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Summary

The regulation and stem cell origin of normal and neoplastic gastric glands are uncertain. Here, we 

show that Mist1 expression marks quiescent stem cells in the gastric corpus isthmus. Mist1+ stem 

cells serve as a cell-of-origin for intestinal-type cancer with the combination of Kras and Apc 

mutation, and for diffuse-type cancer with the loss of E-cadherin. Diffuse-type cancer 

development is dependent on inflammation mediated by Cxcl12+ endothelial cells and Cxcr4+ 

gastric innate lymphoid cells (ILCs). These cells form the perivascular gastric stem cell niche, and 

Wnt5a produced from ILCs activates RhoA to inhibit anoikis in the E-cadherin-depleted cells. 

Targeting Cxcr4, ILCs, or Wnt5a inhibits diffuse-type gastric carcinogenesis, providing targets 

within the neoplastic gastric stem cell niche.

Graphical Abstract

Introduction

Gastric cancer is the third most frequent cause of cancer death worldwide. In the gastric 

corpus within the proximal stomach, the glands contain chief cells that are important for 

digestion, and parietal cells that are vital for acid production, controlled in part by 

enterochromaffin-like (ECL) cells. There are also intervening mucous neck cells, above 

which are the superficial pits that are lined by pit cell epithelium. Despite abundant literature 

on small intestinal stem cells (ISCs), an infrequent site of human cancer, there have been 
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relatively few studies addressing the stem cells that maintain the normal and neoplastic 

gastric epithelium.

Tissue stem cells maintain the integrity of rapidly proliferating tissues such as the 

gastrointestinal epithelium, residing within a stem cell niche. Replicative quiescence and a 

relatively undifferentiated morphology have generally been considered cardinal properties of 

adult stem cells (Malam and Cohn, 2014; Mills and Shivdasani, 2011). In the gastric corpus, 

earlier radiolabeling and electron microscopy studies suggest a single undifferentiated, 

“granule-free” cell as the putative stem cell in the isthmus of each gastric unit of the mouse 

(Karam and Leblond, 1993; Mills and Shivdasani, 2011). Studies suggest that within the 

corpus isthmus, Sox2+ cells may be long-lived stem cells, while Tff2+ cells are relatively 

short-lived progenitors (Arnold et al., 2011; Quante et al., 2010). More recently, a “reserve 

stem-like cell” population expressing Troy or Mist1 was postulated to reside at the base of 

corpus gland (Stange et al., 2013).

Gastric cancer is classified into an intestinal-type and a diffuse-type, and carcinogenesis in 

the stomach is strongly associated with chronic inflammation. Oncogenic mutations such as 

Kras and Apc targeted to gastric stem/progenitor cells led to intestinal-type metaplasia or 

dysplasia in mice (Barker et al., 2010; Okumura et al., 2010). By contrast, the E-cadherin 

gene (CDH1) is frequently mutated or down-regulated in diffuse-type gastric cancer (DGC) 

(Guilford et al., 1998). In a rodent model, knockout of Cdh1 was insufficient to initiate 

gastric tumors, but did predispose to the development of DGC with signet-ring cells 

following additional genetic events (Shimada et al., 2012). Studies of prophylactic 

gastrectomy specimens from germline carriers of CDH1 mutations have revealed that DGC 

appears to arise in the proximal gastric isthmus (Humar et al., 2007), but the cellular origin 

of all gastric cancers remains unknown.

Tissue stem cells and cancer development are maintained by their niche. The Wnt signaling 

pathway plays a central role in the maintenance of ISCs, which are supported by the ISC 

niche, including both Paneth cells (Sato et al., 2011) and the surrounding mesenchyme 

(Farin et al., 2012). However, the gastric corpus does not normally depend on the Wnt 

pathway (Mills and Shivdasani, 2011), and therefore the critical pathway regulating corpus 

stem cell niche is largely unknown. In the gut mesenchyme, several cell types including 

pericytes, nerves, or mesothelial cells (Miyoshi et al., 2012; Worthley et al., 2015; Zhao et 

al., 2014) are reported to maintain tissue stem cells and contribute to cancer development. In 

the bone marrow, perivascular stromal cells including endothelial cells, Cxcl12-abundant 

reticular (CAR) cells, and nerves, promote hematopoietic stem cell (HSC) maintenance and 

neoplastic changes through the production of cytokines or chemokines such as Cxcl12 or 

SCF (Hanoun et al., 2014; Mendelson and Frenette, 2014; Pitt et al., 2015). However, 

whether such stromal factors play a role in the normal and neoplastic gut stem cell niche 

remains unclear.

Hayakawa et al. Page 3

Cancer Cell. Author manuscript; available in PMC 2016 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results

Mist1 is a marker of quiescent stem cells in the gastric corpus isthmus

We utilized Mist1-CreERT2 knockin mice, where Cre recombinase is induced by tamoxifen 

(TAM) in cells expressing a bHLH transcription factor Mist1, and investigated the 

contribution of Mist1+ “reserve stem-like” chief cells to gastric carcinogenesis. To clarify 

the expression pattern of Mist1 in the normal stomach, we crossed Mist1-CreERT2 mice 

with R26-mTmG mice. This reporter features the dichotomous expression of red (without 

recombination) or green fluorescence (with recombination). Most of the recombined Mist1+ 

cells were detected in mature chief cells in the lower third of the glands (position 1–14) 1 

day after TAM induction, (Figure 1A). However, Mist1+ recombined cells were also evident 

as rare single cells in the isthmus. Recombination in the isthmus was observed in either R26-

TdTomato or R26-LacZ mice, or with low dose TAM (1 mg) (Figure S1A). Endogenous 

Mist1 expression in the isthmus was confirmed by in situ hybridization (Figure S1B). Their 

electron microscopy appearance was similar to the “granule free” stem cells previously 

reported (Karam and Leblond, 1993) (Figure 1B).

The GFP+ Mist1 lineage expanded gradually over 540 days (Figure 1C–1D). In contrast to a 

previous report (Stange et al., 2013), our detailed time course revealed bi-directional 

expansion from single Mist1+ cells at position 25–30 in the isthmus, both upward towards 

the lumen and deeper into the gland, independent of the dose of TAM (Figure S1C). The 

approximate doubling time of Mist1+ isthmus cells is 120 hours or 5 days (Figure S1D), and 

these cells first divided into isthmus progenitors with small or spindle appearance (Figure 

S1E), followed later by the differentiation into surface pit and neck cells, and subsequently 

into parietal cells. Over time, the number of GFP+ cells in the chief cell region declines 

whilst the isthmus clone expands (Figure 1D). Lineage tracing persisted beyond 18 months 

post-induction with whole labeled corpus glands, proving that Mist1+ cells self-renew 

(Figure 1E). Mist1-CreERT2;R26-Confetti mice show that single-color clonal expansion is 

seen predominantly in the isthmus area, while chief cells show scattered multi-color labeling 

(Figure 1F–1G). These data indicate that Mist1+ isthmus cell is the major source of lineage 

tracing of corpus glands.

In this period, Mist1+ cells gave rise to mucus neck cells (GS-II), parietal cells (H/K-

ATPase), surface pit cells (TFF1), tuft cells (Dclk1), and ECL cells (chromogranin A), while 

initially Mist1+ cells were negative for these markers (Figure S1F–S1G). Mist1+ chief cells 

at the base of glands are as expected positive for GIF at day 2 after TAM, while the Mist1+ 

isthmus cells are GIF-negative (Figure S1H). However, the early traced GIF+ chief cells at 

the base of glands decreased over time with an increase of traced GIF− isthmus cells (Figure 

S1I–S1J). Thus, Mist1+ basal chief cells are labeled by initial TAM induction, but that these 

cells turn over and disappear, finally to be renewed from the isthmus-derived Mist1+ stem 

cell.

Mist1+ isthmus cells are responsible for gastric lineage tracing

We confirmed no overlap between Mist1+ cells and reported gastric stem cell markers 

Cckbr+ or Sox2+ (Arnold et al., 2011; Hayakawa et al., 2015) (Figure S1K–S1L). Since 
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chief cells have also been shown to be Lgr5+ (Stange et al., 2013), we generated Mist1-

CreERT2;Lgr5-DTR-GFP;R26-Tdtomato mice (Tian et al., 2011). Similar to GIF staining, 

the vast majority of Mist1+ chief cells at the base are Lgr5+, whereas the Mist1+ isthmus 

cells are Lgr5− (Figure 1H). Thus, we ablated Lgr5+ cells, which included Mist1+ chief 

cells, by administration of diphtheria toxin (DT) (Figure S1M). After giving TAM and DT, 

100% of labeled chief cells were ablated (Figure 1I–1J, S1N). The expression of Lgr5 or Gif 

was markedly reduced by DT ablation (Figure S1O). However, the number of isthmus 

Mist1+ cells was even increased, and lineage tracing occurred at same frequency as the 

control (non-DT) group, accompanied with faster cell division (Figure 1I, 1K, S1P–S1S). 

After 6 months, the isthmus Mist1+ cells gave rise to chief cells. Similarly, ablation of chief 

cells by the elastase inhibitor DMP-777 (Nomura et al., 2005) did not affect the frequency of 

lineage tracing (Figure S1T–S1W). In contrast, when we treated mice with 5-Fluorouracil 

(5-FU) to kill isthmus stem/progenitor cells (Figure S1X–S1Y) (Stange et al., 2013), the 

mice showed almost no lineage tracing events but maintained a similar number of labeled 

chief cells at the gland base for 6 months (Figure 1L–1N). Thus, Mist1+ isthmus cells, and 

not Mist1+ chief cells, are responsible for lineage tracing in the corpus.

Isthmus Mist1+ cells give rise to intestinal-type metaplasia and cancer

In the isthmus, 1.1% of the Mist1+ cells were Ki67+ (Figure 2A), thus, more than 98% of 

Mist1+ isthmus stem cells are quiescent. KRAS is one of the most commonly mutated proto-

oncogenes in a variety of cancers, including gastric cancer. To investigate the effect of Kras 

mutation in gastric stem cells, we crossed Mist1-CreERT2 mice to LSL-KrasG12D mutant 

mice. Kras mutation in Mist1+ isthmus cells resulted in an increased percentage of 

Ki67+Mist1+ cells and overall faster cell division (Figure S2A–S2C). These cells formed 

Ki67+ dysplastic foci in the isthmus, which contained Alcian blue positive metaplastic cells 

(Figure 2B–2D). The metaplastic/dysplastic foci moved from the isthmus to the bottom of 

glands with loss of parietal cells and chief cells, and eventually replaced the entire glands 

with intestinal metaplasia (IM) and dysplasia (Figure S2D). We generated Mist1-

CreERT2;LSL-KrasG12D;Lgr5-DTR mice, and ablated isthmus cells and chief cells by 

giving 5-FU and DT, accordingly, after TAM induction (Figure S2E). Strikingly, 5-FU 

inhibited the metaplasia development, while DT ablation did not (Figure 2E–2F), indicating 

that the Mist1+ isthmus cells, and not the Mist1+ chief cells, are an origin of Kras-induced 

IM and dysplasia.

Aberrant activation of the Wnt signaling pathway by inactivating Apc is a common initiating 

event in many gastrointestinal tumors (Barker et al., 2010; Barker et al., 2009). Thus, we 

established Mist1-CreERT2;Apcflox/flox mice. Nuclear accumulation of β-catenin was 

observed in the Mist1+ lineage (isthmus and chief cells). However, nuclear β-catenin+ cells 

in corpus Mist1+ cells did not form dysplasia at later time points (up to 8 months) (Figure 

2G–2H), which seems contrary to the phenotype of Apc loss in stem cells in the gastric 

antrum, small intestine, and colon. In fact, whereas Wnt inhibition by Dickkopf-1 (DKK1) 

overexpression leads to marked decrease in proliferation in the intestine and colon, 

proliferation in the corpus was not inhibited (Figure S2F–S2G), suggesting that tumor 

initiation or proliferation in the corpus is likely independent of Wnt/β-catenin signaling.
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IM in the stomach is a known risk factor or precursor lesion for IGC. Thus, we attempted to 

induce Wnt/β-catenin activation in the presence of IM. We generated Mist1-CreERT2;LSL-

KrasG12D;Apcflox/flox mice, and this mouse developed intramucosal IGC with the expansion 

of nuclear β-catenin+ cells in 4 months (Figure 2I). Thus, Mist1+ stem cells can give rise to 

IGC with loss of Apc only when Kras-induced IM is also present. Notch signaling is another 

important pathway regulating gastric proliferation (Kim and Shivdasani, 2011). The Notch 

inhibitor dibenzazepine (DBZ) reduced the expansion of Mist1-lineage tracing as well as 

proliferation in the isthmus (Figure S2H–S2K), and constitutive activation of Notch 

signaling in Mist1+ stem cells by generating Mist1-CreERT2;Eef1a1-LSL-Notch1(IC) mice 

(Buonamici et al., 2009) resulted in the development of IGC (Figure S2L). Although Mist1 

protein expression is decreased in Kras/Apc-induced IGC, aberrant Notch activation 

increased the number of Mist1+ cells in tumor (Figure S1Q, S2M). The dysplastic cells in 

Notch-induced tumor did not display nuclear β-catenin accumulation, suggesting that in the 

corpus, Notch signaling is a Wnt-independent oncogenic pathway through which Mist1+ 

stem cells can progress to IGC.

Mist1+ isthmus cells can form corpus organoids in a Lgr5-independent fashion

To evaluate the stem cell properties of Mist1+ cells in vitro, we isolated corpus glands from 

Mist1-CreERT2;R26-mTmG mice 1 day following TAM induction. Mist1+ green cells were 

observed in the 2 distinct positions, and Mist1+ isthmus cells expanded to form cystic 

organoids in the reported culture method (Stange et al., 2013), while Mist1+ chief cells 

remained as single cells and eventually disappeared (Figure 3A). The GFP+ Mist1-derived 

cells survived in vitro for at least 2 months, confirming longevity. Even after ablation of 

Lgr5+ chief cells in Mist1-CreERT2;Lgr5-DTR;R26-TdTomato mice by DT injection, 

isthmus Mist1+ cells continued to lineage trace and give rise to chief cells in cultured 

organoids (Figure 3B–3C). We next sorted Mist1+ cells after DT or 5-FU treatment to the 

mice (lacking chief cells and isthmus cells, respectively) (Figure 3D–3F). Colony formation 

efficiency increased in the DT-treated group and decreased in the 5-FU-treated group, 

suggesting that isthmus Mist1+ cells are the true corpus stem cells, rather than Mist1+ chief 

cells. We compared gene expression patterns between the total Mist1+ population (majority 

of which were chief cells), DT-ablated isthmus Mist1+ population, and the differentiated 

parietal cell population (Figure S3A). Lgr5 and Gif expression are markedly downregulated 

in isthmus Mist1+ cells compared to total Mist1+ cells. Mist1 expression is upregulated in 

both total and isthmus Mist1+ population. The expression of several stem/progenitor 

markers, such as Cd44 and Sox9, or target genes of Wnt and Notch signaling, such as 

Ccnd1, Notch1, and Hes1, remain at higher levels in the isthmus population, suggesting that 

isthmus Mist1+ cells are Lgr5− but still exhibit stem cell characteristics.

The Wnt3a/R-spondin1 (W3a/Rspo1)-dependent culture system fails to produce corpus-

specific cell lineage such as parietal cells and ECL cells (Stange et al., 2013). Instead, 

W3aENR media (W3a, EGF, Noggin, and Rspo1) induces marked upregulation of Lgr5 (3-

times higher than gastric antrum organoids) (Figure 3G). Compared to standard W3aENR 

media, culture of corpus glands in ENJ media (where Wnt3a/Rspo1 were replaced by Notch 

ligand Jagged-1) led to decreased expression of Lgr5 or Gif, suggesting that Wnt3a/Rspo1 

lead to expansion of chief cells. In contrast, in ENJ media, we observed greater amounts of 
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parietal cells and ECL cells than in W3aENR media both in RT-PCR and immunostaining 

assays (Figure 3G and S3B), suggesting that the activation of Notch signaling is more 

important for preserving mature corpus cell types in culture than canonical Wnt signaling. 

Addition of a γ-secretase inhibitor blocked corpus organoid growth (Figure S3C–S3D), thus 

Notch signaling is important for corpus stem cell maintenance and growth. When we 

cultured Mist1-CreERT2;Lgr5-DTR;R26-TdTomato glands, antral and corpus organoids 

cultured with W3aENR did not grow and died following DT treatment (Figure 3H–3I), 

indicating that organoid growth is highly dependent on Lgr5+ cells in W3aENR media. 

However, lineage-traced corpus organoids survived with ENJ plus DT media (Figure S3E), 

proving that a non-Lgr5 stem cell population maintains organoid growth in Wnt3a/Rspo1-

independent culture conditions.

Cxcl12+ endothelium and Cxcr4+ ILCs contribute to the corpus stem cell niche through 
Wnt5a production

Given our in vitro data suggesting that Wnt3a or canonical Wnt signaling is not a critical 

niche factor in the corpus, we explored which Wnt ligands are indeed expressed in the 

stomach and intestine (Figure 4A and S4A). Among known Wnt ligands, Wnt3a expression 

was quite low in the corpus, in contrast to the intestine. Instead, an atypical Wnt ligand, 

Wnt5a, was highly expressed in the corpus. In situ hybridization of Wnt5a revealed focal 

expression in the isthmus stroma (Figure 4B) coincident with the known expression of 

Cxcr4 (Shibata et al., 2013). In Cxcr4-EGFP mice, Cxcr4+ cells were found in the isthmus 

area as rare single cells, showing almost identical distribution to Wnt5a expression (Figure 

4C). Cxcr4+ cells and Mist1+ cells represent distinct populations, although they were located 

in close proximity within the isthmus (Figure 4D).

Immunostaining revealed that Cxcr4+ cells in the corpus are negative for E-cadherin or 

stromal markers, αSMA, NG2, and S100B, but positive for CD45, suggesting that they are 

tissue-resident hematopoietic cells recruited to the isthmus (Figure 4E and S4B). About 60% 

of gastric CD45+Cxcr4+ cells from the whole gastric corpus are CD11b+ myeloid lineages 

(Figure S4C). CD3+ T cells, CD19+ B cells, and NK1.1+ classical NK cells are Cxcr4−. The 

remaining 40% of CD45+Cxcr4+ cells are Lineage-negative 

(CD3−Gr1−CD11b−CD45R−Ter119−), and about half of the Lin−Cxcr4+ population is a 

CD90.2+CD127+ lymphoid population (Figure 4F, S4C). The other half is predominantly c-

kit+FcεRIɑ+ mast cells. Immunostaining defined the isthmus Cxcr4+ cells as Lin−CD90.2+ 

intraepithelial gastric innate lymphoid cells (ILCs) (Figure 4E, S4D). Id2-GFP mice, which 

mark all types of ILCs (Hoyler et al., 2012), show similar distribution pattern as Cxcr4+ 

cells (Figure S4E). The majority (90%) of gastric Cxcr4+ ILCs are NKp46−CD4−, 

ScaI+ICOS+KLRG+ ILC2 cells, and a small population (5%) are Rorgt+NKp46− ILC3 cells 

(Figure 4F, S4F). In fact, gastric Cxcr4+ ILC population is enriched with ILC2-specific 

genes (Figure S4G).

In the sorted Mist1+ cells and Cxcr4+ cells, Wnt5a was expressed primarily in the Cxcr4+ 

cells (Figure S4H–S4I), confirming our in situ hybridization findings. When we treated 

Cxcr4+ cells with Cxcl12 in vitro, Wnt5a expression was upregulated (Figure S4J). We 

hypothesized that the Cxcr4+ cell might be a niche cell, supporting gastric stem cell 
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function. To test this possibility, we performed a co-culture experiment with “red” Mist1+ 

cells and “green” Cxcr4+ cells. Co-culture of Mist1+ cells with Cxcr4+ cells significantly 

enhanced “red” colony formation ability (Figure 4G–4H). Treatment with Cxcl12 

demonstrated an additive effect on Cxcr4+ cell co-culture, while it had no effect on Mist1+ 

cell culture alone, indicating that Cxcl12 acts through the Cxcr4+ ILCs. Furthermore, the 

Cxcr4+ ILC population exhibits the highest expression of Wnt5a compared to CD45+Cxcr4− 

cells or Cxcr4+ non-ILCs (Figure 4I). The colony formation ability of Mist1+ stem cells is 

enhanced by Wnt5a or co-culture with Cxcr4+ ILC population. However, Wnt5a-deficient 

ILCs which are sorted from Cag-CreERT2;Wnt5aflox/flox mouse stomach after TAM 

induction failed to show the same effect (Figure 4J). Thus, Cxcr4+ILC-derived Wnt5a plays 

a key role for promoting Mist1+ stem cell colony formation.

We explored the source of Cxcl12 in the stomach. In Cxcl12-dsRED mice (Ding and 

Morrison, 2013), there were frequent dsRED+ cells in the stroma near the isthmus (Figure 

4K). Indeed, Cxcr4+ ILCs and Cxcl12+ stromal cells in Cxcr4-EGFP;Cxcl12-dsRED mice 

were frequently positioned in close proximity (Figure 4L–4M). We confirmed that Cxcl12+ 

cells are CD31+ and endomucin+ endothelial cells (Figure 4N and S4K). We compared RNA 

expression between dsRED+CD31+ cells (35% of total CD31+ cells) and dsRED−CD31+ 

cells by qRT-PCR array (Figure S4L and Table S1). Among pathways potentially involved 

in the regulation of Cxcl12 expression, we found that Cxcl12+ cells express BMP receptor 2, 

and BMP2 treatment in vitro upregulates Cxcl12 expression (Figure S4M–S4N), consistent 

with previous findings (Yang et al., 2008). Interestingly, Tie2-Cre;Cxcl12flox/flox;Cxcr4-

EGFP mice, with targeted knockout of Cxcl12 in endothelial cells, displayed a significant 

reduction in the number of Cxcr4+ cells in the isthmus compared to control mice (Figure 

4O–4P). Together, endothelial Cxcl12 is important for the recruitment of Wnt5a-producing 

Cxcr4+ ILCs in the stomach.

E-cadherin loss in Mist1+ cells develops diffuse-type cancer dependent on chronic 
inflammation

We sought to establish whether Mist1+ stem cells were also a cell of origin for the diffuse 

gastric cancer (DGC) by knocking out Cdh1 gene in Mist1+ cells. Mist1-

CreERT2;Cdh1flox/flox mice (Cdh1ΔMist1) developed the pathognomonic, small mucous-

producing atypical cell foci in the isthmus of Cdh1ΔMist1 mice 10 days after TAM, but not in 

the chief cell region (Figure 5A–5B). E-cadherin was downregulated in these atypical 

appearing isthmus cells, consistent with early signet-ring cell morphology, recapitulating the 

earliest events in the pathogenesis of human signet-ring cell carcinoma. Ablation of chief 

cells and isthmus cells by DT and 5-FU treatment with Mist1-CreERT2;Cdh1flox/flox; Lgr5-

DTR mice confirmed that the isthmus Mist1+ cells are an origin of signet-ring cells (Figure 

S5A–S5B). Cxcl12/Cxcr4 niche cells were not affected by 5-FU treatment (not shown).

Nevertheless, the number of atypical cells gradually declined and disappeared (Figure 5C), 

suggesting that E-cadherin loss leads to epithelial cell death and is on its own insufficient to 

initiate DGC. Given that mild inflammation without gastric atrophy is a common feature of 

DGC (Carneiro et al., 2004), we infected TAM-induced Cdh1ΔMist1 mice with Helicobacter 

felis (Hf) to induce chronic inflammation. Surprisingly, in mice with Hf infection, atypical 
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foci were preserved and expanded even after 1 year TAM induction (Figure 5C). Lineage-

traced DGC with numerous signet ring cells was detected at 18 months post Hf infection in 

Cdh1ΔMist1 mice (Figure 5D, 7 of 9 mice (78%)), along with the increase of Mist1+ cells in 

DGC (Figure S1Q, S5C). Addition of Trp53 mutation in this setting lead to invasive DGC 

within 9 months (Figure S5D). Interestingly, administration of dexamethasone to Hf-

infected Cdh1ΔMist1 mice reduced the number of signet-ring cell foci to the same level as 

non-infected control mice (Figure 5E–5G). In contrast, another inflammation-associated 

cancer model, H/K-ATPase-IL-1β transgenic mice (Tu et al., 2008), also showed a dramatic 

expansion of lineage-traced signet-ring cells when crossed to Cdh1ΔMist1 mice, even without 

Hf infection (Figure 5H–5J). Thus, DGC development derived from Mist1+ stem cells is 

dependent on chronic inflammation, and that anti-inflammatory therapy may be useful for 

preventing DGC.

Although Troy+ chief cells are reported to act as reserve stem cells (Stange et al., 2013), we 

observed a rare Troy+ population in the isthmus that could lineage trace and give rise to 

cancers by examining Troy-BAC-CreERT2 mice (Fafilek et al., 2013) (Figure S6A–S6G). 

Also, while Troy+ chief cells are not proliferating and do not lineage trace in mice which 

preserving intact Troy expression, loss of Troy expression significantly promoted chief cell 

proliferation and lineage tracing after injury (Figure S6H–S6L), similar in most respects to 

the previous report, reconciling our findings with those of earlier groups (Stange et al., 

2013).

Cxcl12/Cxcr4 perivascular niche regulates DGC progression through Wnt5a production

During DGC development under chronic inflammation, corpus stem cell niche factors - 

Cxcl12+ endothelium and Cxcr4+ ILCs - are markedly expanded or upregulated in the 

region surrounding the isthmus DGC lesion (Figure 6A–6E, suggesting that these niche 

factors contribute to DGC development. We tested therapeutic intervention with AMD3100, 

a specific inhibitor of CXCR4, and an anti-CD90.2 antibody (Ab) for specific depletion of 

ILCs. Compared with vehicle-injected control mice, AMD3100 and the anti-CD90.2 Ab 

significantly reduced the number of signet-ring cell foci (Figure 6F–6H). In contrast, 

overexpression of Cxcl12 in Mist1-CreERT2;H/K-ATPase-Cxcl12;Cdh1flox/flox mice led to 

persistence and growth of DGC lesions over 3 months even without Hf infection (Figure 6I–

6K). Hf infection further accelerated DGC progression in this mouse model, while anti-

CD90.2 Ab treatment significantly reduced the number of DGC foci in the setting of Cxcl12 

overexpression (Figure S6M–S6N). Thus, upregulation of Cxcl12/Cxcr4 signaling through 

activation of ILCs plays a central role in DGC development.

After Hf infection, Wnt5a is highly upregulated in the stroma surrounding signet-ring lesions 

in the isthmus (Figure 6L). In addition, AMD3100 and anti-CD90.2 Ab treatment, or 

knockout of Cxcl12 in Tie2-lineage, significantly decreased the number of Cxcr4+ cells in 

the isthmus and the expression of Wnt5a, while Cxcl12-overexpression led to an increase in 

Cxcr4+ cell number and upregulation of Wnt5a (Figure 6M and S6O). Thus we tested the 

contribution of Wnt5a in DGC development by transplanting Cag-CreERT; Wnt5aflox/flox 

mouse bone marrow cells into Cdh1ΔMist1 mice (Figure 6N). In these chimeric mice, E-

cadherin is depleted in the Mist1+ lineage and Wnt5a is knocked out in bone-marrow 
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derived ILCs after TAM induction. Cdh1ΔMist1 mice with Cag-CreERT;Wnt5aflox/flox bone 

marrow exhibited significantly fewer signet-ring cell foci compared to Cdh1ΔMist1 mice with 

WT bone marrow cells (Figure 6O–6P), indicating that Wnt5a in the hematopoietic cells 

promotes DGC progression. Although there was a significant increase in the number of 

Cxcr4+ cells in Kras-induced IGC model, AMD3100 failed to block either Kras or Notch-

dependent IGC progression (Figure S6P–S6Q), suggesting the more predominant role of this 

pathway in DGC development.

RhoA activation by Wnt5a plays a role in DGC development

Wnt5a is known to activate a small GTPase protein, RhoA, which has a prosurvival effect 

by inhibiting anoikis in gastric and other cancer cells (Cai et al., 2008; Liu et al., 2013). 

Thus, we hypothesized that ILC-derived Wnt5a activates RhoA in E-cadherin-depleted cells 

and prolongs cell survival. We confirmed that Wnt5a activates RhoA in a CDH1 mutant 

AGS cells by immunoprecipitation (Figure 7A). In a soft-agar assay, treatment of AGS cells 

with Wnt5a enhanced sphere formation, indicating that Wnt5a promotes anchorage-

independent cell growth. Interestingly, blocking RhoA activation using a Rho inhibitor, 

Rhosin, diminished Wnt5a-mediated effects (Figure 7B–7C). Similar results were observed 

with another DGC cell line, KATO-III. Furthermore, we found that E-cadherin-deficient 

Mist1+ stem cells, which are normally unable to survive in vitro upon Cdh1 deletion, 

displayed prolonged survival in the presence of Wnt5a (Figure 7D–7E). This prosurvival 

effect was blocked by Rhosin, suggesting that Wnt5a-mediated RhoA activation is a key 

event for the survival of Cdh1-deleted organoids. However, Wnt5a did not affect the 

expansion of Kras or Notch-induced IGC organoids (not shown).

We compared these murine DGC findings with human DGC samples. Histologically, the 

DGC lesions in the Cdh1ΔMist1 mice appeared quite similar to early DGC with E-cadherin 

loss in patient samples (Figure 7F). Importantly, Cxcl12+ cells were found in stromal cells 

that appeared similar histologically to blood vessels, with KLRG1+ lymphocytes 

surrounding the signet-ring cancer cells, consistent with a role for these cells in supporting 

the DGC stem cell niche.

Discussion

In this study, we report 4 major discoveries regarding gastric stem cell and cancer biology: 

(1) quiescent Mist1+ gastric stem cells located at the isthmus of the corpus gland are an 

origin of all epithelial lineages, (2) they can serve as a cellular origin of all histological types 

of gastric cancer, (3) the Cxcl12/Cxcr4 axis comprising endothelial cells and ILCs regulates 

the normal and neoplastic gastric stem cell niche, and (4) Wnt5a from Cxcr4+ ILCs 

promotes diffuse-type cancer growth by activating RhoA. Our data provide a focus for 

gastric regeneration and cancer prevention and therapy.

In the gastric corpus, the isthmus is the major site of epithelial proliferation, and for many 

years has been thought to contain the “granule free” stem cell population (Karam and 

Leblond, 1993). We found that the isthmus Mist1+ cells are these granule-free bona fide 

stem cells in the corpus, which are remarkably quiescent, dividing infrequently (every 5 

days), consistent with the original expectations for mammalian adult stem cells (Malam and 
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Cohn, 2014). It has been hypothesized that corpus glands may possess 2 different stem cell 

zones, isthmus and chief cells (Nam et al., 2010; Stange et al., 2013). Our ablation 

experiments using 5-FU and Lgr5-DT system find that only isthmus cells, not chief cells, 

play a predominant role in maintaining the gastric gland and are an origin of gastric cancer. 

The gradient of BMP or Shh expression determines the localized expression of Lgr5 at the 

gastrointestinal gland base (Shyer et al., 2015), and basal chief cells in the corpus express 

Lgr5. Thus, our model suggests that Lgr5 expression may not always reflect actual 

stemness, especially in a Wnt-independent organ.

Lineage-tracing studies have been based largely on TAM-induced Cre activation, but TAM 

treatment may cause epithelial cell death and influence stem cell activity (Huh et al., 2012; 

Zhu et al., 2013). Given that Troy is known to have an inhibitory effect on Wnt signaling, 

the knockin Troy lineage tracing may be related to a reduction in Troy expression in the 

knockin mice, secondary to haploinsufficiency, resulting in enhanced Wnt signaling activity 

in those mice. Whilst knockin lines have many potential advantages, disruption of even one 

copy of the endogenous gene can apparently alter certain phenotypes.

The Cxcl12/Cxcr4 perivascular niche in the bone marrow has previously been identified and 

studied as a major regulator of HSC (Ding and Morrison, 2013; Sugiyama et al., 2006). 

However, until now the role of the Cxcl12/Cxcr4 stem cell niche axis beyond the bone 

marrow has been unclear. In addition, Cxcl12 and Cxcr4 modulate the tumor 

microenvironment, and targeting this axis was an effective strategy in certain cancers (Pitt et 

al., 2015; Quante et al., 2011; Roccaro et al., 2014). Given that human DGCs are in general 

extremely resistant to current treatment regimens, anti-inflammatory drugs such as steroids 

or NSAIDs, as well as specific Cxcr4 antagonists, may be useful for chemoprevention of 

DGC, particularly for hereditary-type DGC prior to gastrectomy, and/or for prevention of 

recurrent disease.

E-cadherin is essential for epithelial cell survival under normal conditions (Schneider et al., 

2010) and loss of E-cadherin causes cell anoikis (Kantak and Kramer, 1998). Previous 

studies suggest that Cxcr4 and Wnt5a are upregulated in human gastric cancer tissues (Iwasa 

et al., 2009; Kanzawa et al., 2013). Recent genome-wide analyses revealed in human DGCs 

the presence of gain-of-function RHOA mutations that can inhibit anoikis (Cancer Genome 

Atlas Research, 2014; Kakiuchi et al., 2014; Wang et al., 2014). Thus, the activation of 

RhoA signaling, either by gene mutation or Wnt5a-mediated effect, may be essential for the 

development of DGC.

Wnt5a is a representative ligand that activates noncanonical Wnt signaling by binding to 

Ror2 to regulate cell migration, polarity, proliferation, or invasion. Wnt5a is expressed in 

gut stroma, and contributes to intestinal elongation and colonic regeneration, however, the 

precise source of stromal Wnt5a has been unclear (Cervantes et al., 2009; Gregorieff et al., 

2005; Miyoshi et al., 2012). We propose ILCs as a major source of Wnt5a, at least in the 

stomach. The function of ILCs has been highlighted in the setting of inflammatory or 

infectious states, although the possibility has been raised of a role for ILCs in stem cell niche 

or cancer development (Bando et al., 2015; Hanash et al., 2012; Kirchberger et al., 2013). 

Our findings would support this model, and given that ILCs are a heterogeneous population 
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of immune cells, further efforts at detailed profiling of the ILC population in stem cell niche 

and cancer are needed.

Experimental Procedures

Mice

Mist1-CreERT2 mice (Shi et al., 2009), Cxcl12-dsRED mice (Ding and Morrison, 2013), 

Troy−/− and Troy-BAC-CreERT2 mice (Fafilek et al., 2013), H/K-ATPase-Cxcl12 mice 

(Shibata et al., 2013), Eef1a1-LSL-Notch1(IC) mice (Buonamici et al., 2009), Wnt5aflox 

mice (Miyoshi et al., 2012) were described previously. Cxcr4-EGFP mice were kindly 

provided by Richard J. Miller (Northwestern University Medical School, USA). LSL-

KrasG12D and LSL-Trp53R172H mice were provided by Dr. Kenneth Olive (Columbia 

University, USA). Apcflox mice were obtained from the National Cancer Institute (NCI). 

Lgr5-DTR-GFP mice were provided by Genentech. Cdh1flox, R26-mTmG, R26-LacZ, R26-

TdTomato, R26-Confetti, R26-EYFP, Cxcl12flox, Tie2-Cre, Id2-GFP, and Cag-CreERT2 

mice were purchased from the Jackson Laboratory. Cre recombinase was activated by oral 

administration of TAM (1–5mg/0.2mL corn oil, as indicated). All animal studies and 

procedures were approved by the ethics committees at Columbia University and the 

Academy of Sciences of the Czech Republic. Human stomach tissue sections were obtained 

from DGC patients who underwent surgical resection or endoscopic submucosal dissection 

from 2001 to 2012 at Gifu University Hospital, Gifu, Japan. All study protocols were 

approved by the ethics committees, and written informed consent was obtained from all 

patients.

Treatment

5-FU (Sigma) was administered intraperitoneally (i.p.) at a dose of 150 mg/kg. DMP-777 

was given as described previously (Nam et al., 2010). DBZ was dissolved in 10% dimethyl 

sulfoxide and injected i.p. (30 μmol/kg) for 14 days. For Lgr5+ cell ablation, DT was 

administered i.p. at a dose of 20 mg/kg. Mice were treated with 5 mg/kg AMD3100 (Tocris) 

to inhibit Cxcr4 for 2 weeks, as described previously (Quante et al., 2011). Dexamethasone 

(Sigma) was administered i.p. at a dose of 5 mg/kg for 2 weeks. CD90.2 mAb (30H12) 

(BioXCell, West Lebanon, NH) was administered i.p. every 2 days at a dose of 250 mg/

mouse for 4 weeks. Control groups were treated with appropriate vehicles or control 

antibodies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

We identified a quiescent stem cell in the corpus isthmus, which can give rise to gastric 

cancer. We also discovered a Cxcl12/Cxcr4 perivascular niche in the stomach, which 

supports normal and neoplastic stem cells through Wnt5a production.
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Figure 1. Mist1 is a marker of quiescent stem cells in the corpus isthmus
(A) The corpus of Mist1-CreERT2;R26-mTmG mice day 1 after 3 mg TAM. Left: chief 

cells; right: isthmus cells (arrow). (B) Electron microscopy of Mist1+ cells in the isthmus. 

(C) Lineage tracing in Mist1-CreERT2;R26-mTmG mice from day 1 – 540. The arrow 

indicates the isthmus cells. (D) Mist1-traced cell position. Total 50 glands are analyzed at 

each time points. (E) The number of traced glands per 100 glands at 3, 6, and 12 months. 

Total 300 glands from 3 mice are used at each time points. (F–G) Mist1-CreERT2;R26-

Confetti mice 8 months after TAM (F). Single color and multi-color clones in the isthmus 

and chief cells are quantified (G). Total 50 glands are analyzed. (H–I) Mist1-CreERT2;Lgr5-

DTR-GFP (green);R26-TdTomato (red) mouse corpus 24 hr after TAM (H), and 2, 5, 10, 

and 180 days after TAM + DT ablation (I). Yellow arrows; Mist1+ isthmus cell tracing, 

green arrows; Lgr5+ chief cells. (J–K) The numbers of labeled chief cells per gland (J, day 

4) and lineage tracing events per 100 gland (K, day 30) with or without DT ablation. (L) 

Lineage tracing in 5-FU-treated Mist1-CreERT2;R26-mTmG mouse corpus. Refer to Figure 

1C for control images. (M–N) The numbers of labeled chief cells per gland 4 days after 

TAM (cont) or TAM + 5-FU (5-FU) treatments (M) and the number of lineage tracing 

events per 100 gland on day 30 (N). Total 500 glands from 5 mice/group are analyzed for 

(J–K) and (M–N). Bars=1 μm (B), 10 μm (A, C, F, H–I, L). Means ± SEM. *p < 0.05. See 

also Figure S1.
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Figure 2. Mist1+ isthmus cells give rise to IM and IGC
(A) Ki67 (red) and GFP staining (green) of Mist1-CreERT2;R26-mTmG mice at day2. (B–

D) H&E (B), Ki67 (C), and alcian blue (D) staining in Mist1-CreERT2;LSL-KrasG12D mice 

on days 14, 21, and 28 after induction. Arrows indicate itshmus-derived dysplastic cells. (E–

F) H&E staining (E) and numbers of metaplastic glands per 100 glands (F) of Mist1-

CreERT2;LSL-KrasG12D;Lgr5-DTR-GFP mice treated with PBS (left), 5-FU (middle), or 

DT (right) 30 days after TAM. Total 300 glands from 3 mice/group are analyzed. (G–H) 

H&E (G, day 240) and β-catenin (H) staining in Mist1-CreERT2;Apcflox/flox mouse. Arrows 

indicate nuclear β-catenin+ cells. (I) H&E (left) and β-catenin (right) staining in Mist1-

CreERT2;LSL-KrasG12D;Apcflox/flox mouse corpus on day 120 post-induction. Means ± 

SEM. *p < 0.05. Bars=10 μm (A), 100 μm (B–E, G–I). See also Figure S2.
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Figure 3. Mist1+ isthmus cells can form corpus organoids in a Lgr5-independent fashion
(A) Corpus gland culture of TAM-induced Mist1-CreERT2;R26-mTmG mice. Yellow 

arrows; isthmus cells, white arrows; chief cells. (B–C) Lineage tracing (B) and GIF staining 

(C, green) of corpus gland culture from Mist1-CreERT2;Lgr5-DTR-GFP;R26-TdTomato 

mice treated with DT. (D–F) TdTomato+ cells were sorted and cultured from DT or 5-FU-

treated Mist1-CreERT2;Lgr5-DTR-GFP;R26-TdTomato mice corpus after TAM. FACS plot 

(D), images (E), and colony formation efficiency (F) at day 7 are shown. n = 4/group. (G) 

Relative gene expression per Gapdh in antral or corpus organoids cultured with the indicated 

media for 10 days. n = 3/group. (H–I) Organoid growth of antrum and corpus glands 

cultured with W3aENR or ENJ media. Day 10 images (H) and the relative numbers of 

organoids cultured in the indicated media (I). Numbers in non-DT organoids in each groups 

are set as 1.0. n = 3/group. Means ± SEM. *p < 0.05. Bars=50 μm. See also Figure S3.
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Figure 4. Cxcl12+ vascular endothelial and Cxcr4+ ILCs contribute to corpus stem cell niche 
through Wnt5a production
(A) Relative expression of Wnt3 and Wnt5a in the corpus, antrum, and small intestine. n = 3/

group. (B) In situ hybridization of Wnt5a in the corpus. Arrows indicate Wnt5a+ cells in the 

isthmus stroma. (C) GFP staining in the Cxcr4-EGFP mouse corpus gland. Arrows indicate 

GFP+ cells in the isthmus. (D) Lineage tracing in Mist1-CreERT2;Cxcr4-EGFP;R26-

TdTomato mice on days 2 and 14. Arrows indicate GFP+ cells. (E) E-cadherin (red), CD45 

(red), Lineage (blue), and CD90.2 (red) staining of Cxcr4-EGFP+ cells. (F) FACS plots of 

gastric Cxcr4+ cells. Top left; gating by CD45+ and Cxcr4-EGFP+. Top middle; gating by 

Lin−. Top right; ILCs are identified by IL-7R+CD90.2+. Bottom; histograms of indicated 

ILC markers. (G) Single-cell culture of Mist1+ cells (red) with or without Cxcr4+ cell 

(green) co-culture. (H) Relative colony forming efficiency of Mist1+ cells with Cxcl12 

treatment and Cxcr4+ cell co-culture. n = 4/group. Colony formation efficiency of control 

group is set as 1.0 in (H) and (J). (I) Wnt5a gene expression in Cxcr4+/− ILCs and non-ILC 

CD45+ cells. n = 3/group. (J) Relative colony forming efficiency of Mist1+ cells with Wnt5a 

(100 ng/ml), Cxcr4+ ILCs, or Cag-CreERT;Wnt5aflox/flox ILCs. n = 4/group. (K) Cxcl12-

dsRED mouse stomach with phalloidin staining (green). (L) Cxcr4-EGFP;Cxcl12-dsRED 

mouse stomach. (M) Cell positions of Cxcr4+ cells and Cxcl12+ cells. (N) Immunostaining 

(green) of CD31 in Cxcl12+ cells (red). (O–P) GFP expression (O) and the numbers of GFP+ 

cells (P) in Cxcr4-EGFP and Tie2-Cre;Cxcl12flox/flox;Cxcr4-EGFP mouse corpus. n = 30/

group. Means ± SEM, *p < 0.05. Bars=10 μm (B–E, K, N), 25 μm (G, L, O). See also Figure 

S4 and Table S1.

Hayakawa et al. Page 21

Cancer Cell. Author manuscript; available in PMC 2016 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. E-cadherin loss in Mist1+ cells develops DGC dependent on chronic inflammation
(A–B) H&E and E-cadherin staining (A), and the location (B) of atypical foci in Cdh1ΔMist1 

mice (day 10). (C) Numbers of atypical foci per section with or without Hf infection. n = 3 

mice/group at each time points. (D) H&E staining (left) and GFP expression (right) in Hf-

infected Mist1-CreERT2;Cdh1flox/flox;R26-mTmG mice 18 months after TAM induction. 

(E) Protocols for TAM, Hf, and therapies (dexamethasone, AMD3100, and anti-CD90.2 

Ab). (F–G) H&E staining (F), and numbers of atypical foci per section (G) in Hf-infected 

Cdh1ΔMist1 mice treated with or without dexamethasone. n = 4 mice/group and 4 sections/

mouse are analyzed. (H–J) Numbers of atypical foci per section (H), H&E (I), and GFP 

staining (J) in Cdh1ΔMist1and Cdh1ΔMist1 mice crossed with H/K-ATPase-IL1β mice after 4 

months TAM induction. Means ± SEM. *p < 0.05. Bars=50 μm. See also Figure S5.
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Figure 6. Cxcl12/Cxcr4 perivascular niche regulates DGC progression through Wnt5a 
production
(A–E) E-cadherin (A) and CD90.2 staining (B) (red) of Mist1-CreERT2;Cdh1flox/flox;Cxcr4-

EGFP (green) mice, and Mist1-CreERT2;Cdh1flox/flox;Cxcl12-dsRED (red);Cxcr4-EGFP 

(green) (C) mice treated with TAM and Hf (6 months). Numbers of Cxcl12+ cells (D) and 

Cxcr4+CD90.2+ cells (E) per gland with or without Hf infection. Total 20 glands per group 

were analyzed. (F–H) H&E staining of Hf-infected Cdh1ΔMist1 mice treated with or without 

AMD3100 (F), or treated with control IgG Ab or anti-CD90.2 Ab (G). The numbers of 

atypical foci per section (H). n = 4 mice/group and 4 sections/mouse are analyzed. Arrows 

indicate atypical foci. (I–K) H&E (I) and E-cadherin (J) staining, and numbers of atypical 

foci per section (K) in Cdh1ΔMist1 mice crossed to H/K-ATPase-Cxcl12 mice 3 months after 

TAM. n = 3 mice/group and 4 sections/mouse are analyzed. Arrows indicate atypical foci. 

(L) In situ hybridization of Wnt5a in Cdh1ΔMist1 mice with or without Hf infection. (M) 

Cxcr4-EGFP expression in WT and H/K-ATPase-Cxcl12 mouse stomach treated with 

control, AMD-3100, or anti-CD90.2 Abs. (N–P) Control or Cag-CreERT;Wnt5aflox/flox 

mouse bone marrow cells were transplanted into Mist1-CreERT2;H/K-ATPase-

Cxcl12;Cdh1flox/flox mice after 10.5 Gy whole body irradiation (N). The numbers (O) of 

atypical foci per section and H&E staining (P) are shown. n = 4 mice/group and 4 sections/

mouse are analyzed. Arrows indicate atypical foci. Means ± SEM. *p < 0.05. Bars=50 μm 

(A–C, F–G, L–M), 100 μm (I–J, P). See also Figure S6.
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Figure 7. RhoA activation by Wnt5a plays a role in DGC development
(A) AGS cells were treated with 100 ng/ml Wnt5a for the indicated times. Cell lysates were 

immunoprecipitated with RhoA-GTP Ab and immunoblotted with total RhoA Ab. (B–C) 

Soft-agar sphere forming assay of Wnt5a-treated AGS and KATO-III cells. Cells were 

treated with vehicle or 30 μM Rhosin. Sphere images (B) and numbers (C) of spheres at day 

10. n = 4/group. (D–E) Corpus organoids from TAM-treated Mist1-CreERT2; Cdh1flox/flox; 

R26-mTmG mice treated with 100 ng/ml Wnt5a and/or 30 μM Rhosin. Images (D) and 

numbers (E) of GFP+Cdh1− organoids per total organoid number on days 3 and 14. n = 4/

group. (F) H&E, E-cadherin, Cxcl12, and KLRG1 staining in human DGC. Bars=100 μm 

(D), 50 μm (B, F). Means ± SEM. *p < 0.05.
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