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Abstract

Next-generation sequencing (NGS) has transformed our understanding of the dynamics and 

diversity of virus populations for human pathogens and model systems alike. Due to the sensitivity 

and depth of coverage in NGS, it is possible to measure the frequency of mutations that may be 

present even at vanishingly low frequencies within the viral population. Here, we describe a 

simple bioinformatic pipeline called CoVaMa (Co-Variation Mapper) scripted in Python that 

detects correlated patterns of mutations in a viral sample. Our algorithm takes NGS alignment data 

and populates large matrices of contingency tables that correspond to every possible pairwise 

interaction of nucleotides in the viral genome or amino acids in the chosen open reading frame. 

These tables are then analysed using classical linkage disequilibrium to detect and report evidence 

of epistasis. We test our analysis with simulated data and then apply the approach to find 

epistatically linked loci in Flock House Virus genomic RNA grown under controlled cell culture 

conditions. We also reanalyze NGS data from a large cohort of HIV infected patients and find 

correlated amino acid substitution events in the protease gene that have arisen in response to anti-

*corresponding authors: arouth@scripps.edu, betorbet@scripps.edu, Department of Molecular and Experimental Medicine, The 
Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA, Tel: 858-784-8654, Fax: 858-784-8660.
3(Present Address) Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 
USA

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Methods. Author manuscript; available in PMC 2016 December 01.

Published in final edited form as:
Methods. 2015 December ; 91: 40–47. doi:10.1016/j.ymeth.2015.09.021.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



viral therapy. This both confirms previous findings and suggests new pairs of interactions within 

HIV protease. The script is publically available at http://sourceforge.net/projects/covama
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1. Introduction

Viral populations are typically very diverse due to the high error-rate of their polymerases. 

As a result, just a single round of replication can generate many variant species of an 

original parent virus. The error rate of viral polymerases varies greatly among viral species, 

but is generally considered to be the highest for positive-strand RNA viruses[1]. This ability 

of viruses to sample a wide-range of mutational space is what gives rise to their ability to 

quickly evolve and adapt.

Next-Generation Sequencing (NGS) is well poised to characterize viral intra-host diversity 

and has been employed during the surveillance of viral epidemics, to monitor the 

development of drug resistance and importantly to further our fundamental understanding of 

viral evolution, their lifecycles and the functional components of their genomes. There are 

many bioinformatic software packages available that enable a user to detect and characterize 

mutations in viral genome from NGS data[2]. However, it is also important to characterize 

and understand how these mutations interact with one another and whether they arise 

independently or in a concerted manner due to a phenotypic co-dependence. There are many 

methods for haplotype phasing in the genome of higher-eukaryotes (reviewed in [3]). 

However, haplotype phasing in viruses is considerably more challenging due to the 

heterogeneous make-up of the viral populations, varying rates of homologous recombination 

[4], and the requirement for high sequence coverage to detect low-frequency events.

To this end, a number of approaches have been proposed. These generally fall into two 

categories: direct and indirect approaches. Direct approaches extract information from 

individually sequenced fragments of DNA or sequence reads. VPhaser[5] and VPhaser 

2.0[6] employ a direct approach by measuring the frequency of nucleotide mutations, 

determining the probability of seeing two mutations together and comparing this prediction 

to the actual observed read data. This can sensitively infer intrahost diversity, but is limited 

by the length of the DNA fragments that are sequenced and the underlying error-rates of the 

sequencing platform. Indirect approaches employ mathematical or statistical models such as 

mutual information theory [7] and hidden-markov models [4] to infer the association of two 

mapped mutations from multiple individually sequenced fragments of DNA. However, this 

imposes certain assumptions about the expected and observed frequencies of distant 

mutations and the rates of recombination between them (either due sequencing artifacts or 

the viral replication itself). Indirect approaches also include ‘quasi-species reassembly’ 

algorithms that aim to reconstruct the multiple variant viral genomes within a population, of 

which there are multiple strategies (reviewed in [8, 9]).
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Here, we describe a simple bioinformatic pipeline called CoVaMa (Co-Variation Mapper) 

that uses NGS data to search for evidence of covariation by measuring Linkage 

Disequilibrium (LD) within the mutational landscape of the virus sample. Our approach is 

‘direct’ by virtue of counting the frequency of observed mapped nucleotides from the read 

alignment data and populating large matrices of contingency tables that correspond to every 

possible pairwise interaction of nucleotides in the viral genome. In this manner, no 

assumptions are made about the underlying rate or source of single nucleotide differences 

from the reference genome. Rather, significant epistatic pairs are reported by finding 

outlying LD values among the entire distribution of all other LD values measured. If 

provided with an open reading frame, CoVaMa is also able to detect epistatic amino acid 

pairs. Additionally, CoVaMa can merge the output from multiple read alignments in order to 

look for evidence of coevolution of alleles within a population. CoVaMa can accept any 

read length as well as paired-end reads, although the computational demands of the pipeline 

scale accordingly with much longer reads.

In this manuscript, we use simulated NGS data to verify that expected pairs of mutations can 

be reliably and sensitively detected. We then demonstrate how co-variance can be found 

within the genome of Flock House Virus (FHV) when passaged in cell culture and analysed 

by RNAseq. Finally, we reanalyze RNAseq data from a large cohort of HIV infected 

patients who have failed to response to anti-viral therapy and find correlated mutations 

within the protease gene known to confer protease-inhibitor resistance as well as potentially 

novel associations. While we have applied this pipeline to explore RNA virus epistasis here, 

CoVaMa may also be applied in a broad range of settings including large DNA viruses, 

bacteria or even larger organisms but is limited by the computational resources available.

2. Materials and Methods

2.1 Co-Variation Mapper - CoVaMa

A simple program scripted using Python was written to measure linkage disequilibrium in 

NGS datasets, called Co-Variation Mapper (CoVaMa). The scripts, associated manuals and 

test data are available at (http://sourceforge.net/projects/covama/). CoVaMa is cross-

platform compatible requiring Python version 2.7 and Numpy (http://www.numpy.org/). 

CoVaMa is computationally intensive and run time can vary dramatically, ranging from a 

few minutes to a few hours depending upon the complexity, size and length of reads in a 

NGS dataset. However, we use an Apple Workstation with 16Gb RAM and 8×2 core 

processors and have found this sufficient for the analyses described in this manuscript. The 

performance of CoVaMa can be improved considerably (up to 4× improvement) by using 

the Python-interpreter and JIT compiler, PyPy (http://pypy.org/).

CoVaMa is split into three different scripts, separated to allow storing of data at intermediate 

stages of the analyses: 1) CoVaMa_Make_Matrices; 2) CoVaMa_Merge_Matrices; and 3) 

CoVaMa_Analyse_Matrices.

2.1.1 CoVaMa Make Matrices—Firstly, CoVaMa generates large matrices 

corresponding to every possible pair of nucleotides or amino acids in the reference genomic 

sequence. As illustrated in Figure 1A, each point in these matrices is filled with a 
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contingency table either 4×4 or 20×20 in size for nucleotide matrices and amino acid 

matrices respectively. The rows of the nucleotide contingency tables correspond to nts 

(A,T,G,C) at the 5’ nucleotide position of each nucleotide pair and likewise columns of the 

contingency table correspond to nts (A,T,G,C) at the 3’ nucleotide position. Similarly, each 

row and column of the 20×20 amino contingency tables corresponds to each of the 20 

natural amino acids at the N and C termini respectively. The contingency tables in the 

matrices are generated using the Python defaultdict subclass in order to avoid building large 

numbers of unnecessary contingency tables that would otherwise occupy memory and 

reduce performance.

Next, CoVaMa extracts the relevant data contained within the Sequence Alignment/Map 

(SAM) files [10] and stores it in a temporary dictionary. Either single or paired-end 

alignment data can be used as input data. As it is likely that there are many duplicate reads 

with identical alignments due to PCR duplication or low-sample degeneracy, identical 

alignments are processed together as a group rather than individually to optimize 

performance and run time. An additional option (--Edge) provided in the command-line is to 

ignore a user-defined number of nucleotides at the 5’ and 3’ end of an aligned read. These 

portions of an aligned read are usually of the poorest quality and can often contain apparent 

variances from the reference genome due to the retention of short fragments of the Illumina 

adaptor sequences. Additionally, if the first or last nucleotides of a sequence read overlap 

the junction of a recombination event, they may erroneously map to the wild-type reference 

sequence but be counted as mismatched nucleotides. To mitigate this scenario, we 

recommend setting the --Edge option to the same value used for mismatch tolerance during 

the alignment of the sequence data.

Once the alignment data has been extracted, CoVaMa populates the contingency tables 

within the larger matrices. The alignment data provides the position in the reference genome 

that the reads map as well as any point mutations that may have occurred. Ambiguous (‘N’) 

nucleotides are ignored. Every nucleotide within an alignment is paired with every other 

nucleotide and the corresponding contingency table is populated according to which 

nucleotides are at found at each pair of loci. For example, for an alignment containing a ‘T’ 

at nt 20 and a ‘C’ at nt 40, CoVaMa will go to contingency table with the coordinates 20:40 

in the nucleotide matrix and add 1 successful mapping to this table at coordinates 

corresponding to T:C, which is row 2, column 4 under the protocol used here. Pairs are 

assessed only once (i.e. nt 20 is paired with nt 40, but nt 40 is not paired with nt 20 as this 

would duplicate information) and a nucleotide cannot pair with itself. Therefore the number 

of nucleotide pairs in an alignment is given by: n(n−1)/2. Each read provided in the 

alignment data is also translated into an amino acid sequence in an open reading frame if 

provided by the user in the command line, up until a ‘STOP’ codon is found or until the end 

of the read segment. In this manner, every amino acid is paired and this information is used 

to populate a 20×20 contingency table.

After CoVaMa has populated the contingency tables for all of the read data, the data is 

written out as a pickle file. The purpose of this is so that the contingencies tables can be 

analysed repeatedly using different parameters without having to regenerate the matrix as it 

is this stage of the analysis that is most computationally intensive. Only contingency tables 
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represented by a minimum number of reads (as specified in the command-line) are written 

out to prevent expending memory on tables that have too few data points to be statistically 

significant.

2.1.2 CoVaMa Merge Matrices—In some situations, it may be appropriate to merge 

individual matrices together, for example, when multiple datasets are obtained for multiple 

replicate samples. As each dataset may contain a different level of sequencing coverage or 

depth, it would be inappropriate to directly add the matrices to one another as this would 

weigh the contingency tables in favor of which ever dataset had the most reads. Therefore, 

when contingency tables are merged, the number of reads mapping at each nucleotide or 

amino acid pair is normalized relative to the total number of reads that mapped in the local 

contingency table. After normalization, the contents of equivalent tables in the individual 

matrices are averaged together to generate a single matrix.

2.1.3 CoVaMa Analyse Matrices—To test for evidence of mutational correlation, each 

of the contingency tables generated in the first half of the CoVaMa script are analysed for 

evidence of linkage disequilibrium (LD). LD is a measure of the non-random association of 

two alleles within a population of genomes and determines whether pairs of alleles tend to 

occur together (disequilibrium or co-variance) or occur independently of one another 

(equilibrium) [11]. Linkage disequilibrium between two alleles can be present for either of 

two reasons: 1) variant alleles have been inherited together and so are associated by mutual 

descent; or 2) the two variant alleles are epistatically linked either via positive-selection of 

linked loci or the elimination of unlinked loci. While usually applied in the setting of 

population genetics, this approach can also be straight-forwardly applied to study sequence 

diversity within a single viral population as the frequency of alleles can be measured using 

NGS. However, NGS provides a complex description of the allelic composition of a viral 

population by assessing the frequency of all possible nucleotides at a given position. 

Therefore, to measure LD in a viral population, every nucleotide can be considered to be an 

allele and every single nucleotide position within a viral genome can be assessed for linkage 

to every other nucleotide position.

To measure LD, the allele frequency is measured at each locus (‘Aa’ and ‘Bb’) within the 

population and the linkage disequilibrium for alleles Aa and Bb is determined using: LD = 

(pAB * pab) − (pAb * paB). LD can be either positive or negative, depending on the 

arbitrary assignment of the alleles as ‘A’ or ‘a’ and ‘B’ or ‘b’. Two loci that are in complete 

equilibrium have a LD value of 0.0, whereas two loci in disequilibrium will have an LD 

maximum value of +/− 0.25.

Linkage disequilibrium calculations require a 2×2 contingency table (‘A’ and ‘a’ vs ‘B’ and 

‘b’). However, we are generating 4×4 contingency tables to compare the frequencies of all 

possible nucleotides at pairs of loci and 20×20 contingency tables for amino acid pairs. 

Consequently, we must extract 2×2 tables one by one from every contingency table and 

evaluate every 2×2 table for evidence of linkage disequilibrium as illustrated in Figure 1B. 

There are 36 possible 2×2 unique tables in a single 4×4 table and 36100 in a single 20×20 

table.
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CoVaMa analyzes each possible 2×2 table for evidence of LD, but first applies a simple 

filter to each 2×2 table to ensure that each of the alleles are sufficiently well represented to 

provide a meaningful analysis and to ensure that 2×2 tables do not report variance that could 

be accounted for by sequencing errors in the NGS platform. Firstly, each 2×2 table must 

have a minimum number of mapped reads (--Min_Coverage), and secondly, each allele must 

be present within the total population above a certain fraction, as chosen in the command 

line (--Min_Pop_Fraction). These parameters have default values of 1000 and 0.1% 

respectively, but can be adjusted taking into account the known error rate of the sequencing 

platform/technique used and the depth of the sequence coverage. The typical error-rate in 

the Illumina technologies is primarily due to base-calling errors and mutations that arise 

during the RT-PCR and PCR steps of library generation. After appropriate quality filtering, 

this rate is typically found to be in the order of 10−2 to 10−3 errors per nucleotide [12] but 

can be improved via a number of strategies including PrimerID [13], CircSeq [14, 15], and 

by merging together the overlapping portions of paired-end reads.

CoVaMa includes an option to normalize each recorded LD value based on the ratio of the 

number of reads used to calculate the LD for an individual 2×2 table to the total number of 

reads in the whole 4×4 or 20×20 contingency table. The purpose of this is to prevent 

skewing the data in favor of infrequently occurring pairs of mutations that are nonetheless in 

strong disequilibrium. Without this weighting, rare pairs of correlated mutations may appear 

to be highly significant in terms of their LD value, but in fact only make up a very small 

portion of the total population. Finally, any contingency table displaying evidence for 

linkage disequilibrium is written to an output file. An example of the output for a single 

contingency table is shown in Figure 1C.

2.2 Statistical Analysis

A very large number of LD values are generated during the analysis of even a very short 

fragment of RNA/DNA (potentially millions of data points). Hence it is important to follow 

a robust methodology for selecting those LD values that are significantly different. Here, we 

employ the 3σ rule for comparing a single data point to a very large distribution of other 

data points [16]. After CoVaMa has completed its analysis, it finds the mean and standard 

deviation of all the LD values and reports the 3σ critical value (μ+3σ) and 5σ critical value 

(μ+5σ). The output data can be filtered to remove points falling below this cut-off to reveal 

only the significant data points. It should be noted that this process is conservative, as the 

distribution of LD values tends to be heavy-tailed rather than normally distributed. This is 

due to the fact that LD values are confined to limits between 0 and 0.25 and that the majority 

of background noise is assumed to occur randomly and thus contain no mutual information; 

i.e. they will be in equilibrium and therefore tend towards an LD value of 0.

3. Results

3.1 Simulated Data

To test the CoVaMa pipeline and determine whether epistatic mutations can be reported 

faithfully, simulated NGS datasets were generated mimicking an RNAseq experiment 

analyzing Flock House Virus (FHV) RNA3, a subgenomic RNA 387 nts in length that 
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expresses protein B2. Two reference RNAs were generated, a wild type version and a 

second version containing two nucleotide variants at nt 81 and nt 133 that would translate 

into two amino acid residue variants in the correct reading frame. 400 simulated datasets 

were generated covering a range of random nucleotide substitution rates in the raw reads and 

a range of frequencies of the mutant RNA relative to the wild type RNA. For each dataset, 

100’000 100 nt reads were extracted from a random position in the reference RNAs in the 

same fashion described in our previous studies[17]. This analysis was designed to determine 

how sensitive CoVaMa would be to rare mutant RNAs across a range of error rates.

Each simulated dataset was initially aligned to the wild type reference RNA3 end-to-end 

using Bowtie[18]. The output SAM files were then passed to the CoVaMa pipeline and the 

linkage disequilibrium was reported for all pairs of mapped nucleotides as well as their 

corresponding pairs of amino acid residues. Then, for each dataset the LD for the known 

mutant pair was compared to the distribution of LD values for all of the other mapped 

nucleotide or amino acid pairs. Figures 2A and 2B show the number of standard deviations 

(σ) that the expected mutant pair (nt 81 to nt 133) was separated from the mean of the entire 

distribution of LD values for each dataset for both nucleotide pairs and amino acid pairs 

respectively.

As expected, these plots indicate that confidence in identifying the mutant pair is poor when 

the simulated substitution rate is high but the mutant pair frequency is low. Conversely, with 

a low mutation rate and higher abundance the mutant pair is readily detected with very high 

significance. Importantly, at the range of errors commonly found for the Illumina platform, 

the expected mutant pair is correctly identified with a confidence greater than 3σ even when 

the mutant pair is only present with a 0.1% frequency.

3.2 Flock House Virus – Nucleotide Matrices

We have extensively studied FHV as a model system for positive sense RNA virus evolution 

and recombination[17, 19]. FHV provides a well-characterized and simple viral system by 

virtue of only comprising two RNA genes encoding three gene products. Nonetheless, in 

spite of such simplicity the mutational spectrum of FHV has proven to be highly dynamic 

with single nucleotide polymorphisms rapidly arising in cell culture and prolific RNA 

recombination resulting in the evolution of defective RNA species. FHV can be passaged in 

a straight-forward manner in Drosophila melanogaster S2 cells in culture and particles 

purified from the lysed cells [20]. As such, FHV provides an ideal model system to validate 

the computational approaches described here and explore intra-host diversity under limited 

conditions.

FHV particles were grown in cell culture for a total of 48 hours, purified over a series of 

ultracentrifugation steps and treated with nucleases to remove non-encapsidated RNAs, as 

per our previous analyses [17, 19]. The encapsidated genomic RNA was then extracted and 

prepared for RNAseq using ClickSeq (a cDNA library generation method we recently 

developed that considerably reduces artifactual recombination[21]). Final cDNA sequencing 

libraries were prepared for paired-end sequencing with an average fragment length of 150–

200bps and sequenced on an Illumina NextSeq giving 150bp for each read. Overlaps on the 

paired read data were exploited to reconstruct longer single reads and correct sequencing 
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errors using BBmerge from the BBmap suite (http://sourceforge.net/projects/bbmap/). The 

raw data was adaptor-trimmed and quality-filtered with cutadapt[22] and the fastx_toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/) using the commands as shown in Box 1, Step 1.

The raw data was aligned to the FHV reference genomic RNAs using an end-to-end 

alignment in Bowtie[18] allowing a maximum of 3 mismatches per read. The output SAM 

file was then passed to the CoVaMa_Make_Matrices script to generate contingency tables of 

nucleotide pairwise associations. Only contingency tables that were occupied by at least 100 

reads were retained and these were passed to the CoVaMa_Analyse_Matrices script to find 

evidence of linkage disequilibrium. The only contingency tables analysed were those where 

variant alleles at each loci were represented by at least 100 reads and were present at a 

frequency no less than 0.1% of the total reads in the contingency table. LD values for each 

variant pair were normalized relative to the number of reads that occupied each contingency 

table, as described above and in Figure 1B. The command line entries used for each of these 

steps (nucleotide matrices only) are shown in Box 1, Steps 2–6.

In this analysis, a total of 551’381 tables were evaluated with 10’862 passing the coverage 

filters and returning an LD value. The mean and standard deviation of these values was 

2.3×10−4 and 6.8×10−4 respectively, yielding a 3σ critical value of 2.1×10−3. Only 10 pairs 

of nucleotides were found with significant (>3σ) linkage disequilibrium (Table 1). Of these 

10 pairs, 7 of them are found in FHV RNA 1 and 3 in FHV RNA 2. We also looked for 

evidence of linkage disequilibrium between pairs of amino acids but found no significant 

LD values in the FHV RNA 1, RNA 2 or RNA 3 open reading frames.

It is not clear why these loci are linked from our analysis alone. It is interesting to note, 

however, that all of the detected loci are found in regions that are conserved in Defective-

Interfering RNAs [17] that arise during FHV passage in cell culture and so it is possible that 

these loci contribute to the formation of functional or structural motifs. Moreover, the four 

nucleotides in disequilibrium with one another at FHV RNA 1 at nts 187, 192, 240 and 259 

(Table 1) fall within a well-characterized cis-acting response element (cis-RE) from nt 40 to 

nt 290 that is required for the replication of FHV RNA 1 [23]. Fine-grain deletion analyses 

in this cis-RE indicate that nts 187, 192, 240 and 259 are in regions required for FHV RNA 

1 replication. Both nt 187 and 192 form part of a stem of predicted RNA secondary structure 

in this region that is also required for the recruitment of FHV RNA 1 to the mitochondrial 

membrane (the site of RNA replication) in a manner dependent upon FHV RNA-dependent 

RNA polymerase and so may act in a concerted fashion. It would be interesting to confirm 

with experimental analyses whether these mutations promote or attenuate viral fitness in cell 

culture and whether they have a cooperative or co-dependent effect, as would be suggested 

by the data presented here.

3.3 HIV Protease – Amino Acid Matrices

The development of resistance to HIV protease inhibitors has contributed to the persistence 

of the HIV/AIDS epidemic and so the evolution of HIV protease in response to anti-

retroviral treatment has been well-studied. There are a number of characterised amino acid 

substitutions known to affect protease activity and rescue wild-type proteolysis in the 

presence of protease inhibitors[24]. Often, multiple mutations occur in a correlated fashion. 
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Previous analyses have applied linkage disequilibrium studies to detect correlated evolution 

by comparing consensus viral genome sequences isolated from drug-treated versus drug 

naive patients[25]. However, this approach is insensitive to the mutations found within the 

diverse viral population found within each patient. Here, we use CoVaMa to take into 

account the mutant spectra within each patient and subsequently measure linkage 

disequilibrium within the protease gene within a large patient cohort.

In a previous paired-end sequencing analysis of 93 patients from the US military HIV 

Natural History Study, we described the co-evolution of distant parts of the HIV genome in 

protease and gag through mutual information theory[7, 26]. In this study, viral RNA was 

obtained from the serum or plasma of patients after therapy had failed to adequately 

suppress viral replication (1,000 copies/mL) with multiple samples taken for some patients. 

For paired-end sequencing, cDNA amplicons were generating by RT-PCR amplifying two 

1-kilobase segments of the viral genome that spanned the protease and gag polyprotein, as 

described [26]. These amplicons were prepared for paired-end sequencing, yielding ~5M 

paired reads per patient sample with fragment sizes averaging 275bp. This fragment size is 

sufficient to cover the protease gene in its entirety.

Here, we reanalyzed the RNAseq data to find evidence of LD in the amino acid sequence of 

protease. The consensus genome for each patient was generated as part of our previous 

investigation [7, 26] and the paired-end reads for each individual dataset were aligned end-

to-end to the viral genome using bowtie [18]. Using patient-specific consensus genomes 

rather than the reference HX2B genome for alignment is very important as it ensures that the 

maximum number of reads will align successfully. After the final alignment to the 

consensus genome, the output SAM files were passed to the CoVaMa pipeline to generate 

contingency tables. This process was performed individually for every dataset in the patient 

cohort using the command line entries shown in Box 2 steps 1–3.

Next, all the contingency tables for each individual were ‘merged’ together into a single 

table that represented the mutant spectra found within the total cohort, rather than just the 

individuals. As linkage between alleles can occur due to both epistatic coevolution or due to 

co-inheritance, averaging together the contingency tables for multiple patients will remove 

any evidence of linkage due to inheritance. Any remaining linkage is thus likely to occur 

due to correlated evolution of the protease in response to drug treatment. The merged 

matrices were analysed using CoVaMa, yielding a large number of correlated mutations in 

the drug-resistant variant species. The command line entries used for each of the steps are 

shown in Box 2 steps 4–6.

With this analysis, we found a large number of correlated mutations in the amino acid 

sequence of HIV protease. In total, 414 pairs of mutations were found with LD values above 

the 3σ critical value and 162 above 5σ. The top 25 pairs are shown in Table 2. Importantly, 

we find many pairs of mutations that have been previously characterized as giving rise to 

protease inhibitor resistance both independently [24] and in a coordinated fashion [7, 27–30] 

(21 out of the 25 pairs shown in Table 2). This gives us confidence in the ability of the 

methodology described here to detect covariation in NGS datasets and cohorts. Interestingly, 

single amino acid loci often displayed high levels of LD with multiple other amino acid loci, 
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indicating that amino acid substitutions may cluster together into networks that have evolved 

collectively [28]. As we have merged the alignment data from multiple patient samples, it is 

highly unlikely that these networks are present due to a common inheritance (identity-by-

descent), but rather reflect a functional cooperativity of these residues in the evolution of 

drug resistance. Additionally, we find highly significant events that have not been 

previously described. Further experimentation will determine the validity and nature of these 

correlated mutations.

4. Discussion

In this manuscript, we described how data generated from NGS studies can be used to 

measure linkage disequilibrium among variant nucleotides and amino acids in the viral 

mutational landscape. Our script, CoVaMa, provides a simple tool to perform this analysis. 

The studies illustrated here could easily be applied using our scripts to other individual or 

cohort studies investigating viral diversity by NGS or of other more complex organisms.

One major limitation of NGS is the length of the sequence reads that can be generated. NGS 

platforms and chemistries are currently limited in the length to only a few hundred 

nucleotides. As a result of extracting information directly from reads alignment data and 

making no inferences as to how these reads might themselves be linked to one another, 

CoVaMa is limited to finding correlated pairs of mutations that are separated by a distance 

no longer than the read length. Nonetheless, CoVaMa is still capable of revealing important 

correlated mutations and as new technologies and methods arise that extend the length of 

high-throughput sequencing reads and improve long-read error-rates, the strength of 

approach described here will scale accordingly.

Our first analysis using simulated data demonstrated that linkage disequilibrium can 

successfully and sensitivity extract coordinated patterns of mutations from NGS sequence 

alignment. Of course, this represented an idealized scenario. In reality the distribution of LD 

values may be affected by multiple simultaneous mutations and the raw data may contain 

many other types of errors such as artifactual recombination events, homo-polymer slipping, 

micro-deletions, and PCR duplications. Nonetheless, in the range of errors commonly found 

for the Illumina platform, the expected mutant pair is correctly identified with a confidence 

greater than 3σ even when this mutant pair is present with only a 0.1% frequency within the 

population. This gives us confidence in the ability of CoVaMa to sensitively and reliably 

detect co-variation in NGS datasets.

By applying this approach to real RNAseq data from a cell-culture based study of Flock 

House Virus, we demonstrated that correlated mutations arise even within the limited 

environment of cell culture. Under these conditions, there are very few barriers to viral 

progression and so concerted viral adaptations seem less likely than when compared to viral 

passaging in the wild. Nonetheless, we observed a few modifications to the RNA sequences 

that may affect local RNA motifs. Finally, we demonstrate that CoVaMa can find correlated 

mutations in the protease gene within a large patient cohort. Most of the correlated 

mutations found here have been previously found in a number of studies including our 

previous analysis of the same patient cohort. This demonstrates that the methodology 
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applied here has been successful and can robustly detect epistatic co-evolution. Having 

identified these correlated pairs of mutations, experiments can be designed to measure the 

effect that they may have on viral fitness and the viral lifecycle.
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Abbreviations

FHV Flock House Virus

NGS Next-Generation Sequencing

LD Linkage Disequilibrium

HIV Human Immunodeficiency Virus

SAM Sequence Alignment Map

cis-RE cis-acting response element

CoVaMa Co-Variation Mapper

Nt Nucleotide

References

1. Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S. Science. 1982; 215:1577–
1585. [PubMed: 7041255] 

2. Sharma D, Priyadarshini P, Vrati S. J Virol. 2015; 89:1489–1501. [PubMed: 25428870] 

3. Browning SR, Browning BL. Nat Rev Genet. 2011; 12:703–714. [PubMed: 21921926] 

4. Topfer A, Zagordi O, Prabhakaran S, Roth V, Halperin E, Beerenwinkel N. Journal of 
computational biology : a journal of computational molecular cell biology. 2013; 20:113–123. 
[PubMed: 23383997] 

5. Macalalad AR, Zody MC, Charlebois P, Lennon NJ, Newman RM, Malboeuf CM, Ryan EM, 
Boutwell CL, Power KA, Brackney DE, Pesko KN, Levin JZ, Ebel GD, Allen TM, Birren BW, 
Henn MR. PLoS computational biology. 2012; 8:e1002417. [PubMed: 22438797] 

6. Yang X, Charlebois P, Macalalad A, Henn MR, Zody MC. BMC Genomics. 2013; 14:674. 
[PubMed: 24088188] 

7. Flynn WF, Chang MW, Tan Z, Oliveira G, Yuan J, Okulicz JF, Torbett BE, Levy RM. PLoS 
computational biology. 2015; 11:e1004249. [PubMed: 25894830] 

8. Prosperi MC, Yin L, Nolan DJ, Lowe AD, Goodenow MM, Salemi M. Scientific reports. 2013; 
3:2837. [PubMed: 24089188] 

9. Beerenwinkel N, Gunthard HF, Roth V, Metzner KJ. Frontiers in microbiology. 2012; 3:329. 
[PubMed: 22973268] 

Routh et al. Page 11

Methods. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 
Bioinformatics. 2009; 25:2078–2079. [PubMed: 19505943] 

11. Slatkin M. Nat Rev Genet. 2008; 9:477–485. [PubMed: 18427557] 

12. Minoche AE, Dohm JC, Himmelbauer H. Genome Biol. 2011; 12:R112. [PubMed: 22067484] 

13. Jabara CB, Jones CD, Roach J, Anderson JA, Swanstrom R. Proc Natl Acad Sci U S A. 2011; 
108:20166–20171. [PubMed: 22135472] 

14. Lou DI, Hussmann JA, McBee RM, Acevedo A, Andino R, Press WH, Sawyer SL. Proc Natl Acad 
Sci U S A. 2013; 110:19872–19877. [PubMed: 24243955] 

15. Acevedo A, Brodsky L, Andino R. Nature. 2014; 505:686–690. [PubMed: 24284629] 

16. Smirnov, NVe; Dunin-Barkovskiĭ, IV. Mathematische Statistik in der Technik: Kurzer Lehrgang, 
Deutscher Verlag der Wissenschaften. 1969

17. Routh A, Johnson JE. Nucleic Acids Res. 2014; 42:e11. [PubMed: 24137010] 

18. Langmead B, Trapnell C, Pop M, Salzberg SL. Genome Biol. 2009; 10:R25. [PubMed: 19261174] 

19. Routh A, Ordoukhanian P, Johnson JE. J Mol Biol. 2012; 424:257–269. [PubMed: 23069247] 

20. Schneemann A, Marshall D. J Virol. 1998; 72:8738–8746. [PubMed: 9765417] 

21. Routh A, Head SR, Ordoukhanian P, Johnson JE. J Mol Biol. 2015

22. Martin M. EMBnet.journal. 2011; 17:10–12.

23. Van Wynsberghe PM, Ahlquist P. J Virol. 2009; 83:2976–2988. [PubMed: 19144713] 

24. Johnson VA, Calvez V, Gunthard HF, Paredes R, Pillay D, Shafer RW, Wensing AM, Richman 
DD. Topics in antiviral medicine. 2013; 21:6–14. [PubMed: 23596273] 

25. Wang Q, Lee C. PLoS One. 2007; 2:e814. [PubMed: 17726544] 

26. Chang MW, Oliveira G, Yuan J, Okulicz JF, Levy S, Torbett BE. J Virol Methods. 2013; 189:232–
234. [PubMed: 23384677] 

27. Rhee SY, Liu TF, Holmes SP, Shafer RW. PLoS computational biology. 2007; 3:e87. [PubMed: 
17500586] 

28. Wu TD, Schiffer CA, Gonzales MJ, Taylor J, Kantor R, Chou S, Israelski D, Zolopa AR, Fessel 
WJ, Shafer RW. J Virol. 2003; 77:4836–4847. [PubMed: 12663790] 

29. Hoffman NG, Schiffer CA, Swanstrom R. Virology. 2003; 314:536–548. [PubMed: 14554082] 

30. Counts CJ, Ho PS, Donlin MJ, Tavis JE, Chen C. PLoS One. 2015; 10:e0123561. [PubMed: 
25893662] 

Routh et al. Page 12

Methods. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



BOX 1

FHV mapping commands

Command line entries to generate the data presented in Table 1.

A brief description of the parameters in each command followed by the command itself is 

given for the analysis performed to find LD in the FHV genome.

1) Overlaps in the paired-end reads were exploited to reconstruct longer single 

reads using BBmerge:

bbmap/bbmerge.sh in1= R1_raw.fastq in2=R2_raw.fastq out=Merged.fastq

2) Adaptor trimming and quality filtering: Reads must be a minimum of 70 nts 

in length after adaptor trimming. The first and last ten nucleotides are 

removed as these correspond to random nucleotides included in the ClickSeq 

adaptors. Finally, the reads were quality filtered requiring 98% of each read 

to contain base-calling PHRED scores of no less than 20.

python cutadapt -b agatcggaagagc -m 70 Merged.fastq | fastx_trimmer -

Q33 -f 10 | fastx_trimmer -Q33 -t 10 | fastq_quality_filter -Q33 -p 98 -q 20 

-o Prep.txt

2) Alignment of read data to reference FHV genome: End-to-end mapping (v-

mode) allowing only 3 mismatches per aligned read. Only the best alignment 

is reported to the output in SAM format.

bowtie –v 3 --best –S FHV_Genome_Index Prep.txt FHV_mapping.sam

4) Generation and population of matrices containing nucleotide contingency 

tables: The ‘Directory’ is the chosen directory for the output data and the 

reference genome is in fasta format. The input file is in SAM format. 5 

nucleotides were trimmed from the 5’ and 3’ extremities of each aligned read 

to prevent mismatches being called in these regions. Only contingency tables 

containing 100 or more reads were written out to a pickle file called 

‘Total_Matrices.py.pi’.

pypy CoVaMa_Make_Matrices.py ./Directory/ FHV_Genome.fasta --

SAM1 FHV_mapping.sam --Ends 5 --Min_Coverage_Output 100

5) Analysis of nucleotide contingency tables for evidence of linkage 

disequilibrium: The input file is the output pickle file from the previous step. 

The output data is a written to a text file in the chosen ‘Directory’. Only 

contingency tables where each allele is represented by 100 or more reads 

were evaluated for LD and were weighted as described.

pypy CoVaMa_Analyse_Matrices.py Total_Matrices.py.pi 

FHV_NtLD.txt ./Directory/ --Min_Coverage 100 -Weighted

6) Extraction of significant data: The fourth data field in the output data gives 

the LD value. 3σ is 0.0021 for the described FHV RNAseq dataset.
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awk ‘{if($4>0.0021)print;}’ FHV_Nt-LD.txt > FHV_Nt-LD_Significant-

Results.txt
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BOX 2

HIV mapping commands

Command line entries to generate the data presented in Table 2.

A brief description of the parameters in each command followed by the command itself is 

given for the analysis performed to find LD in HIV protease.

1. Adaptor trimming and quality filtering for each read pair: Reads must be a 

minimum of 50 nts in length after adaptor trimming. The reads were quality 

filtered requiring 98% of each read to contain base-calling PHRED scores of no 

less than 20.

python cutadapt -b agatcggaagagc -m 50 Raw_read_R1.fastq | 

fastq_quality_filter -Q33 -p 98 -q 20 -o HIV_reads_R1.fastq

python cutadapt -b agatcggaagagc -m 50 Raw_read_R2.fastq | 

fastq_quality_filter -Q33 -p 98 -q 20 -o HIV_reads_R2.fastq

2. Alignment of read data to the reference HIV genome: End-to-end mapping (v-

mode) allowing only 3 mismatches per aligned read. Only the best alignment is 

reported to the output in SAM format.

bowtie -v 3 --best -S HIV_index HIV_reads_R1.fastq HIV_align_R1.sam

bowtie -v 3 --best -S HIV_index HIV_reads_R2.fastq HIV_align_R2.sam

3. Generation and population of matrices containing amino acid contingency 

tables: Only contingency tables containing 100 or more reads were written out 

to a pickle file called ‘Total_AA_Matrices.py.pi’. The ‘Directory’ is the chosen 

directory for the output data for each patient. The open reading frame for HIV 

protease is found between nucleotides 2253 and 2549.

pypy CoVaMa_Make_Matrices_wAA.py --SAM1 HIV_align_R1.sam --

SAM2 HIV_align_R2.sam --Min_Fusion_Coverage 100 ./Directory1/ 

HIV_genome.fasta 2253 2549

4. The amino-acid matrices generated for each patient in the cohort were merged 

into one single matrix: Each Directory and Matrix for each patient are listed and 

output file is written into the current working directory.

pypy CoVaMa_Merge_Matrices.py ‘Directory1/Matrix1 Directory2/Matrix2 

Directory3/Matrix3…’ HIV-PR_Merged_LD.py.pi ./Directory/

5. Analysis of amino acid contingency tables for evidence of linkage 

disequilibrium: The input is a pickle-file and the output is written as a text file in 

the specified directory. The input matrix is a merged one, and only contingency 

tables that have generated by merging together 50 or more individual tables are 

evaluated. Only contingency tables where each allele is represented by 100 or 

more reads were evaluated for LD and were weighted as described.
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pypy CoVaMa_Analyse_Matrices_wAA.py HIV-PR_Merged_LD.py.pi HIV-

PR_LD_m50.txt ./Directory/ -Merge --Min_Merged_Matrices 50 --

Min_Coverage 500 –Weighted

6. Extraction of significant data: The fourth data field in the output data gives the 

LD value. 3σ is 0.013 for the described HIV merged RNAseq dataset.

awk ‘{if($4>0.013)print;}’ HIV-PR_LD_m50.txt > HIV-

PR_Significant_Results.txt
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Highlights

1. Mutations in populations of RNA viruses often evolve in a correlated manner

2. CoVaMa is a Python script that detects Linkage Disequilibrium in RNAseq data

3. We find correlated mutations in simulated and real RNAseq of Flock House 

Virus

4. Correlated mutations are also found in protease genes from an HIV patient 

cohort
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Figure 1. 
CoVaMa generates matrices of pairwise nucleotide or amino acid associations from 

Sequencing Alignment Mapping (SAM) data from RNAseq. A) 
CoVaMa_Make_Matrices.py is the first script in CoVaMa that extracts information from 

each individual aligned read. Every possible pairwise interaction of nucleotides in the 

aligned read is used to populate 4×4 contingency tables that are components of the large 

nucleotide matrix. Amino acid matrices containing 20×20 contingency tables are built in an 

analogous fashion, but by first translating each aligned read in the desired reading frame. B) 
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CoVaMa_Analyse_Matrices.py analyses each individual contingency table in the large 

matrices for evidence of linkage disequilibrium. All possible combinations of 2×2 sub-tables 

are extracted from the 4×4 (or 20×20) contingency table provided there are sufficient reads 

mapped. An LD value is calculated for each 2×2 table and optionally normalized relative to 

the total number of reads in the 4×4 table. Results are written to an output file as 

exemplified in C).
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Figure 2. 
Simulated datasets with varying degrees of random substitution rates (x-axis) was generated 

for a hypothetical RNAseq experiment covering a range of ratios (y-axis) of wild-type to 

mutant Flock House Virus RNA 3 and passed through the CoVaMa pipeline. Each point in 

the heatmaps represents the output from an individual simulated dataset for A) the known 

mutated nucleotide pair and B) the known mutated amino acid pair. The colour of the 

heatmap reflects the number of standard deviations (σ) that the expected mutant pair was 

distinct from the mean of the entire distribution of LD values.
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Table 1

Significant LD values (>3σ) between pairs of nucleotides found by CoVaMa using RNAseq data of Flock 

House Virus grown in cell culture.

Reference Nt 1 Nt 2 Change LD Value

RNA1 31 36 A-C to C-A 0.0099

35 36 A-C to C-A 0.0113

36 54 A-C to C-T 0.0187

187 240 T-G to G-A 0.0037

192 240 T-G to G-A 0.0040

240 259 A-C to G-T 0.0052

1044 1101 T-C to C-T 0.0066

RNA2 130 226 T-G to C-A 0.0102

130 247 T-C to C-T 0.0043

226 247 A-T to G-C 0.0725
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Table 2

Twenty-five highest correlated pairs of amino acid residues in the protease gene of HIV found by CoVaMa in 

an RNAseq study of a large cohort of drug-resistant HIV patients.

Pair 1 Pair 2 LD References of known associations

41K-93L 41R-93I 0.063462 [7, 30]

77I-93L 77V-93I 0.056952 [27–30]

46L-82A 46M-82V 0.056426 [7, 27, 28]

30D-88N 30N-88D 0.055541 [7, 27, 28]

10I-93L 10L-93I 0.052307 [7, 27–29]

35D-36I 35E-36M 0.051156 [7, 27–29]

63L-93I 63P-93L 0.051149 [30]

10I-62V 10L-62I 0.050766 [27]

63L-90L 63P-90M 0.04806 [27, 28]

10I-90M 10L-90L 0.047771 [27, 28]

36I-77V 36M-77I 0.042961 [27, 29, 30]

62I-71A 62V-71V 0.040321 [29]

46I-90M 46M-90L 0.040264

41K-63P 41R-63L 0.03999

54I-82V 54V-82A 0.039912 [27]

62I-93I 62V-93L 0.039224 [27, 30]

10I-82A 10L-82V 0.037066 [27, 28]

10I-35D 10L-35E 0.036709

36I-62V 36M-62I 0.036042 [27–29]

10I-36I 10L-36M 0.034866

62I-63L 62V-63P 0.034603 [30]

30D-35E 30N-35D 0.034588 [7]

71A-93I 71V-93L 0.034398 [29, 30]

10I-71V 10L-71A 0.034022 [27–29]

62I-90L 62V-90M 0.033936 [27]
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