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Abstract

Schizophrenia (SZ) is a devastating psychiatric condition affecting numerous brain systems. 

Recent studies have identified genetic factors that confer an increased risk of SZ and participate in 

the disease etiopathogenesis. In parallel to such bottom-up approaches, other studies have 

extensively reported biological changes in patients by brain imaging, neurochemical and 

pharmacological approaches. This review highlights the molecular substrates identified through 

studies with SZ patients, namely those using top-down approaches, while also referring to the 

fruitful outcomes of recent genetic studies. We have sub-classified the molecular substrates by 

system, focusing on elements of neurotransmission, targets in white matter-associated 

connectivity, immune/inflammatory and oxidative stress-related substrates, and molecules in 

endocrine and metabolic cascades. We further touch on crosstalk among these systems and 

comment on the utility of animal models in charting the developmental progression and interaction 

of these substrates. Based on this comprehensive information, we propose a framework for SZ 

research based on the hypothesis of an imbalance in homeostatic signaling from immune/

inflammatory, oxidative stress, endocrine and metabolic cascades that, at least in part, underlies 

deficits in neural connectivity relevant to SZ. Thus, this review aims to provide information that is 

translationally useful and complementary to pathogenic hypotheses that have emerged from 

genetic studies. Based on such advances in SZ research, it is highly expected that we will discover 

biomarkers that may help in the early intervention, diagnosis or treatment of SZ.
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Introduction

Schizophrenia (SZ) is one of the most devastating mental conditions with a lifetime 

prevalence of about 0.7-1%.
1
 If we include the prevalence of subclinical psychotic 

experiences and symptoms, which are likely to share similar biological mechanisms with 

SZ, the prevalence increases to about 8%.
2
 The cross-sectional clinical manifestations and 

course of SZ are heterogeneous with a complex phenomenology. However, even among 

clinical psychiatrists, a more simplified sub-classification of clinical symptoms is frequently 

used to facilitate biological and translational studies
3
: positive symptoms (e.g., 

hallucinations, delusions, and disorganized thoughts and speech), negative symptoms (e.g., 

apathy, affective flattening, social withdrawal), and cognitive dysfunction (e.g., deficits in 

working memory, verbal memory). Although SZ typically manifests in the second decade of 

life, abnormal neurodevelopmental processes are thought to begin during prenatal and 

perinatal stages.
4

Several ‘biological’ hypotheses of SZ were originally proposed because of the effects of 

drugs. The dopamine hypothesis of SZ evolved from multiple observations and studies 

including findings that antipsychotic drugs used for SZ block dopamine D2 receptors.
5-7 

Years later the glutamatergic hypothesis of SZ was proposed based on observations that 

phencyclidine or ketamine mimic SZ-like manifestations, even including some aspects of 

negative symptoms and cognitive dysfunction, by blocking N-methyl-D-aspartate receptors 

(NMDAR).
8, 9

SZ is now considered a polygenic condition;
10-12

 many candidate susceptibility genes have 

been identified, however, individual effect sizes are modest in sporadic cases. Single 

nucleotide polymorphisms (SNP), copy number variations, and de novo mutations have been 

implicated in conferring risk of SZ.
13, 14

 In addition, in the contexts of both common and 

rare variants, susceptibility factors that have been suggested for SZ confer risk for other 

mental conditions, such as bipolar disorder and autism.
10, 15-18

 This is reasonable given that 

the current diagnostic criteria, such as the Diagnostic and Statistical Manual of Mental 

Disorders (DSM), emphasize clinical reliability and utility rather than etiological validity.
19

In addition to genetic studies (bottom-up approach), years of research with clinical subjects 

and biospecimens have implicated multiple molecular targets of SZ. In this review, we 

discuss the different ‘molecular’ substrates of SZ that have been identified primarily through 

human (patient) studies, namely those using top-down approaches, and sub-classify them by 

biological system (Table 1): neurotransmission, white matter-associated connectivity, 

immune/inflammatory response and oxidative stress, endocrine system, and metabolic 

cascades. For each system, we focus on evidence from brain imaging, neurochemical, 

postmortem, genetic, and clinicopharmacological studies (Table 2). Lastly, we describe the 

possible integration of these systems and additional evidence from animal models of SZ 

under an overall perspective of an in-depth understanding of the disease pathology and 

translational application.

The goal of this review article is to provide comprehensive information that is translationally 

useful and complementary to pathogenic hypotheses that have recently emerged from 
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genetic studies. To address this goal, we propose a framework for SZ research based on the 

hypothesis of an imbalance in homeostatic signaling that, at least in part, underlies deficits in 

neural connectivity relevant to SZ. More concretely, we describe how inflammatory, 

oxidative stress, endocrine, and metabolic homeostatic signaling processes mediate and 

pathologically modulate neurotransmission and myelinated tracks. Given that many 

comprehensive review articles on psychiatric genetics and animal models have been 

published recently,
20-24

 we only touch on the critical conceptual viewpoints in these areas.

By referring to the information from genetic studies, we can address the question of whether 

molecular substrates identified through human patient studies are primary or secondary. In 

particular, molecular studies in first episode psychosis and individuals with high genetic risk 

of SZ combined with convergent evidence from genetic and animal models can help 

determine the central disease processes. The successful integration of pathogenic-oriented 

(bottom-up) and patient phenotype-oriented (top-down) research has precedence in many 

other diseases, such as cancer, metabolic syndrome and Alzheimer's disease.
25-29

Neurotransmission

Dopamine

Molecular brain imaging studies have provided useful insights into dopamine, glutamate, 

and γ-aminobutyric acid (GABA) neurotransmission in SZ. The majority of the molecular 

imaging studies using positron emission tomography (PET) and single photon emission 

computerized tomography (SPECT) have suggested that presynaptic striatal dopamine is 

elevated and dopamine release is increased in subjects with SZ. PET studies have found that 

striatal L-[β-11C]DOPA or [18F]DOPA uptake is elevated in subjects with SZ as well as 

subjects showing prodromal symptoms of SZ, suggesting an elevation in presynaptic striatal 

dopamine in SZ (Figure 1).
30-34

 A PET study using [11C]raclopride and SPECT studies 

using [123I]IBZM found significantly greater amphetamine-induced reductions in the 

binding potential of the radiotracers in the striatum of subjects with SZ compared to 

controls, suggesting that there is enhanced dopamine release in SZ.
35-37

 However, it has 

been suggested that the elevated dopamine observed in SZ is linked to psychosis rather than 

the disease itself.
38

It has been further shown that subjects with SZ have a significant increase in dopamine D2 

receptor (D2R) availability in the associative striatum, specifically in the precommissural 

dorsal caudate, but not in the ventral or the sensorimotor striatum, after dopamine 

depletion.
39

 A meta-analysis of 13 studies using PET and SPECT found a significant, but 

small, elevation in striatal D2R density in subjects with SZ.
40

 Studies analyzing D2R 

availability in the thalamus, anterior cingulate cortex and temporal cortex have found both 

decreased and unaltered D2R availability in SZ.
41

 Additionally, a recent genome-wide 

association study (GWAS) found that the D2R gene is within a SZ-associated locus.
42

Results of PET studies using [11C]SCH23390 and [11C]NNC112 to image prefrontal cortex 

dopamine D1 receptor (D1R) binding are contradictory, reporting reduced, unaltered and 

increased receptor binding in SZ patients.
43-45

 A meta-analysis of seven postmortem studies 

and one PET study did not find an elevation in D1R in SZ.
46

 Studies measuring levels of 
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homovanillic acid, a metabolite of dopamine, in the cerebrospinal fluid (CSF) of subjects 

with SZ are inconsistent; some report no difference between SZ and control subjects but 

others report lower levels in SZ.
47, 48

Abnormalities in dopamine neurotransmission have also been suggested by postmortem 

studies. Changes in the density and mRNA levels of some classes of dopamine receptors 

have been suggested in the prefrontal cortex, striatum, and hippocampus of SZ subjects.
49-51 

Reductions in the density of tyrosine hydroxylase, an enzyme involved in dopamine 

synthesis, and the density of dopamine membrane transporter immunoreactive axons in the 

prefrontal cortex have been reported in SZ.
52

 A reduced density of tyrosine hydroxylase 

immunoreactive axons in the entorhinal cortex has also been reported.
53

In summary, the main finding on dopaminergic neurotransmission is that a state of 

overstimulation of D2R in the associative striatum exists in SZ starting early in the 

prodromal phase and corresponds with psychosis as well as with the therapeutic response to 

antipsychotics.
31, 39, 54

 Other symptom domains are thought to relate to deficits in dopamine 

transmission in cortical and extrastriatal regions, but conclusive evidence for this has not 

emerged yet.
55

Serotonin

Most typical antipsychotics are D2R antagonists, whereas several atypical antipsychotic 

drugs also target serotonin receptors, in particular the 5HT2A receptor, for antipsychotic 

efficacy.
56

 Furthermore, indoleamine hallucinogens such as psilocybin, can elicit SZ-like 

symptoms that can be blocked by 5HT2 antagonists.
57

 Postmortem studies have shown a 

reduction in the density of 5HT2A receptors in the prefrontal and frontal cortex in SZ.
58 

These results suggest involvement of serotonin in the pathophysiology of SZ, or at least in 

psychotic manifestations.

Glutamate

Pharmacological evidence has also implicated glutamate neurotransmission in SZ. Acute 

administration of NMDAR antagonists, such as phencyclidine (PCP) or ketamine, 

transiently induces symptoms typically associated with psychosis, including positive, 

negative and cognitive deficits.
59, 60

 This observation led to a hypothesis for NMDAR 

glutamate dysregulation as a prominent pathophysiological feature of SZ. Studies using 

autopsied brains have shown reduced numbers of dendritic spines on pyramidal neurons in 

SZ.
61, 62

 Furthermore, analysis of GWAS and genetic and gene expression studies have 

indicated the significance of genes involved in glutamate receptor signaling.
12, 14, 42, 63 

These include the NMDAR subunit gene GRIN2A, glutamate receptor, ionotropic, AMPA 1 

(GRIA1), and genes involved in the activity-regulated cytoskeleton-associated protein 

(ARC) signaling complex.

Many 1H magnetic resonance spectroscopy (MRS) studies have measured glutamate, 

glutamine or the sum of glutamate and glutamine (Glx) in subjects with SZ; some studies 

also include GABA in the measurement.
64

 Several reports have indicated that glutamatergic 

levels in the medial prefrontal cortex and anterior cingulate cortex are elevated in 

medication-naïve and unmedicated SZ subjects; however, studies also report that 
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glutamatergic levels tend to decrease during the disease course, possibly reflecting treatment 

response and/or disease progression (Table 3).
8, 64-68

 A recent review summarizes the 

findings of many MRS studies with an emphasis on regional specificity: medication-naïve 

and unmedicated SZ subjects have elevated glutamatergic levels in the medial prefrontal 

cortex, but not in the dorsolateral prefrontal cortex and hippocampus, while studies on the 

thalamus report more variable effects with unaltered, increased or decreased glutamatergic 

levels (Table 3).
64, 69

 Meanwhile, studies with CSF have shown that the levels of glutamate 

are similar between control and medicationnaïve or unmedicated SZ subjects.
70-72

 Lastly, 

some studies have explored a role for glutamate in SZ pathophysiology:
73, 74

 ketamine 

administration to rodents elicited hypermetabolism in the CA1 sub-region of the 

hippocampus, while repeated exposure shifted the hippocampus to a hypermetabolic basal 

state with concurrent atrophy. Similarly, hypermetabolism of the hippocampus, in particular 

the CA1 sub-region, has also been seen in SZ patients, which may be a predictive factor of 

hippocampal atrophy.
73, 74

In addition, reports of patients who have autoantibodies to the NMDAR (anti-NMDAR 

encephalitis) and show psychotic symptoms including visual or auditory hallucinations and 

paranoid thoughts have supported the involvement of glutamate and NMDAR in the 

pathophysiology of SZ and psychosis.
75-78

 The causality of the autoantibody to psychosis, at 

least in this specific disease condition, has been demonstrated in cases where an ovarian 

teratoma is present: tumor removal and intravenous immunoglobulin or intravenous steroids 

can reverse the psychiatric symptoms within weeks.
79, 80

 Collectively, these 

pharmacological, clinical, genetic, and autoimmune studies have repeatedly implicated 

glutamate dysfunction in SZ.

GABA

There is still a technical debate about measuring GABA consistently in different scanners 

and institutions. However, one group found reduced GABA concentrations in the basal 

ganglia, but not in the frontal lobe, in early stage SZ subjects.
81

 In contrast, another group 

has reported that GABA levels were elevated in the medial prefrontal cortex in unmedicated 

SZ subjects.
66

 As for chronic SZ, studies have reported unaltered GABA concentrations in 

the basal ganglia, reduced concentrations in the visual cortex, and elevated levels in the 

parieto-occipital cortex.
82-84

 Unaltered and elevated GABA concentrations in the anterior 

cingulate cortex have been reported in chronic SZ, while a more recent study found reduced 

GABA concentrations in the anterior cingulate of older subjects with chronic SZ (Table 
3).

82, 84, 85
 Recently, a study using MRS and magnetoencephalography (MEG) to measure 

resting GABA and glutamate concentrations and stimulus-induced gamma oscillations in the 

occipital cortex of healthy subjects, reported that there was no correlation between GABA, 

glutamate, or the GABA/glutamate ratio and gamma peak frequency or gamma amplitude.
86 

In addition, several studies have measured GABA levels in the plasma and CSF of 

unmedicated SZ patients and reported no major differences between SZ and controls, 

however, one report found a significant decrease in mean CSF GABA levels after 

neuroleptic treatment.
87-89

 One study reported significantly lower CSF GABA levels in 

patients whose duration of illness was 4 years or less compared to subjects whose duration 

of illness was greater than 4 years.
90

 However, another study reported similar GABA levels 
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between acute SZ subjects and controls but increased CSF GABA levels in chronic SZ 

subjects.
91

 In general, MRS studies on GABA in SZ are scarce and show inconclusive 

results at this time.

Postmortem studies have provided convincing evidence of GABAergic changes in SZ.
92, 93 

These studies have consistently reported alterations in GABAergic interneurons in the 

prefrontal cortex. These alterations include decreased glutamic acid decarboxylase 67 

(GAD67) and parvalbumin (PV).
94-98

 Additionally, some potassium channels (Kv3.1 and 

KCNS3) that are predominately expressed in PV positive neurons, are decreased in the 

prefrontal cortex in SZ.
99, 100

 PV positive neurons are fast spiking, synchronize pyramidal 

neuron firing and play a role in the generation of gamma oscillations.
101

 Thus, deficits in 

this population of neurons may contribute to the cognitive deficits observed in SZ.
101 

Decreased somatostatin and cholecystokinin mRNA levels have also been reported in SZ.
102

α7-nicotinic receptor

A high percentage of SZ patients smoke cigarettes. It has been shown that cigarette smoking 

improves sensory gating, P50 inhibition, and prepulse inhibition in SZ.
103-105

 The P50 

sensory deficit observed in SZ might be genetically linked to the locus of the α7-nicotinic 

acetylcholine receptor gene, CHRNA7, on chromosome 15q14.
106

 Multiple linkage studies 

have also supported this evidence.
107, 108

 Postmortem studies using [125I]alpha-

bungarotoxin have shown fewer nicotinic receptors in the hippocampus, the reticular nucleus 

of the thalamus, and the cingulate cortex of subjects with SZ.
109-111

 Brain imaging studies 

to validate this hypothesis using [123I]5-IA-85380 and 2-[18F]FA, radiotracers for high 

affinity nicotinic acetylcholine receptors, are under way.
112, 113

Synaptic assembly

As described above in the context of glutamate, some genetic susceptibility factors for SZ 

have distinct synaptic functions in a broader sense.
12, 14, 42, 114

 Some of the genes involved 

in synaptic function and plasticity that have been identified within SZ-associated loci 

include potassium channel tetramerization domain containing 13 (KCTD13), contactin 4 

(CNTN4), p21 protein-activated kinase 6 (PAK6), neuroligin 4, X-linked (NLGN4X), and 

genes related to the postsynaptic ARC complex.
12, 42

 Functional studies of such candidates, 

including disrupted in schizophrenia 1 (DISC1) and p21 protein-activated kinase 7 (PAK7), 

also support synaptic roles.
115-117

 Microarray analysis of the prefrontal cortex found that the 

expression of genes related to the presynaptic secretory machinery [for example, N-

thylmaleimide sensitive factor (NSF) and synapsin II (SYN2)] were decreased in SZ.
118 

Although brain imaging studies of synaptic changes in SZ are lacking, the field awaits the 

development of new techniques to assess synaptic changes in SZ.

As described, multiple lines of evidence suggest that multiple types of neurotransmission, in 

particular dopaminergic, glutamatergic, and GABAergic neurotransmission, are altered in 

the brains of SZ patients. However, at this time it is unclear if the reported changes are 

causal or secondary, but in either case, the changes are critical for the pathophysiology.
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White matter-associated connectivity

Neurotransmitters play a role in cell-cell communication in the brain, but distant 

communication is also dependent on proper transduction of action potentials along axon 

tracts. White matter regions contain long-range axonal connections insulated by myelin, a 

lipid-dense material produced by oligodendrocytes. Signaling between oligodendroyctes and 

axons mediates the formation of nodes of Ranvier (NoR) and internodal myelin sheathes.
119 

The myelin sheathes increase electrical resistance, allowing for faster propagation of 

electrical signals along axons. Dysmyelination can affect neuronal connectivity; decreased 

white matter integrity has been correlated with functional deficits in demyelinating 

diseases.
120

 Although there is no robust demyelination in the brain in SZ, many reports have 

indicated a deficit in white matter associated connectivity.
121

Diffusion tensor imaging (DTI) with MRI can measure the diffusion of water molecules 

along white matter bundles. Fractional anisotropy (FA), a metric of the rate of diffusion 

along axons and a measure of myelin integrity, is reduced in SZ patients.
121-123

 Deep white 

matter tracts in the frontal and temporal lobes interconnecting to the thalamus, cingulate 

gyrus, amygdala, insula, hippocampus, and occipital lobe are reportedly those most affected 

in SZ.
124

 Changes are observed in chronic, first episode, and adolescents with early onset SZ 

as well as subjects in prodromal stages and adolescents at high clinical risk for developing 

SZ.
125, 126

 A longitudinal study in SZ patients also found heterogeneous decreases in white 

matter volume (total cerebral, frontal, temporal, parietal) over the disease course, primarily 

at the onset of the disorder.
127

 Notably, the regions that are prominently affected are those 

still undergoing myelination during late adolescence. Furthermore, functional MRI (fMRI) 

studies now suggest altered connectivity in SZ patients. Recently, it was reported that the 

global brain signal (the average signal across all voxels in the brain derived from fMRI) is 

altered in SZ subjects, but not in subjects with bipolar disorder.
128

 Time series of resting-

state fMRI suggest that patients with SZ have reduced functional network strength and 

altered brain network topology.
129-131

 Also, recent investigations have documented robust 

and replicable dysconnectivity in thalamocortical systems in chronic SZ.
132, 133

 Patients 

with SZ also show impaired task-dependent communication between brain regions including 

reduced suppression of default network activity and weaker activation of task-associated 

regions.
134-136

 Several recent studies combining functional and structural imaging have 

found correlations between reduced FA and altered brain activity in specific neural 

circuits.
137

 Collectively, these structural and functional investigations repeatedly point to 

profound alterations in major neural systems related to executive control.
138, 139

Postmortem tissue analyses of SZ brains have found abnormalities in oligodendrocytes, the 

brain's source of myelin.
140

 For example, a report indicated a decrease in the number and 

density of oligodendrocytes in the grey and white matter of Brodmann area 9.
141 

Additionally, microarray and real-time quantitative polymerase chain reaction (qPCR) 

studies identified changes in the expression of oligodendrocyte and myelin-related genes 

such as proteolipid protein 1 (PLP1), myelin-associated glycoprotein (MAG), myelin 

oligodendrocyte glycoprotein (MOG), and oligodendrocyte transcription factor 2 (OLIG2) in 

the prefrontal cortex.
142, 143

 Similar studies have noted expression changes in myelination-
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related genes in additional brain areas including the temporal cortex, cingulate cortex, and 

the hippocampus.
144-146

Furthermore, a number of myelin-related genes have been genetically linked to an increased 

risk of SZ.
147

 These include genes encoding neuregulin-1 (NRG1), receptor tyrosine-protein 

kinase erbB-4 (ERBB4), reticulon 4 (RTN4/NOGO), PLP1, MAG, MOG, OLIG2, 2’,3’-

cyclic nucleotide 3’-phosphodiesterase (CNP1) and ankyrin-3 (ANK3).
147-156

 Several of the 

molecules that are genetically associated with SZ also have altered expression in the SZ 

brain, such as PLP1, MAG, MOG and OLIG2. While no myelin-related genes reached 

significance in a large GWAS set for SZ,
11

 a few (NRG1, ERBB4, ANK3) had sub-threshold 

associations (p-value < 5 × 10−5), and broader pathway analysis revealed a significant 

association for genes in myelination-related pathways and those with specific glial cell-type 

functions.
157, 158

 NRG1 and its erbB receptors are important signaling molecules for axon 

guidance and myelination.
150

 Unaffected subjects carrying a risk allele for NRG1 have 

reduced white matter density.
159

 ANK3 is an axonal protein that helps form the scaffolding 

for NoR and has also been identified as one of the most significant genetic risk factors 

shared between SZ and bipolar disorder.
156

 Another recent study identified several NoR 

proteins affected in SZ, including ANK3 and its interactors.
160

 These results highlight the 

importance of neuron-glia interactions at the NoR in psychiatric illness.
161

 In addition, while 

not traditionally identified as myelin/oligodendrocyte-associated genes, several susceptibility 

genes for SZ that encode the zinc finger binding protein 804A (ZNF804A), L-type voltage-

dependent calcium channel CAV1.2 (CACNA1C), DISC1, and microRNA-137 (MIR137) 

have been associated with white matter phenotypes in SZ patients, as well as, control 

subjects that carry risk alleles.
161, 162

Lastly, we refer to some interesting aspects of clinicopharmacology. Studies have suggested 

that treatment with antipsychotics, lithium, antidepressants, and electroconvulsive therapy 

may share common myelin-protective signaling mechanisms.
163

 One study found that higher 

white matter integrity in first episode SZ was predictive of responsiveness to 

antipsychotics.
164

In summary, data from imaging and postmortem studies have suggested the presence of 

abnormal myelination in SZ. Genetic studies have suggested the importance of neuron-

oligodendrocyte interactions. Given that the typical onset of SZ coincides with the final 

stages of myelination in the frontal and temporal cortices, aberrant myelin development may 

contribute to the presentation of symptoms in patients.

Immune/inflammatory response and oxidative stress

Epidemiological studies have suggested that prenatal infections with viruses, bacteria, or 

parasites increases the risk of their offspring developing SZ in adulthood.
165

 Given that the 

full onset of SZ is frequently in late adolescence and young adulthood, addressing 

mechanisms and mediators of the long pathological trajectory from initial predisposition to 

disease onset remains a central question of SZ research.
4, 166
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Cytokines

An imbalance in the cytokine/chemokine network may be an explanation for why multiple 

infections can increase the risk of SZ; the disturbance of this network during the neonatal 

period may alter fetal brain development.
165

 In accordance with this hypothesis, studies on 

serum levels of cytokines in SZ suggest that IL-1β, IL-6, TNF-α and IL-2 are increased in 

SZ.
167-171

 However, it should be noted that there are also studies that report unaltered serum 

levels of IL-1β, IL-6, TNF-α and IL-2 in SZ.
167, 169, 172, 173

 A recent meta-analysis also 

found that serum levels of IL-1β, the soluble IL-2 receptor (sIL-2R), IL-6 and TNF-α were 

increased in drug-naïve first episode psychosis (SZ, schizophreniform disorder, delusional 

disorder and brief reactive psychosis), however, IL-2, IL-4 and IFN-γ levels were not 

altered.
174

 A meta-analysis of antipsychotic-induced cytokine changes in SZ found that 

antipsychotic treatment increased IL-12 and sIL-2R and reduced IL-1β and IFN-γ plasma 

levels, with treatment duration having no effect.
175

 Additionally, two studies found an 

association between maternal cytokine levels (TNF-α and IL-8) and increased risk of SZ in 

the offspring.
176, 177

 Studies that compare such inflammatory mediators in the CSF of 

controls and SZ subjects (and prodromal subjects) are also available. In particular, a recent 

study that purely utilized unmedicated first onset SZ and prodromal subjects supports 

alterations of inflammatory mediators in psychotic subjects, including the IL-6 cascade and 

IL-8.
178

Microglia

Chronically activated T cells, macrophages and microglia produce cytokines that may 

impact brain development.
167, 179, 180

 The potential involvement of microglia is of particular 

interest from a mechanistic viewpoint since recent studies have indicated a role for microglia 

in synaptic pruning and maintenance.
181-183

 Aberrant synaptic pruning in adolescence is one 

of the important working hypotheses in SZ pathology.
184

 Furthermore, a study using in vivo 
two-photon imaging has shown that blockade of excess synaptic pruning in late adolescence 

ameliorates deficits in prepulse inhibition, at least in an animal model that may model some 

SZ manifestations.
116

 Taken together, reactivation during adolescence of microglia 

pathologically primed in early development may be a likely scenario to account for the 

mechanism. Some postmortem studies have found an increase in the density or activation of 

microglia in SZ: however, other studies found no difference between controls and subjects 

with SZ.
179, 185-189

 A more recent study that used next generation sequencing and Western 

blotting has shown that microglial markers are upregulated in the dorsolateral prefrontal 

cortex of SZ.
190

 Furthermore, immunohistochemistry for the human leukocyte antigen 

(HLA) class II molecules (HLA-DP, -DQ and –DR), which are expressed on antigen-

presenting cells, revealed more positive cells in the white matter of subjects with SZ; the 

authors also indicated that these positive cells morphologically resembled microglia.
190, 191

Although these studies provide promising evidence for the involvement of microglia and the 

inflammatory cascade in SZ, we also need to be prudent in interpreting data from the 

autopsied brain because confounding factors exist and the plausibility of detecting 

adolescent pathology from typically aged autopsied brains is unknown. Validation of ‘brain’ 

inflammation in SZ at the time of psychosis has recently been pursued using PET imaging 

with tracers that target molecules changed in neuroinflammation. In particular, radioligands 
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that target the translocator protein (TSPO) (previously known as the peripheral 

benzodiazepine receptor) have been frequently used.
192

 Activation of microglia results in an 

increase in the number of mitochondria per cell and an increase in the density of the 

peripheral benzodiazepine receptor in the outer mitochondrial membrane.
193, 194

 Two PET 

studies found an increase in the regional binding potential of [11C]PK11195, a classic TSPO 

tracer, in subjects with a psychotic disorder or SZ.
195, 196

 Given the limitations in the 

[11C]PK11195 tracer, such as high nonspecific binding, high lipophilicity and poor signal-

to-noise ratio, recently new PET tracers (e.g., [11C]PBR28 and [11C]DPA713) have been 

developed and are beginning to be used.
197, 198

 A general limitation of TSPO brain imaging 

to test neuroinflammation is that this protein can also be influenced by mitochondrial 

deficits and oxidative stress that may also occur in SZ.
199

 Assessment of brain inflammation 

in SZ using radioligands that target other inflammatory markers will shed further light on the 

role of inflammation in this disease.

Autoimmunity

Multiple combinations of environmental stressors and genetic factors contribute to SZ 

pathology.
165, 200-202

 Aberrant activation and an imbalance of immune/inflammatory 

cascades are likely due to both environmental influences and host susceptibility. 

Epidemiological data linking autoimmune diseases and SZ has recently been reviewed: 

celiac disease, autoimmune thyroiditis, Graves’ disease, type 1 diabetes, multiple sclerosis, 

autoimmune hepatitis, psoriasis, and Sjögren's syndrome are all associated with SZ, 

whereas, there is a very unique and negative association with rheumatoid arthritis.
203, 204 

The increased co-morbidity of SZ with many autoimmune diseases supports the idea that SZ 

has an intrinsic susceptibility to the immune/inflammatory response. This notion is further 

supported by GWAS, which found an association of SZ with the major histocompatibility 

complex (MHC) region.
11, 42, 205, 206

 Additionally, as discussed in the neurotransmission 

section, in some cases of anti-NMDAR encephalitis the presence of the autoantibody 

appears to be related to the psychiatric symptoms.
79, 80

Oxidative Stress

The inflammatory response is interconnected with oxidative stress.
207

 The significance of 

oxidative stress in SZ pathology is that the stress can lead to synaptic deterioration, 

abnormal myelination and interneuron deficits.
207, 208

 Oxidative stress occurs when 

antioxidant defense mechanisms fail to counterbalance reactive oxygen species (hydrogen 

peroxide, superoxide radicals, and hydroxyl radicals). Imbalances in the oxidative and 

antioxidant defense systems have been reported in SZ.
208, 209

 Studies with biospecimens 

(autopsied brain, olfactory cells, CSF and blood) have indicated changes in glutathione 

(GSH), microsomal glutathione S-transferase 1 (MGST1), superoxide dismutase (SOD), and 

catalase.
209-214

 A recent report indicates a significant reduction in CSF SOD-1 from recent 

onset SZ compared with matched controls, however, there was no difference in the level of 

SOD-1 in chronic SZ.
212

 The most reproducible evidence may be a reduction of GSH in the 

blood. Because access to biospecimens from unmedicated first onset SZ and prodromal 

subjects have become more frequently available, the validation of peripheral signs of 

oxidative stress with such subjects is awaited.
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Several studies have investigated ‘brain’ oxidative stress by directly measuring GSH in the 

brain of living SZ patients. Although the measurement of GSH via MRS is a promising 

approach, the data thus far are inconsistent.
208

 An initial study found a 52% reduction in the 

GSH level in the medial prefrontal cortex of drug-free subjects with SZ.
215

 Two subsequent 

studies, focusing on the anterior cingulate and the posterior medial frontal cortex, did not 

find a difference in the GSH level in medicated subjects with SZ.
216, 217

 Finally, another 

study reported an increase in GSH levels in the medial temporal lobe of subjects with first 

episode psychosis.
218

In summary, many clinical and epidemiological studies have supported immunological 

deficits in SZ, which are mediated, at least in part, by microglia. Such immuno-

inflammatory changes are interconnected with deficits in antioxidant cascades and may 

affect neural connectivity.

Endocrine system

Although there are contradictory reports, multiple types of studies have suggested that the 

hypothalamic-pituitary-adrenal (HPA) axis is affected in first episode psychosis and SZ.
219 

An MRI study comparing first episode and chronic SZ subjects to controls found increased 

and reduced pituitary volumes in first episode and chronic SZ, respectively.
220

 Additional 

MRI studies support the finding of an increased pituitary volume in first episode SZ, as well 

as, an increased pituitary volume in subjects at high risk for developing psychosis (i.e., at-

risk mental state).
221, 222

 However, other studies have not found a change in pituitary 

volume in first episode or chronic SZ.
223-225

 A smaller pituitary volume in unmedicated SZ 

has also been reported.
226

 Findings from studies analyzing the volume of the hypothalamus 

in SZ are inconsistent and report both an increased volume as well as no change.
227-230

Consistent with some brain imaging reports, a fraction of unmedicated, medicated, or 

chronic SZ patients have displayed elevated baseline adrenocorticotropic hormone (ACTH) 

and cortisol levels.
231-234

 ACTH is secreted from the anterior pituitary gland in response to 

the hypothalamus releasing corticotropin-releasing hormone (CRH). Higher mean ACTH 

and cortisol levels have also been shown in first episode unmedicated SZ.
219, 235 

Furthermore, the North American prodrome longitudinal study reported higher baseline 

cortisol levels in prodromal (i.e., at-risk mental state) subjects and found that baseline 

cortisol levels correlated with symptom progression: prodromal subjects who transitioned to 

psychotic level symptoms had significantly higher baseline cortisol levels compared to 

controls and prodromal subjects in remission.
236

 However, other studies have not found 

elevated baseline cortisol levels in first episode psychosis and first episode SZ.
219, 237 

Interestingly, antipsychotics (risperidone, haloperidol, olanzapine or flupenthixol) have been 

shown to significantly reduce cortisol levels.
168, 238

 Consistent with some peripheral 

measures of ACTH, a postmortem analysis of pituitary glands found that the level of 

proACTH was elevated in pituitaries from subjects with SZ compared to controls.
239 

Postmortem studies have also suggested a reduction in glucocorticoid receptors: 

glucocorticoid receptor mRNA expression was reduced in the basolateral/lateral nuclei of 

the amygdala, the frontal and temporal cortex and hippocampus.
240, 241

 Overall, the data are 
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promising, however, additional studies assessing the relation of ACTH and cortisol with 

other biomarkers will improve our understanding of the role of the HPA axis in SZ.

Psychosis can occur as a result of elevated endogenous steroid levels (e.g., Cushing 

syndrome) or with exposure to exogenous steroids.
242

 Steroid psychosis, a potential side 

effect of exogenous glucocorticoids, can present with sensory flooding, delusions, 

depression, and auditory and visual hallucinations.
243

 Delusions and hallucinations, 

primarily auditory, can also occur in subjects with psychotic depression; some studies have 

shown that glucocorticoid antagonists, such as mifepristone, can have therapeutic effects on 

psychotic depression.
244, 245

 Given that the effects of glucocorticoids on the brain include 

synaptic regulation and epigenetic control of key molecules for dopamine neurons (e.g., 

tyrosine hydroxylase),
246, 247

 involvement of the HPA axis in SZ and psychosis is an 

important subject that should be studied to a greater extent. However, it may be important to 

sub-classify these conditions to increase the homogeneity of the study subjects.

SZ typically manifests later in life in females than men. This difference in age at onset might 

be partially attributed to the protective effect of estrogen. Estradiol has been found to be 

lower in subjects with SZ, males and females, compared to controls.
248, 249

 Furthermore, an 

association study found that a polymorphism in an intron of the estrogen receptor alpha gene 

occurred more frequently in subjects with SZ and was related to lower mRNA levels in the 

prefrontal cortex.
250

 The molecular targets of estrogen are diverse, but animal studies have 

shown that it can modulate the dopaminergic, serotonergic and glutamatergic pathways: for 

example, estrogen has been shown to alter D2R density, decrease monoamine oxidase 

activity, increase tryptophan hydroxylase activity, downregulate 5HT1A receptors, upregulate 

5HT2A receptors, and alter NMDA receptor density.
251-253

Taken together, hormonal measurements and studies with patient tissue suggest that the 

endocrine system is altered in SZ.

Metabolic cascades

Metabolic disturbances are highly prevalent in SZ patients. Obesity and diabetes are twice as 

common in SZ compared to the general population.
254, 255

 These disturbances create an 

increased metabolic load, eventually leading to cardiovascular issues and other physical 

conditions that possibly account for the higher mortality rate and shorter life span in SZ.
256 

It has also been shown that diabetic SZ patients have worse overall cognitive performance 

compared to SZ patients without diabetes mellitus. Furthermore, patients with untreated 

diabetes mellitus showed poorer overall cognitive performance compared to SZ patients 

without diabetes mellitus.
257

 Major metabolic disturbance in SZ patients is likely elicited by 

neuroleptic medication,
258-260

 however, first onset SZ patients, including unmedicated 

patients, also show higher fasting blood insulin levels, insulin resistance, and impaired 

glucose tolerance.
261-264

 While lifestyle and dietary habits may contribute to this difference, 

it is also likely that an inherent metabolic dysregulation underlies the pathology of SZ. 

Although this concept may not have a scientific consensus yet, we discuss observed changes 

in several peripheral factors and their effects on the brain in SZ.
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Studies using blood samples indicate functional deficits in insulin signaling in SZ,
261-264 

while a separate study reported elevated glucose levels in the CSF, but not in serum, of first 

onset drug naïve SZ subjects.
265

 In unmedicated SZ subjects, PET studies have shown that 

glucose metabolism is reduced in several brain areas, in particular the frontal cortex.
266, 267 

A recent review has summarized microarray studies and found that several genes associated 

with metabolic cascades are differentially expressed in postmortem brains from SZ 

patients.
268

 Postmortem studies have also found disturbances in the insulin-Akt pathway, a 

signaling pathway linked with several types of cognitive deficits.
269-272

 Although data 

derived from postmortem brain tissue may be confounded by medication-induced metabolic 

changes, further analysis is warranted.
273

 Some genetic studies have provided suggestive 

support for the involvement of glucose metabolism cascades in the genetic risk of SZ.
274, 275 

The gene coding for Akt is also a putative risk factor for SZ, at least in part disturbing the 

signaling cascade involving the insulin-Akt pathway.
276

In addition to glucose and insulin, other metabolic mediators (e.g., leptin and ghrelin) may 

play key roles in SZ pathology. Weight gain is associated with increased leptin and leptin 

resistance.
277, 278

 Leptin inhibits the effects of cortisol signaling in the hypothalamus and 

predisposes to mental manifestations, in particular depression.
279, 280

 The ghrelin receptor 

GHS-R1a forms functional heterodimers with the D2R.
281

 Antipsychotics have differential 

effects on these two molecules: fasting morning leptin levels are increased by atypical 

antipsychotics (e.g., olanzapine and clozapine) but are unaffected by conventional 

antipsychotics (e.g., haloperidol).
282

 On the other hand, fasting morning ghrelin levels are 

decreased in the first 2 weeks after atypical antipsychotic treatment but increase in the long-

term.
282

 Neurochemical studies suggest lipid metabolism may also be altered in SZ. Both 

chronic and unmedicated first onset SZ have significantly decreased apolipoprotein A1 

(apoA1) in the brain, liver, red blood cells, sera, and CSF.
283, 284

 However, another group 

found that apoA1 was increased in the CSF of medicated first onset SZ.
285

 Vitamin D 

deficiency is commonly observed in SZ patients and is associated with clinical features of 

the disease.
286

 Vitamin D deficiency is also observed in first-episode psychosis patients and 

developmental vitamin D deficiency has been shown to contribute to the risk of SZ, 

suggesting that neurodevelopment may be affected by vitamin D deficiency.
287, 288

Pharmacogenetic studies, primarily focusing on olanzapine and clozapine, have identified 

SNP in several genes associated with antipsychotic-induced weight gain in SZ patients.
289 

SNP within the genes encoding the serotonin 2C receptor (5-HT2CR), melanocortin 4 

receptor (MC4R), and leptin are those with the most consistently strong evidence, 

implicating serotonergic and feeding-regulation systems in antipsychotic-induced weight 

gain.
290-293

 Although these molecules have been identified as genetic modifiers of adverse 

metabolic effects in SZ patients, elicited by medication, the question remains whether the 

cascades involving these factors play roles in the intrinsic abnormalities of both metabolic 

and mental dysfunction found in SZ patients.

In summary, metabolic cascades are altered in SZ patients, which include changes in the 

levels of glucose, insulin, leptin, ghrelin, and apoA1. Antipsychotics affect these metabolic 

cascades, yet there is also evidence that some metabolic disturbances precede antipsychotic 

exposure. Genetic factors are known to modulate these changes, but it remains elusive 
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whether and how a genetic predisposition to metabolic disturbance plays a primary role in 

SZ pathology.

Modeling and future perspectives: towards understanding integrative 

systems

For this review article we chose to organize the molecular targets of SZ by biological 

system. However, there is obviously tremendous crosstalk among these biological systems 

(Figure 2). Oxidative stress, inflammation, the HPA axis, and metabolic signaling are tightly 

interconnected as homeostatic and stress cascades.
294-296

 Neural networks, the foundation of 

brain function and dysfunction, are finely regulated by neurotransmitters and white matter-

associated connectivity (Figure 3): recently, the significance of neuron-glia interactions in 

these fine regulations has been particularly recognized.
297

 As described above, deviations in 

homeostatic and stress cascades affect key elements of neuronal circuitry, such as synaptic 

maintenance, interneuron functions, and myelination. Thus, the molecular changes described 

in the neurotransmission and white matter-associated connectivity subsections may be 

outcomes of the molecular disturbances in stress signaling described in the second half of 

this article. Alternately, disturbances in neural connectivity may also activate stress 

signaling, which in turn further alters the connectivity. While integration of evidence across 

biological systems remains elusive, this promising working hypothesis suggests a potential 

framework through which they could be linked.

Although human studies with patients and matched controls are essential to identify 

molecular substrates of SZ, there are many barriers to extending an in-depth understanding 

of the disease mechanisms exclusively through human studies. For example, the current 

spatial resolution of human brain imaging at both structural and functional levels cannot 

depict direct entities such as synapses and NoR where we can directly observe the functional 

outcome of the molecular substrates described above. In addition, while it is very important 

to grasp the overall molecular changes in the disease trajectory over 20 years, longitudinal 

human studies on this time scale are challenging and time-consuming.

Given the limitations of human studies, many people have supported the use of animal 

models. One of the major historical debates in regard to SZ animal models is whether we 

can reconstruct models for ‘human’ disease. It is impossible to recapitulate the human 

condition per se in animals. However, by targeting a particular system(s) and/or clinical 

endophenotype(s) in SZ, animal models can become very useful for understanding 

biological mechanisms. In addition to analyzing cross-sectional phenotypes in adult animals, 

it is even more crucial to analyze the disease trajectory from early development to disease 

onset in preclinical studies.
4
 Given the diversity of SZ molecular substrates, ranging from 

homeostatic and stress cascades to neural circuitry components, a major working question in 

the field of animal models is whether and how stress cascades may affect neural connectivity 

along a neurodevelopmental trajectory leading to SZ.

The selection of animal models and their validity in SZ research is very important to 

consider. After the recent introduction of new genetic manipulation technologies,
298-300 

simultaneous modulation of multiple genes is now technically feasible, but only a few 
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studies have been successful thus far. Thus, instead of reconstructing genetic validity from 

multiple common variants with mild biological impact on the pathology, we propose that 

models stemming from the modulation of rare genetic variants with a stronger biological 

impact (e.g., chromosomal micro-deletion or duplication, and genetic modulation identified 

from cytogenetic approaches) may be more widely used in SZ research.
4, 18, 301

 To test the 

functional outcome of multiple common variants for SZ, human stem cell biology can be 

used as a complementary approach to animal models.
302

 For example, CRISPR/Cas9 genetic 

manipulation of induced pluripotent stem cells (iPSCs) originally derived from patients 

carrying multiple disease-associated common genetic variants and subsequently 

differentiated into neurons and glia can be used to assess the contribution of each individual 

genetic variant.

Gene environment interaction plays a key role in the etiology of SZ;
165, 200-202

 therefore, 

consideration of proper environmental stressors, possibly in combination with a genetic 

factor(s), is crucial when building animal models. Some successful examples include 

combining adolescent social isolation or prenatal immune activation with a genetic risk 

factor.
202, 247, 303-305

 Although an advantage of animal models includes their potential to 

trace the possible developmental trajectory to full onset of disease,
306-308

 it is also useful to 

build models by administering relevant drugs to recapitulate specific pathophysiologies and 

phenotypes associated with SZ.

Taken together, several animal models have been proposed to understand the biology 

relevant to SZ. Regardless of whether these animal models are genetic or non-genetic, many 

of them are generated by perturbing biological processes of neurotransmission, white matter-

associated connectivity, inflammatory and oxidative stress, or endocrinology/metabolisms 

(see in Table 4 where representative models are introduced).
304, 309-370

 Most of the models 

were studied from the viewpoints of neurotransmission, neuropsychopharmacology, and 

behavioral neuroscience.
371, 372

 However, recent studies have revisited these models beyond 

these classic paradigms and also elucidated deficits in white matter and stress-associated 

cascades, such as inflammation, oxidative stress, and the HPA 

axis.
323, 324, 328, 333, 359, 366, 373

 Furthermore, models in which stress-associated cascades are 

primarily perturbed have also displayed abnormalities in neurotransmission and behavior: 

for example, mice with glutathione deficiency show impairments in parvalbumin-positive 

interneurons, myelination, and behavior.
340, 341, 343, 344, 374, 375

 Several animal models have 

been designed to test the effect of stress cascades on neurodevelopment, including both 

prenatal and juvenile models of stress and immune activation.
322, 376, 377

 These 

developmental stressors have been shown to affect neurotransmission, myelination, and even 

metabolism. The integrative biological concept of “disturbed homeostatic signaling to 

connectivity deficits” can be tested, at least in part, with such animal models.

In summary, this review highlights the molecular substrates discovered through studies with 

SZ patients that are implicated in SZ pathophysiology. We sub-classify the substrates by 

system, focusing on neurotransmission, targets in white matter-associated connectivity, 

immune/inflammatory and oxidative stress-related substrates, and molecules in endocrine 

and metabolic cascades, taking special note where there is convergence with genetic data. 

Crosstalk among these systems may be important in understanding disease progression and 

Landek-Salgado et al. Page 15

Mol Psychiatry. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



animal models should prove important in charting the developmental progression and 

interaction of these substrates. As a working hypothesis, we propose the molecular changes 

in neurotransmission and white matter-associated connectivity may be outcomes of 

molecular disturbances in stress signaling. Alternately, disturbances in neural connectivity 

may also activate stress signaling, in turn further altering the connectivity. We optimistically 

propose that the identified molecular markers, together with further continuous efforts, will 

aid in discovering biomarkers that may help in the diagnosis, treatment, or early intervention 

of SZ.
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Figure 1. 
L-[β-11C]-DOPA and [18F]-DOPA positron emission tomography (PET) imaging. (A) 

Individual ki values in the left caudate nucleus. Horizontal lines represent mean values of the 

groups. In the schizophrenia group, closed circles indicate antipsychotic drug-naïve patients 

while open circles indicate drug-free patients. There was a significant group difference in ki 

values for the left caudate nucleus. (reproduced with permission from Nozaki et al.
33

) (B) 

Individual and group mean±SD [18F]-DOPA uptake (ki
cer) (min–1) values in the whole, 

associative, sensorimotor, and limbic striatum. Data in the healthy control group are 

represented by grey diamonds and data in the ultra-high risk group (UHR) by black 

triangles. ki
cer values were significantly higher in the UHR than control group in the whole 

and associative striatum (*p<.05), indicating elevated dopamine synthesis capacity. 

(reproduced with permission from Egerton et al.
34

)
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Figure 2. 
Molecular crosstalk between the biological systems in schizophrenia. Mesolimbic 

dopaminergic projections (yellow) between the ventral tegmental area (VTA) and striatum 

(Str.) are significantly increased. The dopaminergic mesocortical pathway is also affected. 

Multiple glutamatergic (pink) pathways are affected. GABAergic (blue) pathways are also 

affected. Glucocorticoids released from the adrenal glands affect numerous brain targets 

including the cortex, hippocampus (Hip.), hypothalamus (Hyp) and pituitary gland. 

Molecular substrates of adipose tissue and the gut interact with the hypothalamic-pituitary-

adrenal axis via the hypothalamus. Th, thalamus; WM, white matter; CRH, corticotropin 

releasing hormone; ACTH, adrenocorticotropic hormone.
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Figure 3. 
Inter-cellular interactions of some important molecular substrates affected in schizophrenia. 

A glutamatergic synapse with contact from a nearby astrocyte represents changes in 

neuronal signaling. Changes in myelination and formation of nodes of Ranvier along the 

axon are represented by a single oligodendrocyte. Peripheral factors enter the brain through 

the blood-brain barrier formed between blood vessels and astrocyte end feet. Inflammatory 

factors are released by microglia and astrocytes. NRG1, neuregulin-1; MAG, myelin-

associated glycoprotein; PLP1, proteolipid protein 1; ANK3, ankyrin-3; ARC, activity-
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regulated cytoskeleton-associated protein; PSD-95, postsynaptic density protein 95; DISC1, 

disrupted in schizophrenia 1; PAK6, p21 protein-activated kinase 6; PAK7, p21 protein-

activated kinase 7.
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Table 1

Molecular and Cellular
1
 Substrates of Schizophrenia, Organized by System

Neurotransmission

Dopamine

D2 Receptor

D1 Receptor

Homovanillic acid

Tyrosine hydroxylase

5HT2A receptor

Glutamate

NMDA Receptor

Glutamate receptor, ionotropic, NMDAR 2A (GRIN2A)

Glutamate receptor, ionotropic, AMPA 1 (GRIA1)

Activity-regulated cytoskeleton-associated protein (ARC) signaling complex

Glutamine

GABA

GAD67

Parvalbumin (PV)

Kv3.1

KCNS3

Somatostatin

Cholecystokinin

Nicotinic acetylcholine receptors (nAChRs)

Potassium channel tetramerization domain containing 13 (KCTD13)

Contactin 4 (CNTN4)

P21 protein-activated kinase 6 (PAK6)

Neuroligin 4, X-linked (NLGN4X)

Disrupted in schizophrenia 1 (DISCI)

P21 protein-activated kinase 7 (PAK7)

N-thylmaleimide sensitive factor (NSF)

Synapsin II (SYN2)

Dendritic Spines

White matter-associated connectivity

Proteolipid protein 1 (PLP1)

Myelin-associated glycoprotein (MAG)

Myelin oligodendrocyte glycoprotein (MOG)

oligodendrocyte transcription factor 2 (OLIG2)

Neuregulin-1 (NRG1)

Receptor tyrosine-protein kinase erbB4 (ERBB4)

reticulon 4 (RTN4/NOGO)

Cyclic-nucleotide-3′-phosphodiesterase (CNP1)

Akyrin-3 (ANK3)
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Zinc finger binding protein 804A (ZNF804A)

L-type voltage-dependent calcium channel CAV1.2 (CACNA1C)

MicroRNA-137 (MIR137)

Disrupted in schizophrenia 1 (DISC1)

Myelin

Node of Ranvier

Oligodendrocytes

Immune/inflammatory response and oxidative stress
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1
Cellular substrates appear in italics
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Table 3

Summary of glutamate and GABA 1H MRS studies

Glutamatergic level (subject vs control) Brain Region Disease stage Antipsychotic Status References

↑ MPFC, ACC E, C - Poels et al.64

↓ MPFC, ACC Marsman et al.
65

ARMS -

E -

E +

C NR, +

- MPFC, ACC C + Poels et al.64

- DLPFC E, C -, + Poels et al.64

- Hippocampus Poels et al.64
, Marsman et al.

65

ARMS -

C NR

E, C +

↓ Hippocampus NR -, + Stan et al.69

↓ Thalamus ARMS -, + Poels et al.64

↑ Thalamus E - Poels et al.64

- Thalamus Poels et al.64
, Marsman et al.

65

ARMS -

E -

C +

GABA level (subject vs control) Brain Region Disease stage Antipsychotic Status References

- Frontal Lobe E + Goto et al.81

↑ ACC C + Ongur et al.84

- ACC C + Tayoshi et al.82

↓ ACC C, older age + Rowland et al.85

↑ MPFC C - Kegeles et al.66

- MPFC C + Kegeles et al.66

- DLPFC C -, + Kegeles et al.66

↓ Basal Ganglia E + Goto et al.81

- Basal Ganglia C + Tayoshi et al.82

↑ Parieto-Occipital Cortex C + Ongur et al.84

↓ Visual Cortex E, C -, + Yoon et al.83

Abbreviations: MPFC, medial prefrontal cortex; ACC, anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex; E, first-episode or early; C, 
chronic; ARMS, at-risk mental state; -, unmedicated; +, medicated; NR, not reported
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