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Abstract

Rationale and Objectives—The discovery of germline genetic variants associated with breast 

cancer has engendered interest in risk stratification for improved, targeted detection and diagnosis. 

However, there has yet to be a comparison of the predictive ability of these genetic variants with 

mammography abnormality descriptors.

Materials and Methods—Our IRB-approved, HIPAA-compliant study utilized a personalized 

medicine registry in which participants consented to provide a DNA sample and participate in 

longitudinal follow-up. In our retrospective, age-matched, case-controlled study of 373 cases and 

395 controls who underwent breast biopsy, we collected risk factors selected a priori based on the 

literature including: demographic variables based on the Gail model, common germline genetic 

variants, and diagnostic mammography findings according to BI-RADS. We developed predictive 
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models using logistic regression to determine the predictive ability of: 1) demographic variables, 

2) 10 selected genetic variants, or 3) mammography BI-RADS features. We evaluated each model 

in turn by calculating a risk score for each patient using 10-fold cross validation; used this risk 

estimate to construct ROC curves; and compared the AUC of each using the DeLong method.

Results—The performance of the regression model using demographic risk factors was not 

statistically different from the model using genetic variants (p=0.9). The model using 

mammography features (AUC = 0.689) was superior to both the demographic model (AUC = .

598; p<0.001) and the genetic model (AUC = .601; p<0.001).

Conclusion—BI-RADS features exceeded the ability of demographic and 10 selected germline 

genetic variants to predict breast cancer in women recommended for biopsy.
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Introduction

Over the last several decades, predictive variables have been discovered and incorporated 

into risk prediction models [1–3] with the goal of personalizing breast cancer screening and 

diagnosis. One highly predictive source of information is abnormality level feature 

descriptors observed on mammography as described in the Breast Imaging Reporting and 

Data System (BI-RADS) [4–8]. Other emerging sources are the ever-growing genome-wide 

association studies (GWAS) that identify genetic variants (single nucleotide polymorphisms

—SNPs). The SNPs discovered via recent GWAS are distinct from mutations in the BRCA1 

and BRCA2 tumor suppressor genes [9]. While both are germ-line genetic risk factors 

(inherited from parental lineage), SNPs discovered in recent GWAS are single-base-pair 

DNA sequence variations conferring modest risk (low penetrance) but occurring commonly 

(high frequency) within the human population. Expansion of genetic risk prediction may 

depend on polygenic risk stratification, i.e. weighing many high frequency, low-penetrance 

SNPs at once [3, 10]. Early attempts to use such SNPs to predict breast cancer risk have 

demonstrated only modest improvements over conventional demographic risk factors, like 

those in the Gail model [11–13].

Breast cancer risk is determined by a combination of genetic and environmental factors. 

Intermediate phenotypes like imaging [14] can capture and convey these interactions of 

these risk factors and provide biomarkers that can augment comprehensive risk prediction. 

Since demographic risk factors, genetic variants, and imaging features will all likely have 

some level of predictive value, determining which variables provide the best predictive 

power in any given setting becomes extremely important. Investing limited resources in 

collection of the best predictive variables will provide the most benefit. Prior literature 

evaluated risk prediction with genetics and breast density [15, 16] and one paper added BI-

RADS assessment category [17]. Despite the proven predictive ability of abnormality-level 

features described in the BI-RADS lexicon [4–8] (e.g. mass and calcification descriptors as 

well as associated findings like architectural distortion), comparison with demographic or 

genetic risk has been limited. We compare the performance of predictive models using 

Burnside et al. Page 2

Acad Radiol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distinct data elements: demographic risk factors, germline genetic variants, or 

mammography abnormality features to estimate breast cancer risk in women recommended 

for breast biopsy.

Materials and Methods

Subjects

The source of subjects for this project was the population-based __APMR_, details of which 

have been published previously [18]. Briefly, ___ Institution 1___ patients aged 18 years 

and older residing in one of 19 Zip codes surrounding ___City, State___ were invited to 

participate. After giving written informed consent, participants provided a blood sample 

from which DNA, plasma and serum was extracted and stored. Permission was given to link 

the biological samples with medical records and a brief questionnaire was completed.

We selected subjects from the __APMR_ using a retrospective case-control design. Women 

with a DNA sample available, a diagnostic mammogram, and a breast biopsy within 12 

months after the mammogram were included. Cases were defined as women having a 

confirmed diagnosis of invasive breast cancer or ductal carcinoma in situ (DCIS) obtained 

from the __ Institution 1__ institutional cancer registry. Controls were confirmed through 

the electronic medical records (and absence from the cancer registry) as having a benign 

biopsy result, and never having had a breast cancer diagnosis.

To ensure a similar age distribution, we selected a control whose age was within five years 

of the age of each case. A total of 35 subjects were excluded from the statistical analysis. 

We excluded 3 cases with known BRCA1 mutation and 3 cases with BRCA2 mutation 

(because these mutations would likely dominate all other predictive variables). We excluded 

8 non-white women from our study because GWAS variants can differ between races, and 

we did not have an appropriate number or distribution of non-whites to effectively consider 

race or to race-match cases and controls. Finally we excluded all instances in which BI-

RADS features and breast density were all missing (21 cases). Some of the excluded 

subjects met more than one exclusion criterion.

All epidemiologic, genetic, and mammographic risk factors were chosen a priori based on 

the literature [11–13, 19] to represent the variables most likely to influence breast cancer 

risk and these factors were included in analysis regardless of subsequent statistical 

significance.

Epidemiologic Risk Factors

Variables used in the current study that were collected at the time of enrollment into the 

__APMR_ included age and gender. Medical records were manually abstracted for the 

following information based on Gail risk factors: family history of breast cancer, age at 

menarche and number of biopsies (prior to the index biopsy qualifying each subject for 

inclusion). Age at first live birth was not available in our cohort so parity was instead used 

in our “DEMOGRAPHIC” model because of known association with breast cancer risk and 

correlation with age at first birth [20].
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Genetic Variants

The __APMR_ was one of five initial biobanks in the eMERGE Network funded by the 

National Human Genome Research Institute [21]. We identified 10 genetic variants shown 

to predict breast cancer in large GWAS studies [22, 23] and tested for breast cancer risk 

prediction—Table 1 [11–13]. We sequenced these 10 SNPs on the Sequenom MassARRAY 

system. Because humans have two paired chromosomes with two chances to inherit the 

higher-risk (“risky”) allele, there are several accepted methods to quantify risky alleles for 

analysis. We enumerated the SNPs using two methods previously described in the literature 

[11]. The “variant count” method quantifies the number of risky alleles (one allele per SNP 

for heterozygotes and two alleles per SNP for homozygotes) aggregating them into 

categories of ≤ 6, 7–8, 9–10, 11–12, and ≥13. The “individual count” method, which we 

used in our “GENETIC” model, quantifies how many risky alleles are present (0, 1, or 2 

risky alleles) for each individual SNP resulting in possible values of 0–30 inclusive.

Mammography Features

In order to capture mammography abnormality level data, the biopsies of both cases and 

controls were matched with one diagnostic mammogram within 12 months prior to biopsy. 

If there were multiple mammograms within the year prior to biopsy we selected the 

mammogram with a most suspicious BI-RADS assessment category. If multiple diagnostic 

mammograms also had the same BI-RADS assessment category, we selected the 

mammogram closest in time but prior to the biopsy. If more than one mammogram were still 

candidates, with the same BI-RADS assessment category performed on the same day, we 

selected the one with the most extracted BI-RADS abnormality features. If the selected 

mammogram did not contain an assessment for breast density, each prior mammogram was 

checked for a breast density assessment and the most recent assessment was used.

Mammography features have been codified in the BI-RADS lexicon to standardize 

mammographic findings and recommendations [24] which contains three major categories: 

breast density, abnormality features (or “descriptors”) and BI-RADS assessment categories. 

We focused on breast density and abnormality features because most women receiving a 

biopsy recommendation will be assessed as BI-RADS 4 and less commonly BI-RADS 5; a 

uniformly assigned variable was unlikely to be contributory.

At the _____Clinic name____, mammography results were recorded as free text reports in 

the electronic health record. We use a parser based on the 3rd edition of BI-RADS [25], 

previously shown to outperform manual term identification [26, 27] to isolate BI-RADS 

mammography features. We used the BI-RADS 3rd edition rather than more recent version 

because this retrospective review analyzed mammograms from the era in which this edition 

was most commonly used, particularly keeping in mind that adoption of a lexicon typically 

lags dissemination. From these features, we selected from the most predictive abnormality 

descriptors, a priori, based on the literature [19] to use in our “MAMMOGRAPHIC” model: 

mass margin, microcalcification shape, microcalcification morphology, and architectural 

distortion. For microcalcification features we consolidated the suspicious morphology 

descriptors (linear, amorphous, and pleomorphic) and suspicious distribution descriptors 

(clustered, segmental, linear) into the “present” category; cases lacking any of these 
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descriptors in their records were assigned “absent” calcifications. Breast density was 

discretized into the 4 values defined by BI-RADS: predominantly fatty, scattered 

fibroglandular, heterogeneously dense, or extremely dense. Importantly, the BI-RADS 

lexicon evolved from the 1st Edition to the 4th Edition over the time of our study. While the 

many of the descriptors were being used even before BI-RADS was released as a result of 

influential publications that codified predictive terms [28], the progressive development and 

dissemination of BI-RADS (1st Edition in 1993; 2nd Edition in 1995; 3rd Edition in 1998; 

and 4th Edition in 2003) [29] was undoubtedly accompanied by increasing uptake over time. 

Thus, in order to demonstrate how that evolution of BI-RADS might influence our results, 

we provide more detailed analysis over time (Appendix).

Statistical Analysis

We used logistic regression to model risk of malignancy. Odds ratios and 95% confidence 

intervals were obtained for each predictor in a model that contained all of the variables. We 

adjusted for age at biopsy in each model. We built 3 models each containing variables from 

single data types: demographic risk factors (the DEMOGRAPHIC model), SNPs (the 

GENETIC model), and imaging features (the MAMMOGRAPHIC model). In order to 

comprehensively summarize odds ratios for all variables, we created a single model—Table 

2 (using the variant count method because it is more concise). Prior to building our models 

we imputed age at menarche, number of pregnancies and breast density to populate missing 

values [30, 31] as implemented in the R mice package [32–34].

Assessment of Model Performance

Ten-fold cross-validation was used to fit and evaluate the models. We calculated the areas 

under the ROC curve (AUC) with 95% confidence intervals and did statistical comparisons 

using the DeLong method [35]. A two-sided p-value of < 0.05 was the criterion for 

statistical significance. All statistical analyses and graphics were done in R version 3.0.1.

[36]

IRB approvals

The ________ Institutional Review Board reviewed and approved the data collection of the 

__Anonymized Personalized Medicine Registry___ (_APMR_), which required informed 

consent. The __Institution 1___ and the __ Institution 2 ___ IRBs also approved this 

retrospective study and waived any further specific informed consent. All study activities 

were HIPAA compliant.

Results

We collected a total of 373 cases and 395 controls with a biopsy date between 1/29/1989 – 

12/15/2010. The majority of mammograms were performed between 1993–2005 with 

approximately equal proportions of cases and controls in these years (Figure 1). The age 

range (i.e. age at biopsy) was 29 to 90 years of age (mean = 62, SD = 12.8). Of the cases, 

77% were invasive and 23% were in situ. The variables included in the predictive models 

are shown in Table 2. Some of our predictors had a high percentage of missing observations. 

Menarche was missing 239 (60.5%) for cases and 64 (17.2%) for controls; number of 
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pregnancies was missing 1 (0.03%) for cases and 16 (4.0%) for controls, and breast density 

was missing 157 (42.1%) for cases and 179 (45.3%) for controls.

Demographic variables were associated with risk of a malignant diagnosis; associations 

were not statistically significant for age at menarche, number of biopsies, and parity, but risk 

estimates were in the expected directions. As expected, women with a family history of 

breast cancer had a two-fold risk of a malignant diagnosis (OR 2.05, 95% CI 1.34, 3.15). 

Greater numbers of risky genetic alleles were also significantly associated with greater risk 

of a malignant diagnosis.

Mammographic features (Table 3) were also significantly associated with risk of a 

malignant diagnosis (Table 2). Spiculated mass margin, p < 0.001, and architectural 

distortion, p < 0.01 were significant predictors of malignancy amongst imaging features 

while circumscribed mass margin decreased the risk of malignancy, p = 0.016. We observed 

that suspicious calcification shape predicted malignancy but not significantly. However 

suspicious calcification distribution significantly decreased the risk of malignancy, p = 

0.029.

We found that use of BI-RADS descriptors in our study population did increase over time 

(Appendix).

Model Performance

The “baseline” model with age alone had an area under the ROC curve (AUC) of 0.547 

(95% CI 0.506, 0.587). When we added the Gail demographic factors to the baseline model

—i.e. the DEMOGRAPHIC model—AUC increased to 0.598 (95% CI 0.558, 0.638; p = 

0.012; Figure 2). When we added the ten SNPs to the baseline model—i.e. the GENETIC 

model—the AUC increased to 0.601 (95% CI 0.562, 0.641; p < 0.01). There was no 

statistically significant difference between the AUCs of the DEMOGRAPHIC model and the 

GENETIC model (p = 0.90). When we added mammographic features to the baseline model

—i.e. the MAMMOGRAPHIC model—the AUC significantly increased to 0.689 (95% CI 

0.652, 0.727; p < 0.001). The AUC of the MAMMOGRAPHIC model was statistically 

significantly better than the DEMOGRAPHIC (p < 0.001) and the GENETIC (p < 0.001) 

models respectively. We also show that if we limit our study to cases after a year when a 

new BI-RADS edition became available (e.g. after 1993 when BI-RADS 1st Edition became 

available or after 1998 when BI-RADS 3rd Edition became available), the predictive ability 

of our BI-RADS models increase in keeping with improved utilization and consistency 

(Appendix).

Discussion

Determining the predictive ability of variables that confer risk for any given population of 

patients is important even if these variables (or combinations of these variables) are not 

sufficiently well-understood to influence clinical decision-making. We show that 

mammographic findings are significantly better at predicting malignancy in a population of 

women recommended for breast biopsy as compared to risk factors based on the Gail model 

or 10 selected SNPs. We found no significant difference between our GENETIC and 
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DEMOGRAPHIC models in this population. By consolidating a unique data set of 

demographic risk factors, genetic variants, and mammographic findings, our regression 

models revealed both expected and novel statistically significant predictors of malignancy 

among women recommended for biopsy.

Our results are comparable to, yet extend, previous literature, which to date has not 

considered finding level imaging variables.[11–13] The predictive ability of genetic variants 

and demographic risk factors (without mammography features) has been investigated in the 

literature before. Two studies [11, 12] extracted a case-control cohort from longitudinal 

observational studies and used a similar logistic regression modeling technique to 

demonstrate that demographic (Gail) risk factors achieved an AUC of 0.607 and 0.534 

respectively (comparable to our DEMOGRAPHIC model AUC of 0.598). With regard to 

genetic variants, one of these studies [12] analyzed seven SNPs (a subset of those used in 

our model) revealing an AUC of 0.607 while the other [11] used 10 SNPs (almost the exact 

list used in our model) demonstrating an AUC of 0.597. These results are again comparable 

to our GENETIC model AUC of 0.601). Our contribution is to demonstrate that 

mammography features have superior predictive ability in this population as shown by our 

MAMMOGRAPHIC model AUC of 0.689, statistically significantly better than either the 

DEMOGRAPHIC OR GENETIC models. Our findings reflect an early indication as to the 

comparative value of each variable type at this point of care (recommendation for breast 

biopsy). Further research in this area has the potential to determine the wisest investment of 

resources in order to accurately predict breast cancer risk and optimize management.

The value of mammography features has been well-established in the literature [4–8], but 

has not yet been directly compared to new predictors like germline genetic variants. We find 

that abnormality features such as spiculated mass margins and architectural distortion were 

strong predictors of breast cancer in this population. While mammographic breast density 

has been used to effectively predict risk in concert with demographic risk factors [37] in 

screening populations, breast density was in fact a weak a predictor in our population 

recommended for breast biopsy. Both suspicious morphologic and distribution descriptors 

for microcalcification yielded surprising results. Morphology was not significantly 

predictive (but tended in the expected direction, i.e. to predict malignancy) however 

distribution was significantly predictive of benignity. This result is counter to prior literature 

[5, 38, 39] showing both of these variables to be highly predictive of malignancy (usually 

DCIS). The reasons for the poor and unexpected predictive direction of microcalcification 

descriptors is likely multifactorial. First, microcalcification descriptors extracted from free 

text reports were dominated by two descriptors: pleomorphic morphology and clustered 

distribution (Table 3). The heavy use of these descriptors likely diminishes their predictive 

power. Linear morphology and segmental distribution were noted only in malignant cases 

and thus may have been predictive had our numbers been larger. Second, our small sample 

size is likely at least partially responsible for these results, because only a small proportion 

(22.3%) of our already small number of cases were DCIS, those most likely to be manifest 

by microcalcifications on mammography. Third, though these descriptors are shown to be 

predictive of malignancy in previous literature, these results were found in consecutive 

biopsy cases including only microcalcifications rather than a case-control design, such as 

ours, which includes all imaging findings.
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Limitations of this study should be considered when interpreting results. Our predictive 

models are undoubtedly limited by the challenges of medical record and self-reported data 

that are inherently imperfect. Prior comparable studies [11–13] used genetic and 

demographic data from high-quality cohort studies conducted using prospective and 

systematic collection of risk factors resulting in few missing values. We, on the other hand, 

found it necessary to extract many risk factors from an existing electronic health record, 

resulting in a higher rate of missing values. For this reason, we imputed three variables: age 

at menarche, number of pregnancies, and breast density. By assessing our level of 

convergence diagnostics, comparing the distribution of observed and imputed variables, and 

comparing results with prior literature, we are confident that our imputed dataset are robust. 

The small size of the study limited precision in estimates, yet associations were observed in 

the expected directions. In order to compensate for small sample size we needed to include 

clinical encounters over a substantial time range (1989–2010). This study design has the 

disadvantage that mammography descriptors were used more consistently by interpreting 

radiologist in the latter years included in our study due to increased adoption of the BI-

RADS lexicon and adherence with the lexicon descriptors. In fact, increasing utilization of 

BI-RADS appears to result in increased predictive performance of logistic regression models 

based on descriptors as more recent mammograms are included. Therefore, the results of the 

larger data set, across the entire study timeframe, may underestimate the predictive ability of 

the models using BI-RADS descriptors (Appendix), likely making our results, i.e. the 

magnitude by which BI-RADS descriptors outperform genetics and demographic risk 

factors, conservative. Finally, our patient population was limited to white women 

recommended for biopsy, so results cannot be generalized beyond this group.

By constructing a unique data set, we demonstrate that mammography features according to 

BI-RADS provide discriminative performance that is statistically significantly superior to 

demographic and genetic models in women recommended for breast biopsy. Because BI-

RADS descriptors predict the outcome of a given finding (the target for biopsy) in the 

immediate diagnostic setting, while demographic and genetic variables (as well as breast 

density) predict longer term risk of malignancy, our results make intuitive sense. However, 

our study quantifies this differential value without claiming that any of these variables or 

combinations are ready to influence clinical decision-making at this point in time. These 

results provide a necessary step toward quantifying the value of these variables knowing that 

personalizing risk is a promising direction in the future. For example, now over 100 SNPs 

have been discovered as GWAS consortium datasets grow [40]. Improved codification and 

collection of mammography variables will likely result from the new BI-RADS lexicon 5th 

edition and the growth of the National Mammography Database. Continued research like 

ours has the potential to guide prioritization of variable collection for optimal risk 

prediction.
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Appendix

In order to analyze the use of BI-RADS descriptors over the date range of our study we 

plotted the use of BI-RADS descriptor per individual for the whole study population (Figure 

A1), cases (Figure A2) and controls (Figure A3). These figures all demonstrate increasing 

utilization of the BI-RADS descriptors over time. We then took our imputed data and 

created two new logistic regression models subsets of the data: 1) after 1993 when BI-

RADS 1st Edition became available and 2) after 1998 when BI-RADS 3rd Edition became 

available (Table A1). These AUC values demonstrate a trend of improvement for models 

using mammography reports collected in more recent timeframes (Table A.1 and Figure 1—

main manuscript).

Figure A1
Utilization of BI-RADS descriptors for cases and controls over the time of study

*Of note, the sponsors/funders of this study had no role in: 1) study design; 2) collection, analysis or interpretation of data, 3) writing 
of the report; or 4) decision to submit the article for publication.
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Figure A2
Utilization of BI-RADS descriptors for cases over the time of study

Figure A3
Utilization of BI-RADS descriptors for controls over the time of study
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Table A1

Performance of MAMMOGRAPHIC models using progressively more recent subsets of the 

data

Timeframe n AUC

1989–2010 768 .693

1993–2010 743 .701

1998–2010 662 .711
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Figure 1. 
Plot shows the year that included biopsies (cases and controls) were performed, from which 

corresponding diagnostic mammography examinations were identified. Date ranges of the 

sequential editions of the BI-RADS lexicon are demarcated to illustrate the evolution of the 

lexicon noting that utilization invariably lags dissemination. Prior to the publication of the 

BI-RADS lexicon, standardized descriptors were also available in the scientific literature.28
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Figure 2. 
Receiver operating characteristic curves for the three models that were compared.
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Table 1

Common Genetic Variants Associated with Breast Cancer [22, 23]

SNPs Chromosome Gene High-Risk Allele Low-Risk Allele

RS1045485 2q CASP8 G C

RS13281615 8q Unknown G A

RS13387042 2q Unknown A G

RS2981582 10q FGFR2 T C

RS3803662 16q TOX3 T C

RS3817198 11p LSP1 C T

RS889312 5q MAP3K1 C A

RS10941679 5p Unknown G A

RS999737 14q RAD51L1 C T

RS11249433 1p Unknown C T
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Table 3

Frequency of microcalcification descriptors in cases and controls

Control Case Total

Microcalcification Shape

 Benign descriptor 33 (53%) 29 (47%) 62

 Amorphous 10 (83%) 2 (17%) 12

 Pleomorphic 70 (54%) 59 (46%) 129

 Fine linear 0 (0%) 5 (100%) 5

 Total 113 95 208

Microcalcification Distribution

 Benign descriptor 11 (52%) 10 (48%) 21

 Grouped 115 (62%) 71 (38%) 186

 Segmental 0 (0%) 6 (100%) 6

 Linear 18 (46%) 21 (54%) 39

 Total 144 108 252
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