy to AD, and any classifications (like early and late MCI) are mostly artificial. It 

is interesting to see that rDAm high predictive power for DxConv (Table 1 and Figure 1), 

implying that subjects with smaller baseline rDAm (closer to 0) have very high likelihood of 

converting from MCI to AD, providing additional evidence that baseline rDAm is a good 

predictive disease marker.

Although there is no phase change (since rDAm is lower bounded to 0), we can always 

select a fixed fraction of subjects that are closest to 0 on the rDAm scale, and claim that they 

are the strong decliners we should include in a trial. The exact value of such fraction would 

depend on the logistics and size of the intended trial. This is the reason for the bottom 

fraction-based enrichment using baseline rDAm as shown in Tables 2–4. Further, note that 

the high predictive power of baseline rDAm solves an important problem with existing 

approaches to designing inclusion criteria which use longitudinal data (e.g., Tensor-based 

morphometry)[8, 13]. Deploying such methods in practice implies that the trial screening 

time should be at least a year or longer, which is not practical. Although longitudinal signals 
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are much stronger than cross-sectional ones, the results in Table 1 and Figure 1 show that 

the rDAm marker at trial start-point can still be used with no loss of information, saving trial 

resources and reducing the cost of trial setup.

The first observation from sample estimates in Table 2 and 3 is that MMSE,CDR-SB and 

DxConv outperform all other alternate outcomes considered here, even in the no-enrichment 

regime. This is counter intuitive because of the simplicity of MMSE compared to other 

composite scores like PsyMEM and PsyEF (neuro-psych memory and executive function 

composites). It is possible that the composite nature of these measures increases the outcome 

variance, and thereby increases the sample estimates. Since our population is entirely MCIs, 

it is expected that the distribution of rDAms is fairly uniform from 0 to 1, which is not the 

case as shown from rDAm enrichment cut-offs at each percentiles (the top row of last four 

columns in Table 2). More precisely, the bottom 50% corresponds to a cut-off of 0.65 and 

33% corresponds to 0.52, which indicates that more than two-thirds of MCIs in the ADNI2 

cohort are healthier (i.e., weak decliners), and also that enrichment is important. This idea 

has also been identified by others using cognitive characteristics [27]. Ideally, we expect to 

observe a particular rDAm cut-off (an elbow cut-off) at which there might be the highest 

decrease in estimates for all outcomes in Table 2 and 3. The elbow cut-off should be a 

natural threshold point that separates strong and weak decliners on baseline rDAm scale. 

However, the trends in sample estimates in Table 3(a) do not seem to suggest such a 

threshold, which is not surprising from Figure 1 and the corresponding discussion above. 

Specifically, ADAS and RAVLT seem to have an elbow between 25% and 33%, while for 

MMSE, CDR-SB and DxConv, the elbow is beyond 50%. Since we have 267 MCIs to begin 

with, a bottom 20% enrichment (third column, Table 2) corresponds to a population size of 

52, implying that the estimates might be noisy.

Covariate information (or rather, a preliminary selection based on a factor like Family 

History) is almost always helpful in estimating group effects, which is observed from Table 

3 where using FH and/or APOE details as “filters” prior to rDAm enrichment reduced the 

estimates further. It has been observed that subjects with positive FH (either maternal or 

paternal) and/or APOE e4 positive may have stronger characteristics of dementia [28]. This 

implies that instead of starting off with all MCIs, it is reasonable to include only those MCIs 

with positive FH and/or positive APOE e4, and then perform the baseline rDAm enrichment 

on this smaller cohort. Recall that APOE had a higher dependence on baseline rDAm 

compared to FH (from Table 1), resulting in a higher reduction when using rDAm + APOE 

or rDAm + APOE + FH (last two columns) than using rDAm + FH (sixth column) for most 

all the cases except MMSE (row 1 in Table 3). Note that Table 3 corresponds to bottom 20% 

rDAm enrichment, of which about half were FH and/or APOE positive. The overall strong 

performance of DxConv resulting in small sample estimates may be because it summarizes 

the conversion of MCI to AD using longitudinal information, where as rDAm tries to predict 

this conversion using baseline information alone. Overall, Tables 2 and 3 support the 

efficacy of rDAm enrichment; however, an interesting way to evaluate the strength of rDAm 

is by fixing the number of trial-enrolled subjects and computing the detectable treatment 

size (η). If in fact, rDAm successfully selects strong decliners, then the trial should be able 

to detect smaller expected decrease in disease (i.e., smaller 1-η or larger η, refer to the 
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sample size equation in Section 2.1 above). Figure 2 shows exactly this behavior, where η 

(y-axis) increases drastically as rDAm cut-offs (x-axis) are decreased (especially for 

MMSE,CDR-SB and DxConv). From the practical perspective of a practitioner, this gives a 

tool for evaluating the minimum treatment effect that can be deemed significant, from a 

fixed cut-off and sample size.

We discussed in Section 1 that although effective imaging-derived disease markers exist 

(either based on machine learning models or directly computed from imaging ROIs), they 

may not lead to the best possible clinical trials. This is supported by the results in Table 4, 

where rDAm (which is designed to explicitly reduce the prediction variance) is compared to 

existing markers that have been used as trial inclusion criteria [2, 14, 16]. For example, ROI 

summaries from multiple imaging modalities have often been used as trial enrichers [1, 2], 

and rDAm significantly outperforms these baselines (first four rows in Table 4). Further, 

[14] used SVM models to design effective disease marker and used it as an inclusion 

criterion in trials. Correspondingly, we compared rDAm to MKLm (which is based on a 

multi-kernel SVM), and the results in Table 4 show that baseline rDAm as an enricher 

outperforms MKLm, and the improvements are higher for MOCA, RAVLT and 

Hippocampal Volume as outcomes. Note that for the current paper, we actually did not 

adjust any of the parameters relative to the results reports earlier [10]. These were the 

defaults for the MKL code-base provided on the webpage (http://pages.cs.wisc.edu/

~hinrichs/MKL_ADNI/). The necessity of incorporating multi-modal information in 

designing any disease markers has been reported earlier [10, 11]. This is further supported 

by the improvement of rDAm estimates over uni-modal measures including hippocampal 

volume, FDG ROI summaries and florbetapir ROI summaries. These results also build upon 

the work of [1, 2] where such unimodal imaging summaries are used for enrichment. It is 

possible to demonstrate that the performance gains of rDAm over [1, 2]is not merely due to 

using three distinct modalities but also heavily influenced by the underlying machine 

learning architecture that exploits this information meaningfully. To see this, compare the 

enricher “FAH” in Table 4 that corresponds to combining the three uni-modal measures, 

FDG, florbetapir, and hippocampal volume. Its sample estimates are still larger than those 

obtained from rDAm implying that the reductions are not merely due to multi-modal data or 

small population size, but due to the efficacy of deep learning methods (i.e., rDAm’s 

capacity of picking up strong decliners with high confidence with small variance) introduced 

here.

Overall, these results suggest that rDAm enrichment reduces sample sizes significantly 

leading to practical and cost-effective AD clinical trials. The rDA model by itself is 

expressive that scales to very large dimensions, uses only a small number of instances, and 

can be easily incorporated to design robust multi-modal imaging markers. It should be noted 

that, the framework can be improved further, particularly in terms of using a richer pooling 

strategy instead of ridge regression (refer to the appendix) and using other covariate 

information (like age, CSF levels) in the rDA construction itself. These technical issues are 

of independent interest and will be investigated in future work. All the implementations used 

in the paper will be made available at http://pages.cs.wisc.edu/~vamsi/rda upon manuscript 

acceptance.
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Research in Context

Systematic Review

An efficient trial inclusion criterion should be able to discriminate weak decliners from 

the strong ones robustly. Further, the screened strong decliners should have less 

variability if the screening criterion is to result in smaller sample estimates. These two 

requirements imply that the sample enricher needs to learn complex concepts while 

reducing the prediction variance. The statistical framework presented here offers both 

these features and yields substantial improvements over alternative strategies.

Interpretation

First, this work provides strategies for sample enrichment in AD clinical trials. Second, 

the results show that rDAm predicts strong decliners with high confidence. Third, the 

findings show that baseline rDAm inclusion criterion is the best available imaging-

derived enricher, which leads to smaller trials.

Future Directions

Improving the rDA model by using richer pooling strategies and better ensemble 

generation. Further, using easily available covariate information (like FH, APOE, age 

etc.) in the rDA construction (or training) itself.

Ithapu et al. Page 14

Alzheimers Dement. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Mean longitudinal change of several disease markers as a function of baseline rDAm 

enrichment threshold. Each plot corresponds to one disease marker (which include MMSE, 

ADAS, RAVLT, MOCA, PsychMEM, PsychEF, Hippocampal Volume, CDR-SB and 

DxConv, refer to Section 3.1 for details about these markers). x-axis represents the baseline 

rDAm enrichment cut-off (t). For each t, the subjects who have baseline rDAm ≫ t are 

filtered-out, and the mean of within subject change in the disease marker is computed on the 

remaining un-filtered subjects. Dots represent actual values, and lines are the corresponding 

linear fit. Blue and black represent changes from baseline to 12 and 24 months respectively.
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Figure 2. 
Detectable drug effect η as a function of baseline rDAm enrichment cut-off. Recall that η is 

the hypothesized induced treatment effect where (1−η) denotes the expected percentage of 

reduction in the outcome measure. Each plot corresponds to using one of the nine disease 

markers (MMSE, ADAS, RAVLT, MOCA, PsychMEM, PsychEF, Hippocampal Volume, 

CDR-SB and DxConv, refer to Section 3.1 for details about these markers) as an outcome 

measure. x-axis represents the baseline rDAm enrichment cut-off (t). For each t, y-axis 

shows the effect size detectable at 80% power and significance level of 0.05 using 500 

samples per arm. As with the results in Table 3, each plot also shows improvements when 

using FH and/or APOE information in tandem with baseline rDAm enrichment. Blue, green, 

black and red correspond to rDAm, rDAm + APOE, rDAm + FH and rDAm + APOE + FH 

enrichment respectively.
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Figure 6. 
Mean of several disease markers as a function of baseline rDAm enrichment threshold. Each 

plot corresponds to one disease marker (which include MMSE, ADAS, RAVLT, MOCA, 

PsychMEM, PsychEF, Hippocampal Volume, CDR-SB and Dx Change. x-axis represents 

the baseline rDAm enrichment cut-off (t). For each t, the subjects who have baseline rDAm 

≫ t are filtered-out, and the mean of within subject change in the diseas marker is computed 

on the remaining un-filtered subjects. Lines are the corresponding linear fit, and the error 

bars correspond to the stnadard errors. Blue, black and red represent baseline, 12 and 24 

months respectively.

Ithapu et al. Page 17

Alzheimers Dement. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ithapu et al. Page 18

T
ab

le
 1

Pr
ed

ic
tiv

e 
as

so
ci

at
io

ns
 o

f 
ba

se
lin

e 
rD

A
m

: T
es

tin
g 

fo
r 

de
pe

nd
en

cy
 o

f 
ba

se
lin

e 
rD

A
m

 s
co

re
s 

(c
om

pu
te

d 
on

 M
C

I 
su

bj
ec

ts
) 

on
 s

ev
er

al
 d

is
ea

se
 m

ar
ke

rs
 a

t 

ba
se

lin
e,

 1
2 

m
on

th
s 

an
d 

24
 m

on
th

s.
 O

ut
co

m
es

 in
cl

ud
ed

 c
og

ni
tiv

e 
an

d 
ne

ur
op

sy
ch

ol
og

ic
al

 s
co

re
s 

(M
M

SE
 –

 M
in

i M
en

ta
l S

ta
te

 E
xa

m
in

at
io

n,
 A

D
A

S 
–

A
lz

he
im

er
’s

 D
is

ea
se

 A
ss

es
sm

en
t S

ca
le

 (
C

og
ni

tio
n 

13
 s

ca
le

),
 M

O
C

A
 –

 M
on

tr
ea

l C
og

ni
tiv

e 
A

ss
es

sm
en

t, 
R

A
V

L
T

 –
 R

ey
 A

ud
ito

ry
 V

er
ba

l L
ea

rn
in

g 
T

es
t, 

Ps
yM

E
M

 –
 N

eu
ro

ps
yc

h 
su

m
m

ar
y 

sc
or

e 
fo

r 
M

em
or

y,
 P

sy
E

F 
– 

N
eu

ro
ps

yc
h 

su
m

m
ar

y 
sc

or
e 

fo
r 

E
xe

cu
tiv

e 
Fu

nc
tio

n)
, H

ip
po

ca
m

pa
l V

ol
um

e,
 C

D
R

-S
B

 

(s
um

-o
f-

bo
xe

s)
, D

xC
on

v 
(C

on
ve

rs
io

n 
fr

om
 M

C
I 

to
 A

D
),

 C
SF

 le
ve

ls
 (

τ,
 p

τ,
 A

β,
 τ

/A
β,

 p
τ/

A
β)

, a
nd

 A
PO

E
 a

nd
 F

am
ily

 h
is

to
ry

 r
is

k 
fa

ct
or

s.
 S

pe
ar

m
an

 

C
or

re
la

tio
ns

 (
co

ef
fi

ci
en

t a
nd

 p
–v

al
ue

) 
an

d 
t-

te
st

 s
ta

tis
tic

 (
w

ith
 it

s 
p–

va
lu

e)
 a

re
 r

ep
or

te
d 

fo
r 

co
nt

in
uo

us
 a

nd
 c

at
eg

or
ic

al
 (

D
X

C
on

v,
 F

H
, A

PO
E

) 
da

ta
 

re
sp

ec
tiv

el
y.

1

B
io

m
ar

ke
r

B
as

el
in

e
C

ro
ss

-s
ec

ti
on

al
L

on
gi

tu
di

na
l c

ha
ng

e

12
 m

on
th

s
24

 m
on

th
s

12
 m

on
th

s
24

 m
on

th
s

M
M

SE
0.

39
, p

 <
<

10
−

4
0.

49
, p

 <
<

 1
0−

4
0.

45
, p

 <
<

 1
0−

4
0.

21
, p

 =
 0

.0
00

8
0.

33
, p

 =
 0

.0
00

3

A
D

A
S

−
0.

56
, p

 <
<

10
−

4
−

0.
58

, p
 <

<
 1

0−
4

−
0.

53
, p

 <
<

 1
0−

4
0.

21
, p

 =
 0

.0
00

7
−

0.
53

, p
 <

<
 1

0−
4

M
O

C
A

0.
48

, p
 <

<
10

−
4

0.
51

,p
<

<
 1

0−
4

0.
59

, p
 <

<
 1

0−
4

0.
06

, p
 >

 0
.1

0.
59

, p
 =

10
−

4

R
A

V
L

T
0.

49
, p

 <
<

10
−

4
0.

52
, p

 <
<

 1
0−

4
0.

57
, p

 <
<

 1
0−

4
0.

13
, p

 =
 0

.0
4

0.
57

, p
 =

 0
.0

00
8

Ps
yM

E
M

0.
56

, p
 <

<
10

−
4

0.
57

, p
 <

<
 1

0−
4

0.
59

, p
 <

<
 1

0−
4

0.
28

, p
 <

10
−

4
0.

42
, p

 =
 0

.0
01

Ps
yE

F
0.

52
, p

 <
<

10
−

4
0.

57
,p

 <
<

 1
0−

4
0.

46
, p

 <
<

 1
0−

4
0.

15
, p

 =
 0

.0
2

0.
26

, p
 =

 0
.0

5

H
ip

po
V

ol
0.

72
, p

 <
<

10
−

4
0.

74
, p

 <
<

 1
0−

4
0.

79
, p

 <
<

 1
0−

4
0.

33
, p

 <
<

 1
0−

4
0.

47
, p

 <
<

 1
0−

4

C
D

R
-S

B
−

0.
33

, p
 <

<
10

−
4

−
0.

49
, p

 <
<

 1
0−

4
−

0.
55

, p
 <

<
 1

0−
4

−
0.

36
, p

 <
<

 1
0−

4
−

0.
53

, p
 <

<
 1

0−
4

D
xC

on
v

--
 N

A
 -

-
21

, p
 <

<
 1

0−
4

31
, p

 <
<

 1
0−

4
21

, p
 <

<
 1

0−
4

31
, p

 <
<

 1
0−

4

τ
−

0.
39

, p
 <

<
10

−
4

--
 N

A
 -

-
--

 N
A

 -
-

--
 N

A
 -

-
--

 N
A

 -
-

pτ
−

0.
40

, p
 <

<
10

−
4

--
 N

A
 –

--
 N

A
 -

-
--

 N
A

 -
-

--
 N

A
 -

-

A
β

0.
55

, p
 <

<
10

−
4

--
 N

A
 -

-
--

 N
A

 -
-

--
 N

A
 -

-
--

 N
A

 -
-

τ/
A

β
−

0.
52

, p
 <

<
10

−
4

--
 N

A
 –

--
 N

A
 -

-
--

 N
A

 -
-

--
 N

A
 -

-

pτ
/A

β
−

0.
52

,p
<

<
10

−
4

--
 N

A
 –

--
 N

A
 –

--
 N

A
 –

--
 N

A
 –

A
PO

E
3.

47
, p

 =
 0

.0
00

6
--

 N
A

 -
-

--
 N

A
 -

-
--

 N
A

 -
-

--
 N

A
 -

-

FH
2.

16
, p

 =
 0

.0
3

--
 N

A
 -

-
--

 N
A

 -
-

--
 N

A
 -

-
--

 N
A

 -
-

1 O
bs

er
va

tio
ns

 w
ith

 p
 <

<
 0

.0
00

1 
ar

e 
bo

ld
, a

nd
 p

 <
 0

.0
01

 a
re

 it
al

ic
. C

ol
um

n 
2 

sh
ow

s 
co

rr
el

at
io

ns
 o

f 
ba

se
lin

e 
rD

A
m

 w
ith

 m
ar

ke
rs

 a
t b

as
el

in
e.

 C
ol

um
ns

 3
 a

nd
 4

 a
re

 c
or

re
la

tio
ns

 o
f 

ba
se

lin
e 

rD
A

m
 w

ith
 

m
ar

ke
rs

 th
em

se
lv

es
 a

t 1
2 

an
d 

24
 m

on
th

s 
re

sp
ec

tiv
el

y.
 C

ol
um

ns
 5

 a
nd

 6
 a

re
 c

or
re

la
tio

ns
 o

f 
ba

se
lin

e 
rD

A
m

 w
ith

 c
ha

ng
e 

(i
.e

. d
if

fe
re

nc
e)

 in
 th

e 
m

ar
ke

rs
 f

ro
m

 b
as

el
in

e 
to

 1
2 

an
d 

24
 m

on
th

s.
 N

ot
e 

th
at

 C
SF

 
le

ve
ls

, F
H

 a
nd

 A
PO

E
 d

o 
no

t h
av

e 
an

y 
m

ea
ni

ng
 in

 c
ol

um
n 

5 
an

d 
6,

 a
nd

 h
en

ce
 a

re
 m

ar
ke

r 
‘N

A
’.

 S
am

e 
is

 th
e 

ca
se

 w
ith

 D
xC

on
v 

at
 b

as
el

in
e,

 s
in

ce
 b

as
el

in
e 

di
ag

no
si

s 
of

 a
ll 

su
bj

ec
ts

 c
on

si
de

re
d 

he
re

 is
 M

C
I.

Alzheimers Dement. Author manuscript; available in PMC 2016 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ithapu et al. Page 19

T
ab

le
 2

B
as

el
in

e 
rD

A
m

 f
or

 s
am

pl
e 

en
ri

ch
m

en
t: 

R
es

ul
ts

 o
f 

sa
m

pl
e 

en
ri

ch
m

en
t u

si
ng

 b
as

el
in

e 
rD

A
m

 (
co

ns
tr

uc
te

d 
us

in
g 

al
l t

he
 th

re
e 

im
ag

in
g 

m
od

al
iti

es
 T

1 
M

R
I,

 

FD
G

 a
nd

 f
lo

rb
et

ap
ir

) 
in

 a
 2

 y
ea

r 
tr

ia
l w

ith
 o

ut
co

m
e 

m
ea

su
re

s 
be

in
g 

M
M

SE
, A

D
A

S,
 M

O
C

A
, R

A
V

L
T

, P
sy

ch
M

E
M

, H
ip

po
ca

m
pa

l V
ol

um
e,

 C
D

R
-S

O
B

 

an
d 

D
xC

on
v.

 A
ll 

es
tim

at
es

 a
t s

ig
ni

fi
ca

nc
e 

le
ve

l o
f 

0.
05

 a
nd

 8
0%

 s
ta

tis
tic

al
 p

ow
er

 w
ith

 tr
ea

tm
en

t e
ff

ec
t o

f 
0.

25
. S

ec
on

d 
co

lu
m

n 
sh

ow
s 

sa
m

pl
e 

es
tim

at
es

 

w
ith

 n
o 

en
ri

ch
m

en
t (

i.e
. a

ll 
cl

in
ic

al
ly

-d
ia

gn
os

ed
 M

C
I 

su
bj

ec
ts

 in
cl

ud
ed

),
 f

ol
lo

w
ed

 b
y 

us
in

g 
M

C
I 

su
bj

ec
ts

 f
ro

m
 b

ot
to

m
 2

0%
, 2

5%
, 3

3%
 a

nd
 5

0%
 

pe
rc

en
til

es
 o

n 
rD

A
m

 s
co

re
s 

re
sp

ec
tiv

el
y.

 F
or

 e
ac

hp
er

ce
nt

ile
, t

he
 c

ut
of

f 
on

 r
D

A
m

 s
ca

le
 is

 s
ho

w
n 

an
d 

sa
m

pl
e 

si
ze

s 
sm

al
le

r 
th

an
 7

00
 a

re
 in

 b
ol

d.

O
ut

co
m

e
m

ea
su

re
N

o
en

ri
ch

m
en

t
B

ot
to

m
 2

0%
rD

A
m

 ≤
 0

.4
1

B
ot

to
m

 2
5%

rD
A

m
 ≤

 0
.4

6
B

ot
to

m
 3

3%
rD

A
m

 ≤
 0

.5
2

B
ot

to
m

 5
0%

rD
A

m
 ≤

 0
.6

5

M
M

SE
13

67
20

0
23

9
37

1
56

6

A
D

A
S

>
20

00
77

5
94

5
>

20
00

>
20

00

M
O

C
A

>
20

00
44

9
67

4
96

0
19

19

R
A

V
L

T
>

20
00

59
1

12
11

>
20

00
>

20
00

Ps
yM

E
M

>
20

00
42

0
69

0
78

6
11

64

Ps
yE

F
>

20
00

>
20

00
>

20
00

>
20

00
>

20
00

H
ip

po
V

ol
>

20
00

54
3

15
04

15
60

16
75

C
D

R
-S

B
15

86
28

1
31

7
43

0
43

3

D
xC

on
v

89
5

23
0

26
7

35
2

44
8

Alzheimers Dement. Author manuscript; available in PMC 2016 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ithapu et al. Page 20

T
ab

le
 3

B
as

el
in

e 
rD

A
m

 +
 F

H
 a

nd
/o

r 
A

PO
E

 f
or

 e
nr

ic
hm

en
t: 

U
si

ng
 a

lr
ea

dy
 e

nr
ic

he
d 

su
bj

ec
ts

 f
ro

m
 th

e 
bo

tto
m

 2
0%

 p
er

ce
nt

ile
on

 r
D

A
m

 s
ca

le
 (

fo
ur

th
 c

ol
um

n 
fr

om
 

T
ab

le
 I

II
),

 a
nd

 f
ur

th
er

 s
cr

ee
ni

ng
 o

ut
 s

ub
je

ct
s 

w
ith

 n
eg

at
iv

e 
FH

 a
nd

/o
r 

A
PO

E
. S

ec
on

d 
co

lu
m

n 
to

 la
st

 c
ol

um
ns

 a
re

 r
es

ul
ts

 w
ith

 n
o 

en
ri

ch
m

en
t, 

FH
 a

lo
ne

, 

A
PO

E
 a

lo
ne

, r
D

A
m

 a
lo

ne
, r

D
A

M
 +

 F
H

, r
D

A
M

 +
 A

PO
E

 a
nd

 r
D

A
M

 +
 b

ot
h 

re
sp

ec
tiv

el
y.

 T
he

 b
es

t e
st

im
at

es
 f

ro
m

 r
D

A
M

 +
 F

H
 a

nd
/o

r 
A

PO
E

 a
re

 s
ho

w
n 

in
 

bo
ld

.

O
ut

co
m

e
m

ea
su

re
N

o
en

ri
ch

m
en

t
F

H
O

nl
y

A
P

O
E

O
nl

y
rD

A
m

on
ly

rD
A

m
 +

F
H

rD
A

m
 +

A
P

O
E

rD
A

m
 +

bo
th

M
M

SE
13

67
16

68
10

15
20

0
18

2
24

0
18

6

A
D

A
S

>
20

00
>

20
00

>
20

00
77

5
57

4
32

8
27

1

M
O

C
A

>
20

00
>

20
00

>
20

00
44

9
51

6
32

6
33

4

R
A

V
L

T
>

20
00

>
20

00
>

20
00

59
1

39
4

48
4

33
2

Ps
yM

E
M

>
20

00
>

20
00

>
20

00
42

0
48

1
31

0
33

3

Ps
yE

F
>

20
00

>
20

00
>

20
00

>
20

00
>

20
00

13
37

72
1

H
ip

op
V

ol
>

20
00

>
20

00
>

20
00

42
8

39
1

27
4

24
6

C
D

R
-S

O
B

15
86

17
87

76
3

28
1

25
5

21
7

22
5

D
xC

on
v

89
5

93
2

50
9

23
0

24
4

17
0

19
2

Alzheimers Dement. Author manuscript; available in PMC 2016 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ithapu et al. Page 21

T
ab

le
 4

B
as

el
in

e 
rD

A
m

 v
s.

 o
th

er
 im

ag
in

g-
de

ri
ve

d 
sa

m
pl

e 
en

ri
ch

er
s.

 C
om

pa
ri

ng
 r

D
A

m
's

 e
st

im
at

es
 to

 th
at

 o
f 

us
in

g 
H

ip
po

ca
m

pa
l V

ol
um

e,
 F

D
G

 R
O

Is
 (

le
ft

 

te
m

po
ra

l, 
ri

gh
t t

em
po

ra
l, 

le
ft

 a
ng

ul
ar

, r
ig

ht
 a

ng
ul

ar
 a

nd
 b

ila
te

ra
l c

in
gu

lu
m

),
 f

lo
rb

et
ap

ir
 S

U
V

R
 R

O
Is

 (
fr

on
ta

l, 
te

m
po

ra
l, 

pa
ri

et
al

, a
nd

 c
in

gu
la

te
 g

ra
y 

m
at

te
r)

 a
nd

 M
K

L
m

 a
s 

en
ri

ch
er

s.
 F

A
H

 c
or

re
sp

on
ds

 to
 li

ne
ar

 c
om

bi
na

tio
n 

of
 H

ip
po

ca
m

pa
l V

ol
um

e,
 F

D
G

 a
nd

 A
V

45
 R

O
Is

. A
ll 

th
e 

es
tim

at
es

 c
or

re
sp

on
d 

at
 

bo
tto

m
 2

0%
 p

er
ce

nt
ile

s 
(i

.e
., 

hi
gh

 r
is

k 
su

bj
ec

ts
) 

on
 th

e 
co

rr
es

po
nd

in
g 

en
ri

ch
er

 s
ca

le
. T

he
 b

es
t p

os
si

bl
e 

es
tim

at
e 

pe
r 

ar
m

 is
 s

ho
w

n 
in

 b
ol

d.

Sa
m

pl
e

E
nr

ic
he

r
O

ut
co

m
e 

m
ea

su
re

M
M

SE
A

D
A

S
M

O
C

A
R

A
V

L
T

P
sy

M
E

M
H

ip
po

V
ol

C
D

R
-S

O
B

D
xC

on
v

H
ip

po
V

ol
54

0
>

20
00

10
05

16
06

10
09

>
20

00
38

9
42

0

FD
G

38
4

19
54

57
9

>
20

00
83

2
75

2
41

5
37

1

A
V

45
22

4
>

20
00

87
5

>
20

00
82

6
69

8
38

2
44

3

FA
H

29
6

>
20

00
70

5
>

20
00

82
6

72
2

39
7

40
2

M
K

L
m

22
8

87
4

82
7

89
6

48
7

87
7

29
5

28
4

rD
A

m
20

0
77

5
44

9
59

1
42

0
54

3
28

1
23

0

Alzheimers Dement. Author manuscript; available in PMC 2016 December 01.


