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Abstract

Memory B cell responses are vital for protection against infections, but must also be regulated to 

prevent autoimmunity. Cognate T cell help, somatic hypermutation, and affinity maturation within 

germinal centers (GCs) are required for high affinity memory B cell formation; however, the 

signals that commit GC B cells to the memory pool remain unclear. In this study, we identify a 

role for IgG immune complexes (ICs), FcγRs, and BAFF during the formation of memory B cells 

in mice. We found that early secretion of IgG in response to immunization with a T-dependent 

antigen leads to IC-FcγR interactions that induce DCs to secrete BAFF which acts at or upstream 

of Bcl-6 in activated B cells. Loss of CD16, hematopoietic cell-derived BAFF, or blocking 

IC:FcγR regions in vivo diminished the expression of Bcl-6, the frequency of GC and memory B 

cells, and secondary antibody responses. BAFF also contributed to the maintenance and/or 

expansion of the Tfh population, although it was dispensable for their formation. Thus, early 

antibody responses contribute to the optimal formation of B cell memory through IgG-ICs and 

BAFF. Our work defines a new role for FcγRs in GC and memory B cell responses.
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Introduction

Adaptive immunity requires the commitment of activated B cells to either the memory or 

plasma cell (PC) compartments, the differentiation of CD4+ T cells to follicular helper T 

cells (Tfh), and coordinated expression of chemoattractant receptors to position T and B 

cells within the follicle for cognate interactions (1, 2). The specialized microenvironment of 

the germinal center (GC) provides a site for rapid expansion and selection of B cell clones 

whose somatically mutating immunoglobulin (Ig) V regions compete for a limiting amount 

of antigen displayed on follicular dendritic cells and limited availability of T cell help (3–5). 

Although many steps in the cyclic process of somatic hypermutation and clonal selection are 

defined, the events that dictate activated B cell fate to GC or to the memory B cell pool are 

incompletely understood.

During the GC response, Tfh cells are critical effectors that provide help to B cells (6, 7). 

Tfh cells engage activated B cells at the T:B border, and their secreted cytokines promote Ig 

isotype switching and the selection of cells with high affinity B cell receptors in GCs (1, 5, 

8). The expression of CXCR5, ICOS, PD-1, and the secretion of IL-21 distinguish Tfh cells 

from other CD4+ T cell subsets (6, 9). The formation of Tfh cells is dependent on the 

expression of Bcl-6, a process linked to ICOS expression on CD4+ T cells (10) and 

influenced by IL-2 (11, 12). This commits primed T cells to the Tfh pool and inhibits their 

differentiation to other T cell subsets (13–16). Bcl-6 is also required for GC B cell formation 

(17–19). In activated B cells, Bcl-6 downregulates Blimp-1, directing B cells away from PC 

differentiation and toward the memory pathway (20, 21). Cytokines such as IL-6 and IL-21 

have been shown to affect Bcl-6 expression in B and T cells (22–24); however the loss of 

either cytokine is not enough to eliminate GCs and memory B cells, and a more complete 

picture of the events upstream of Bcl-6 expression are of interest in understanding B and T 

cell differentiation in GC responses.

BAFF plays an essential role in controlling the development and survival of B2 and 

marginal zone B cells (25, 26), enhancing the survival of plasmablasts (27) and affinity-

matured B cells in the GC (5). Earlier studies in which BAFF was neutralized or deleted 

suggest BAFF plays a role in the GC response; however, interpretations of those results are 

complicated by the global loss of B cells associated with BAFF depletion (28–31). Others 

have shown that BAFF and anti-CD40 increase ICOSL expression on B cells (32, 33), and 

that TACI serves to limit the expression of ICOSL and the expansion of Tfh cells and GC B 

cells (34). Thus, BAFF has been implicated in events that contribute to GC responses; 

however, how BAFF is induced and where it acts in the GC response remains unclear.

In this study we identify a previously unrecognized role for IgG-ICs, CD16 (FcγRIII), and 

BAFF in the formation of B cell memory. We found that early production of anti-NP-IgG 

promotes the formation of ICs that activate DCs through CD16. This induces the secretion 

of BAFF, which acts at or upstream of Bcl-6 to promote the formation of GC B cells and 

proper memory cell formation. Although BAFF is not involved in the formation of Tfh cells, 

it plays a role in stabilizing and/or expanding the population at the peak of the GC response. 

Thus, IgG-ICs and CD16, through BAFF, act at or upstream of Bcl-6 expression in GC B 
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cells and in the maintenance and/or expansion of Tfh cells to support the optimal formation 

of B cell memory during NP-specific immune responses.

Materials and Methods

Animals

B6-Ly5.2 congenic mice were purchased from NCI, BAFF−/− mice (29), and CD16-2−/− 

(FcγRIV) mice (35) were obtained from, Glenn Matsushima, and Charles Jennette at UNC-

Chapel Hill. CD16−/− and CD64−/− mice (36) were obtained from Dr. Anne Sperling at the 

University of Chicago, and tissue from BAFF Tg mice (37) from Jeffrey Rathmell at Duke 

University (MMRRC strain #36508, B6.Cg-Tg(CD68-Tnfrsf13c)MB21Nemz/Mmucd). 

CD32−/− mice (38) were purchased from Jackson labs. Mice were used at 8–12 weeks of age 

and maintained in an accredited animal facility.

Reagents and Antibodies

Antibodies against mouse CD4, CD19, CD95, GL-7, ICOS, ICOSL, PD-1, and B220-647 

were purchased from Biolegend, CXCR5, B220, IgG1, IgG2a, IgG2b, and IgG3 antibodies 

from BD Biosciences, Bcl-6, XBP-1, and IRF-4 from Santa Cruz, and BAFF (1C9) from 

Enzo. Anti-μ F(ab)2 was purchased from Jackson ImmunoResearch. Anti-μ (clone B7.6), 

anti-NP (clones H33L and B1-8), 2.4G2 (FcγRIIb /FcγRIII block) and Ac38 idiotype 

antibodies were purified from hybridoma supernatants. (Ac38 is an idiotype antibody that 

recognizes B-1-8 specificities generated during NP immunization). Recombinant mouse 

BR3-Fc and isotype control protein were generated using mammalian expression systems 

and standard purification protocols. H33L and B1-8 were gifts from Dr. Garnett Kelsoe 

(Duke University). IL-4 and IL-5 were purchased from Peprotech, recombinant BAFF 

(rBAFF) from R&D Systems, NP-OSu from Biosearch Technologies, KLH and PNA-biotin 

from Sigma Aldrich, alum from Thermo Scientific, and streptavidin-Alexa 488 and Alexa 

647 from Invitrogen. Streptavidin-alkaline phosphatase and anti-IgG alkaline phosphatase 

were purchased from Southern Biotech. The Fc-binding TG19320 peptide was synthesized 

as described (39, 40).

B cell purification and bone marrow derivation of MFs and DCs

Splenic B cells were isolated from B6 mice by negative selection (StemCell Technologies) 

and were 95–99% pure, as determined by flow cytometry. Splenic DCs were purified by 

positive selection of CD11c+ cells (Miltenyi) from enriched low-density cells (OptiPrep; 

Sigma). Purified cells were 80% CD11c+.

Bone marrow-derived DCs (BMDCs) and bone marrow-derived MFs (BMMFs) were 

prepared from single cell suspensions from the tibias and femurs of B6, CD64−/−, CD32−/−, 

CD16−/−, and BAFF−/−mice. Following RBC lysis, cells were cultured 7 days in a 24 well 

low-cluster plate (Costar 3471) with 10 ng/ml GM-CSF and IL-4 to derive DCs and in 20 

ng/ml M-CSF to derive MFs.
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Cell Culture

We pre-formed immune complexes by stimulating B6 B cells (1.5 × 105) with an excess of 

anti-μ (B7.6; IgG1; 30 µg/ml). The polyclonal IgM produced after seven days forms a 

complex with the excess anti-μ resulting in IgG1-IgM ICs in the supernatant. These B cell 

supernatants were used as a source of ICs in preparing DC conditioned medium (DC CM).

DC CM was prepared by culturing 2 × 104 BMDCs (day 7) in a 96 well plate in the presence 

of IC-containing supernatants (see above; 20% of volume), IL-4 (25 ng/ml), and IL-5 (25 

ng/ml). After seven days, supernatants were harvested and frozen at −80°C.

For in vitro co-cultures, 1.5 × 105 purified B6 B cells were co-cultured with 1 × 104 BMDCs 

or ex vivo DCs in a 96 well plate stimulated with IL-4 (25 ng/ml), IL-5 (25 ng/ml) and 30 

µg/ml anti-μ with or without recombinant murine BAFF (5 ng/ml) or DC CM (20% of total 

volume). Intracellular Bcl-6 was assessed by flow cytometry after 48 hours.

ELISAs

NP-specific IgG levels were quantitated from serum using microtiter plates coated with 

NP13BSA and blocked with 0.5% BSA. Serially diluted serum samples were incubated 

overnight at 4°C. Anti-NP was detected using an alkaline phosphatase conjugated rabbit 

anti-mouse IgG antibody (1/1000 dilution) followed by phosphatase substrate. Optical 

density (OD) values were converted to concentration based on standard curves using the 

H33L (anti-NP) hybridoma.

ELISpot

For the analysis of NP-specific B cells, multiscreen ELISpot plates (Millipore) were coated 

with NP13BSA in PBS and blocked with 1% BSA. Single cell suspensions of spleen were 

prepared from immunized or naïve B6 mice. After RBC lysis, cells were plated in serial 

dilutions on washed ELISpot plates. Anti-NP IgG-secreting spots were detected with anti-

IgG-biotin and streptavidin-HRP (BD Biosciences). Plates were developed with 3-amino 9-

ethylcarbazole.

To enumerate BAFF-secreting DCs, CD11c+ cells (1 × 106) were purified from spleens and 

cultured for 60 hours on BR3-Fc coated ELISpot plates. BAFF-secreting cells were detected 

using anti-BAFF (clone 1C9). To enumerate BAFF secreting cells from BMDCs, day 7 cells 

(2.5 × 105) were plated on ELISpot plates as above and incubated 24 hours with preformed 

ICs (IgM + anti-μ or NP-OVA + anti-NP IgG monoclonal Ab, H33L) prior to addition of 

1C9. Anti-μ ICs were made by combining the supernatant from stimulated B cells (20 ng of 

IgM) with anti-μ (5 µg) or by combining anti-NP IgG with NP-OVA. In some experiments, 

TG19320 was added at 50 µg/ml to inhibit IgG binding to FcγRs.

Bone Marrow Chimeras

B6-Ly5.2 congenic mice (6–8 weeks of age) were lethally irradiated (10.5 Gy; 1050 rads) 

and reconstituted with 8 × 106 bone marrow cells from either B6 (B6 control chimeras) or 

BAFF−/− (BAFF−/− chimeras) mice. After 8 weeks, we monitored reconstitution by 

assessing the frequency of CD45.1+ and CD45.2+ splenocytes by flow cytometry.
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Immunization and Adoptive Transfers of BMMF/BMDCs

B6, BAFF−/− bone marrow chimeras, and CD16−/− mice (8–10 weeks of age) were 

immunized by i.p. or s.c. injection with 100 µg of NP14KLH precipitated in an equal volume 

of alum (Imject® Thermoscientific). Mice were boosted by i.v. injection with the same dose 

of soluble NP14KLH at day 35. To assess the contribution of DCs or MFs in the secretion of 

BAFF, 8 × 106 BAFF Tg or BAFF−/− BMDCs or BMMFs were injected at the time of s.c. 

immunization. Draining lymph nodes were harvested on day 7 for flow cytometry analysis.

TG peptide injections

B6 mice were immunized with 100 µg NP14KLH in alum (1:1) via i.p. injection and 

administered three (i.p.) injections (15–30 mg/kg) of Fc blocking peptide (TG19320) or 

equal amount of unrelated control peptide over the course of seven days.

Flow Cytometry

GC B cells and Tfh were analyzed on day 7 post-immunization and were defined as CD19+, 

GL-7+, CD95+ and CD4+, CXCR5+, PD-1+. Ac38 was used to define NP-specific GC B 

cells. NP-specific memory B cells were defined as Ac38+ IgG+ double positive CD19+ 

lymphocytes. The lymphocyte gate was determined by forward and side scatter properties. 

To gate on Tfh populations, initially used isotype control antibody staining for CXCR5. To 

gate on GC B cells, we used fluorescence minus one CD95 (CD19 PB + GL7 FITC+) and 

for GL7 (CD19 PB + CD95 PE+). All subsequent gating was based on untreated B6 mice. 

To quantitate expression of intracellular IRF-4, Bcl-6 and XBP-1, splenocytes from 

immunized B6, CD16−/−, B6 control chimeras and BAFF−/− chimeras mice were washed, 

fixed (4% paraformaldehyde), and permeabilized with methanol for a minimum of 24 hours 

at −20°C. Fixed cells were washed and blocked with 2.4G2 before staining. Data are 

expressed as fold change in MFI/isotype control MFI.

Real Time PCR

Splenic B cells from B6 and BAFF−/− chimeras were purified after NP14KLH immunization. 

mRNA was isolated from 5–10 × 106 purified B cells and cDNA synthesized using 

Superscript VILO cDNA Synthesis Kit (Invitrogen). DNA was subsequently amplified using 

FastStart Universal SYBR Green Master mix (Roche). Relative values were compared using 

the 2−ΔΔCΤ method. 18s rRNA was used as an internal control in all experiments. Primers 

included: murine Aicda forward 5’GGGAAAGTGGCATTCACCTA3’, murine Aicda 

reverse 5’GAACCCAATTCTGGCTGTGT3’ murine 18s rRNA forward 

5’TCAAGAACGAAAGTCGGAGGTT3’, murine 18s rRNA revese 5’-

GGACATCTAAGGGCATCACAG-3’.

Germinal Center Staining and Counting

Spleens were harvested from B6 or CD16−/− mice on days 7, 14, and 21 after immunization 

and flash frozen in OCT (Optimum Cutting Temperature; Fisher). Tissue sections (6 micron) 

were fixed in 1:1 MeOH/Acetone, blocked with 10% FBS in PBS containing 2.4G2, and 

stained with PNA-biotin and B220-Alexa647, and Streptavidin-Alexa488. Germinal centers 

were defined as PNA+ cell clusters within B220+ follicles (41). The number of germinal 
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centers per mm2 of B220+ area was determined by dividing the number of germinal centers 

counted in a field by the area of B220+ follicles in the same field. This accounted for 

follicles that were only partially represented in a given field (42). This was done for 10–30 

fields per mouse, totaling 30–100 follicles per mouse at each time point.

Microscopy

Macroscope images were obtained on a Leica MX16FA fluorescence stereo microscope/

macroscope (0.63× objective; numerical aperature of 1.0). Other images were obtained using 

an Olympus Fluoview 500 (10× objective; numerical aperature of 0.45).

Statistics

The one-sided, or one-sample t test was used to compare changes in transcription factor 

levels, and ELISpot. Two-sample student t test was used to assess statistical differences 

between cell populations measured by flow cytometry, and serum antibody secretion. 

Analyses were performed in GraphPad Prism.

Results

BAFF−/− bone marrow chimeras exhibit reduced secondary responses

Previous studies have linked BAFF with an enhanced response to vaccination, suggesting 

that it plays a role in memory responses (43–45). To assess this, we generated BAFF−/− 

bone marrow chimeras by engrafting irradiated B6 mice with B6 (BAFF+/+) or BAFF−/− 

bone marrow. This approach limits BAFF deficiency to hematopoietic cells, allowing other 

sources of BAFF to maintain the peripheral B cell population (46). No differences in the 

spleen cellularity between B6 and BAFF−/− bone marrow chimeras were observed 

(Supplemental Figure 1A), and the basal level (d0) of Tfh and GC B cells were not different. 

In BAFF−/− chimeras, we found that the primary IgG response to NP14KLH (Figure 1A) 

was comparable to B6 control chimeras. However, 7 days after secondary immunization 

(day 42), BAFF−/− bone marrow chimeras showed a 1.4-fold reduction in the levels of IgG, 

and 14 days after secondary immunization (day 49) the levels of IgG were reduced 2-fold 

compared to B6 chimeras (Figure 1B). Diminished production of IgG during the secondary 

response could reflect diminished class switch since BAFF can induce AID expression (47, 

48). However, AID mRNA levels in B cells from B6 control and BAFF−/− chimeras were 

not different (Supplemental Figure 1B), suggesting that BAFF has a role other than in class 

switch.

BAFF−/− chimeras exhibit defects in the frequency of memory B, Tfh cells, and GC B cells

Rapid, high titer secondary immune responses require the activation of memory B cells (49). 

Although most IgG memory B cells do not require BAFF for maintenance (50), it is not 

known whether BAFF is important for their formation. To determine whether BAFF affects 

the frequency of memory B cells, we immunized (i.p.) BAFF−/− chimeras with NP14KLH 

and measured the frequency of NP-specific memory B cells (CD19+IgG+Ac38 Id+) on day 

28 post-immunization. We found that immunization significantly increased the frequency of 

memory B cells in B6 and BAFF−/− bone marrow chimeras; however, the magnitude of the 

response was significantly lower in BAFF−/− chimeras (Figure 1C).
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Tfh cells are critical in the early GC response and required for the differentiation of memory 

B cells (51, 52). It was possible that BAFF affected memory responses by influencing Tfh 

cells that in turn affected GC responses. To assess whether BAFF affects formation and/or 

maintenance of Tfh cells, B6 and BAFF−/− chimeras were immunized and the frequencies 

and numbers of Tfh cells (CXCR5+PD-1+CD4+) were quantitated on days 3 and 7 post-

immunization (Figure 1D, 1E, and Supplemental Figure 1C). On day 3, the frequency of Tfh 

cells in B6 chimeras increased by 1.5-fold while in BAFF−/− chimeras it increased 1.2-fold. 

This suggests that BAFF does not play a significant role in the formation of Tfh cells. 

However on day 7 post-immunization, the frequency and number of Tfh cells in B6 

chimeras increased an additional 2 fold, whereas their frequency in BAFF−/− chimeras did 

not change. This suggests that BAFF may support the expansion of Tfh cells after pre-Tfh 

cells transition to Tfh.

Germinal centers are necessary for the formation of high affinity, class-switched memory B 

cells (53, 54). To determine whether BAFF impacted the frequency of GC B cells, we 

enumerated CD19+GL-7+CD95+ GC B cells 7 days after immunization. In BAFF−/− 

chimeras, the frequency and number of total GC B cells (Figure 1F, 1G, and Supplemental 

Figure 1D), and the frequencies of Ag-specific (Figure 1H; CD19+Ac38+ GL-7+CD95+) GC 

B cells in BAFF−/− chimeras were significantly lower than those in B6 chimeras. Thus, 

BAFF significantly contributes to optimal antigen-specific GC responses.

BAFF acts at, or upstream of, Bcl-6 expression in B cells

Bcl-6 plays a critical role in initiating GC responses and committing activated B cells to a 

memory cell phenotype (17, 19). Thus, one possibility was that the loss of BAFF negatively 

affected Bcl-6 expression. To test this, we measured Bcl-6 levels in GC B cells after 

immunization. We found that on day 7, the levels of Bcl-6 in GC B cells from immunized 

BAFF−/− chimeras were decreased 40% compared to B6 chimeras (Figure 1I and 1J). The 

data show that hematopoietic cell-derived BAFF acts at, or upstream of, Bcl-6 expression in 

B cells. Collectively, our data indicate that BAFF impacts the formation of GC and memory 

B cells by increasing the expression of Bcl-6 in GC B cells, and indirectly through 

maintaining the Tfh cell populations during the GC response.

DC-derived BAFF regulates the frequency of GC B and Tfh cells

The BAFF−/− chimera model is characterized by the absence of BAFF in all hematopoietic 

cells. Among bone marrow-derived cell types that are capable of producing BAFF, myeloid 

cells are a major source of BAFF following infection or immunization (27, 43, 55). To 

determine whether myeloid cells are a sufficient source of BAFF during GC B cell and 

memory B cell fate decisions, we adoptively transferred bone marrow-derived dendritic cells 

(BMDCs) and bone marrow-derived macrophages (BMMFs) from BAFF transgenic (Tg) 

mice into BAFF−/− chimeras by s.c. injection at the time of immunization. We previously 

established that 70% of s.c. injected BMDCs migrated to the inguinal lymph nodes, and that 

the magnitude of the s.c. anti-NP response was comparable to i.p. immunization (data not 

shown). We found that constitutive expression of BAFF by Tg DCs, but not Tg MFs, 

restored the frequencies of GC B cells (Figure 2A), Tfh cells (Figure 2B), and the levels of 

Bcl-6 in GC B cells (Figure 2C) in BAFF−/− chimeras. Since these BAFF Tg MFs secrete 
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more BAFF, than BAFF Tg DCs (37), the responses were not due to higher production of 

BAFF by Tg DCs. Conversely, transfer of BAFF−/− DCs did not increase the frequencies of 

GC B cells (Figure 2A) indicating that the effects of the transfer on GC B cells were not due 

to an increased number of DCs, or to secretion of other cytokines made by the transferred 

DCs. This suggests that in addition to DCs presenting antigen during GC responses (56) DC-

derived BAFF is also be important in directing the differentiation of GC cell populations.

The binding of immune complex to FcγRs induces BAFF secretion

Previous studies showed that exogenous ICs induce BMDCs to secrete a number of 

cytokines, including BAFF (57, 58). In another study, mice lacking the common gamma 

chain of the FcγRs (Fcγc) exhibited diminished secondary immune responses (59). Because 

our data suggest that DCs may promote secondary responses via BAFF, we postulated that 

ICs formed by the early IgG antibody response might induce DCs to secrete BAFF. This 

model requires that the early IgG response occur concurrently with, or precede BAFF 

secretion. To test this, we harvested spleens from B6 mice on days 2, 3, and 7 following 

NP14KLH immunization and used ELISpot to measure the numbers of antibody (IgG) 

secreting cells (ASCs) and BAFF-secreting DCs. NP-specific (IgG) ASCs were increased 7-

fold by day 2 post-immunization and expanded to 90-fold over the course of 7 days (Figure 

2D). Similarly, the number of splenic CD11c+ DCs that secreted BAFF increased 6-fold 

between days 2 and 7 (Figure 2E). Thus, secretion of Ig by B cells and production of BAFF 

by DCs occur concomitantly, beginning approximately 2 days following immunization. This 

supports the idea that IgG-ICs formed early in immune response contribute to the production 

of BAFF, which is required to optimize GC responses.

To further test the idea that IgG-ICs induce DCs to secrete BAFF, we blocked IgG-Fc:FcγRs 

interactions in vitro and assessed whether this impacted BAFF secretion by DCs. 

Stimulation of B6 BMDCs with pre-formed IgG-ICs (IgM bound by anti-μ of IgG1 isotype) 

induced a 1.8-fold increase in BAFF secretion (Figure 2F). This was not unique to IgM/IgG 

ICs because preformed anti-NP ICs (NP-OVA bound by anti-NP of IgG1 isotype) induced a 

dose dependent 2.5-fold increase in BAFF secretion (Supplemental Figure 1E). Co-culture 

with a tetrameric tripeptide (TG19320) that blocks IgG Fc regions (39, 40) reduced the 

number of BAFF-secreting DCs to levels indistinguishable from unstimulated cells. To 

assess whether blocking Fc:FcγR interactions affected the adaptive immune response in 

vivo, we administered TG19320 to B6 mice at the time of immunization and measured the 

frequencies of GC B and Tfh cells. We found that co-administration of TG19320 with 

NP14KLH blocked an increase in GC B and Tfh cells on day 7 (Figure 2G and 2H). This 

indicates that the interactions between IgG-ICs and FcγRs are necessary for optimal GC 

responses and for the maintenance and/or expansion of newly formed Tfh cells in response 

to immunization. Collectively, these data identify a mechanism wherein IgG-ICs formed 

early in the immune response ligate FcγRs on DCs to induce BAFF secretion, which in turn 

contributes to optimal GC responses.

BAFF regulates the expression of Bcl-6 in activated B cells in vitro

To define whether BAFF plays a role in committing activated B cells to the memory 

compartment, we established an in vitro reconstitution system using the expression of Bcl-6 
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as a marker of memory B cell commitment. In this in vitro system, we used conditioned 

medium prepared from B6 BMDCs (DC CM) stimulated with preformed IgG1-ICs (Figure 

2F) as a source of BAFF. This was based on in vivo findings that GC responses were 

dependent of BAFF produced by DCs (Figure 2A–C). To generate activated B cells, we 

used purified splenic B cells (B6) stimulated with anti-μ in combination with IL-4 and IL-5 

to induce a low level of Bcl-6 expression (Figure 3A/B; B cell activation). Thus, changes in 

Bcl-6 as a consequence of DC CM or recombinant BAFF could be measured. We found that 

DC CM increased Bcl-6 expression in activated B cells approximately 2-fold compared to 

cells cultured in the absence DC CM (Figure 3A and 3B). These levels were comparable to 

those achieved with recombinant BAFF. Further, CM from BMDCs stimulated with F(ab’)2-

containing ICs was not as efficient as CM stimulated with IgG-ICs (intact Fc regions) at 

inducing Bcl-6. In this in vitro system, Bcl-6 expression was not elevated in B cells cultured 

with DC CM where BAFF was neutralized with BR3-Fc, or where DC CM was made from 

BAFF−/− BMDCs (Figure 3C). These data showed that DC-derived BAFF, induced by IgG-

ICs, directly affects Bcl-6 expression in B cells activated in vitro.

As Bcl-6 levels become elevated, the PC program is attenuated (60, 61). To further validate 

the in vitro model, we measured intracellular IRF-4 and XBP-1 and found that DC CM 

diminished the levels of both transcription factors by 2.2-fold (Figure 3D–G), indicating that 

BAFF acts at or upstream of Bcl-6, directing B cell differentiation away from a PC fate. To 

test whether BAFF reduces PC differentiation in vivo, we enumerated splenic PCs from 

immunized B6 chimeras and BAFF−/− chimeras at day 5 (Figure 3H), a time when PCs 

normally appear in the spleen (62). We found that CD138+B220− cell numbers in BAFF−/− 

chimeras were increased 2.7-fold compared to B6 chimeras. This indicates that in vivo, 

BAFF decreases PC differentiation as the memory response initiated.

IgG-ICs bind CD16 during the anti-NP response

We reasoned that if FcγR stimulation promoted BAFF secretion, loss of the FcγR that binds 

IgG1-anti-NP ICs would negatively affect the ability of DC CM to promote Bcl-6. To assess 

this, we tested whether CMs from BMDCs derived from B6 mice, or mice deficient in CD64 

(FcγRI−/−), CD32 (FcγRIIb−/−), CD16 (FcγRIII−/−), or CD16-2 (FcγRIV−/−) induced Bcl-6 

in the in vitro reconstitution system described above. DC CM from CD16−/− mice failed to 

induce Bcl-6 expression, while CMs from all other FcγR deficient mice induced Bcl-6 to 

levels comparable to, or above those induced by B6 DC CM (Figure 3I). This suggests that 

ligation of CD16 on DCs is required for the expression of Bcl-6 in activated B cells during 

the anti-NP response.

Impaired secondary responses in CD16−/− mice

Our in vitro data indicate that CD16 is responsible for inducing DCs to secrete BAFF after 

NP14KLH immunization. To test this in vivo, we quantitated the number of splenic BAFF 

secreting DCs in B6 and CD16−/− mice 7 days after immunization (Figure 4A). In the 

absence of CD16, we found that the number of BAFF secreting DCs was markedly 

diminished compared to wild type mice. This is consistent with the idea that CD16 is the 

FcγR responsible for initiating the IgG1-dominant immune response to NP14KLH (54). It is 
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likely that other Fc receptors would be utilized during immune responses that generate 

antibodies of IgG subclasses other than IgG1.

To test whether loss of CD16 in vivo impaired adaptive immune responses, we measured 

primary and secondary antibody responses in B6 and CD16−/− mice following NP14KLH 

immunization. As in the BAFF−/− chimeric mice, the primary IgG response in CD16−/− mice 

was comparable to B6 mice (Figure 4B). However, in the secondary response, the levels of 

IgG in B6 mice increased 1.7-fold on day 42 (7 days after boost), and 4.5-fold on day 49 (14 

days after boost), while IgG levels in the CD16−/− mice did not increase on days 42 or 49 

(Figure 4C). This was not an indirect consequence of altered spleen cellularity or changes in 

the splenic cell populations due to CD16 deficiency since the frequencies of DCs, T, and B 

cells in CD16−/− mice were not different than B6 mice, and the number of splenocytes from 

B6 and CD16−/− mice were comparable (Supplemental Figure 1F). This indicates that CD16 

plays a role in generating memory B cells and secondary immune responses to NP14KLH.

CD16−/− mice exhibit defects in forming GC and memory B cells and maintaining Tfh cells

The loss of DC-derived BAFF in CD16−/− mice supports a role for CD16 in the memory 

response to NP14KLH. To assess whether the diminished secondary response in CD16−/− 

mice reflects a reduction in memory B cells, we assessed the frequency of NP-specific 

memory B cells (CD19+Ac38+IgG+) in B6 and CD16−/− mice 28 days following 

immunization. CD16−/− mice showed a 2.4-fold decrease in the Ac38 Id+ IgG memory B 

cell population compared to immunized B6 mice (Figure 4D and 4E), indicating that CD16 

regulates memory responses in part through BAFF production.

Data from immunized BAFF−/− chimeras suggests that BAFF contributes to B cell memory 

by affecting the GC B and Tfh cell populations. If the binding of IgG-ICs to CD16 were the 

predominate source of BAFF, then loss of CD16 would also diminish the GC B and Tfh 

pools. To assess this possibility, we quantitated Tfh cells (CD4+CXCR5+PD-1+) from 

immunized B6 and CD16−/− mice. After 3 days, CD16−/− mice had a comparable frequency 

of Tfh cells compared to immunized B6 mice (Figure 4F). However on day 7, CD16−/− mice 

had 3-fold fewer Tfh cells, similar to the defect in maintaining Tfh cells observed in 

immunized BAFF−/− chimeras (Figure 1E). After 10 days, frequencies of Tfh cells 

decreased 2-fold in B6 mice, while the frequencies in CD16−/− mice were not changed 

compared to day 7. This suggests that BAFF plays a role in the expansion and/or 

maintenance of Tfh cells during early GC responses, but that other factors also contribute. 

Adoptive transfer of BAFF transgenic, but not BAFF−/− BMDCs into immunized CD16−/− 

mice, restored the frequency of Tfh cells on day 7 to levels seen in B6 mice (Figure 4G), 

suggesting that the defect in CD16−/− mice was a consequence of reduced BAFF. These data 

demonstrate that CD16 ligation by IgG-ICs induces DCs to secrete BAFF and that CD16 is 

necessary for memory responses. Though our findings collectively show that binding of 

IgG-ICs to CD16 contributes to B cell memory through the effects of BAFF on Bcl-6 

expression in GC B cells, and maintaining and/or expanding Tfh cells, sources of BAFF 

other than CD16, or factors other than BAFF may also play a role since loss of either BAFF 

or CD16 did not completely ablate these populations.
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Loss of CD16 diminishes germinal center responses

To assess whether loss of CD16 diminished GCs, we measured the frequency of splenic GC 

B cells (CD19+GL-7+CD95+) and Ac38 Id+GC B cells 7 days after immunization. We found 

that both populations of GC B cells were significantly reduced in CD16−/− mice (Figure 5A–

C). Consistent with the diminished frequency of GC B cells, we found that the GCs in 

CD16−/− mice were 54% smaller on day 7 post-immunization, but as the size of the B6 GCs 

declined (by day 14 and 21) the sizes became similar (Figure 5D and Supplemental Figure 

2). The smaller size of the CD16−/− GC on day 7 was not the result of delayed kinetics 

because by day 28, the GCs in both B6 and CD16−/− mice were diminished, suggesting a 

comparable duration of the response (data not shown). We also found that immunized 

CD16−/− mice displayed a 2.3-fold reduction in the number of GCs on day 7; however, the 

differences were less apparent on day 14. By day 21, the CD16−/− mice had a similar 

number of GC structures (Figure 5E). Thus, although GCs form in the absence of CD16, 

they are reduced in number and size early during the immune response. This suggests that 

stimulation of CD16 is an early event that enhances the GC response and subsequently 

optimizes the formation of memory B cells.

CD16 and BAFF are required for the expression of Bcl-6 and the formation of GC and 
memory B cells

Our data indicate that CD16 and IgG-ICs are required for DCs to make BAFF in response to 

NP14KLH (Figure 4A). To address whether DC-derived BAFF was sufficient to restore the 

GC and memory B cell pools in the CD16−/− mice, we adoptively transferred BMDCs from 

BAFF Tg mice at the time of immunization. We found that BAFF Tg DCs restored the 

frequency of GC B cells on day 7 (Figure 6A), and the frequency of Ac38 Id+ memory B 

cells on day 28 (Figure 6B). This suggests that the lack of B cell memory responses in 

CD16−/− mice was due to lack of BAFF, and not to intrinsic defects in B cells. In contrast, 

BMDCs derived from BAFF−/− chimeras were unable to restore GC or memory B cells 

(Figure 6A and 6B). These results also emphasize that the defects observed in CD16 

deficient mice are mediated by BAFF, since DCs from BAFF−/− chimeras have intact CD16.

Our data suggest that DC-derived BAFF acts at or upstream of Bcl-6 (Figure 1I–J, 2C, 3A–

C) and downstream of CD16 (Figure 4A). Thus, the absence of CD16 should also lead to 

diminished Bcl-6 expression after NP immunization, and restoring DC-derived BAFF by 

BMDC transfer should restore Bcl-6 levels. To test this, we adoptively transferred BAFF Tg 

or BAFF−/− BMDCs into CD16−/−mice at the time of immunization. We found that 7 days 

after immunization, the expression levels of Bcl-6 in CD16−/− GC B cells were 60% lower 

compared to B6 controls. Transfer of BAFF Tg BMDCs, but not BAFF−/− BMDCs, restored 

Bcl-6 levels in CD16−/− GC B cells (Figure 6C). Thus, loss of CD16 reduces BAFF, which 

impacts Bcl-6 expression in GC B cells. Collectively, the data show that IgG-ICs induce 

DC-derived BAFF through ligation of CD16. BAFF promotes optimal B cell memory 

responses by inducing Bcl-6 expression in GC B cells and by maintaining and/or expanding 

Tfh cells.
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Discussion

Interactions between T cells, B cells, and DCs are necessary for the proper execution of the 

adaptive immune response. This study identifies a previously unappreciated role for FcγRs, 

and BAFF in the early events of the GC response. We show that ICs formed during the early 

IgG response to NP14KLH induced the production of BAFF by DCs. BAFF acted at, or 

upstream of Bcl-6 to promote the optimal formation of GC B cells and to maintain and/or 

expand newly formed (day 7) Tfh cells. This series of events depends on the formation of 

IgG-ICs, suggesting that productive early antibody responses contribute to the optimal 

formation of B cell memory. This mechanism may ensure that an antigen-specific antibody 

response has occurred prior to initiating the events that promote B cell memory.

In the absence of CD16, the diminished formation of GC and memory B cells, and reduced 

expansion of Tfh cells (Figures 4–6), coupled with observations that mice deficient in the Fc 

common gamma chain (Fcγc) exhibit diminished secondary antibody responses (59) imply 

that IgG is required for optimal adaptive immune responses. We detected antigen-specific 

IgG by ELISpot within 2–3 days of immunization. The source of this IgG could be 

extrafollicular PCs because these cells class switch (63) and produce significant local levels 

of IgG early in the immune response (64, 65). By days 14 and 21, the sizes and numbers of 

GCs were similar in B6 and CD16-deficient mice, suggesting that this mechanism is 

involved in pre- or early GC responses. This may also reflect a reduction in available 

antigen, which would reduce IC formation and make any differences mediated by IC:FcγR 

interactions less apparent. Consistent with a role for early GC events in the formation of B 

cells memory, we also found that in the absence of CD16, the average GC size and the 

number of GCs were diminished on day 7. Further, others showed that in the absence of 

soluble IgG, the kinetics of secondary GCs were disrupted (66). Thus, IgG plays a role in 

both primary and secondary GC responses.

Temporally, anti-NP IgG production by ASCs was coincident with BAFF production by 

DCs (Figure 2D–E). Although both DCs and MFs are among the major producers of BAFF 

(46, 67–69), we found that transfer of BAFF-producing DCs, but not MFs restored the 

numbers of GC B cells in BAFF−/− chimeras and CD16−/− mice. This may reflect the 

tripartite co-localization and interactions between DCs, T cells and B cells during adaptive 

immune responses. Though they are most well-known for presenting antigen to and 

activating T cells, DCs also directly modulate B cells through production of IC-induced 

cytokines like IFN, BAFF and IL-12 (55, 56, 71). Our data do not rule out a role for other 

immune cell types expressing CD16, like neutrophils, but highlight a key role for DCs as 

BAFF producers in T-dependent adaptive immune responses.

Because GC B cells, Tfh cells, or memory B cells were not completely absent in the 

BAFF−/− chimeras or the CD16−/− mice, it is also possible that BAFF from non-

hematopoietic cell sources contributes to the response, or that BAFF is not the only factor 

induced by IgG-ICs that is involved in early GC events. Early in the adaptive immune 

response, B cells interact with cognate T cells and co-stimulatory signals induce AID 

activation and class switch (70). These signals include CD40L, which is also required for 

GC formation (71). We found that BAFF−/− chimeras had normal AID expression and 
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primary IgG production, suggesting that cognate interactions mediated by CD40L were 

intact, possibly accounting for the small number of GC and memory B cells that remain 

despite the absence CD16 or BAFF. It is unlikely that BAFF and CD40L are completely 

redundant since diminished memory B cell responses were noted in both BAFF−/− chimeras 

(Figures 1 and 2) and CD40L deficient mice (72, 73).

It is unclear whether the observed role of BAFF occurs before, during, or after the initial 

interaction between cognate B and T cells. Because AID induction is intact in BAFF−/− 

chimeras, BAFF likely acts downstream of initial T:B interactions. Our in vitro data show 

that recombinant BAFF directly induced Bcl-6 in activated B cells, and DC CM (elicited 

under conditions that induce BAFF) diminished the expression of XBP-1 and IRF-4. This is 

supported by our in vivo data where increased numbers of PCs were evident in BAFF−/− 

chimeras. This suggests that BAFF acts on activated B cells at the time the PC phenotype is 

being diminished. Therefore, BAFF may act on B cells after cognate T cells help to reduce 

the PC phenotype, and either commit cells to the memory or GC pathways, or support the 

survival of precursors that will enter those pathways. This is consistent with studies showing 

that DC secretion of the PC-inducing cytokine, IL-12, is dampened by IC signaling (74).

Another signal required for a productive GC reaction is IL-21. It is possible that BAFF acts 

in concert with IL-21 to induce and/or sustain expression of Bcl-6 in GC B cells (75, 76). T 

cell-secreted IL-21 acts on B cells both during initial T:B interactions and after GCs are 

formed to promote either Blimp-1 or Bcl-6 expression, depending on the context (77). BAFF 

may serve as a contextual signal early in the adaptive response to direct B cells toward a GC 

fate. BAFF may also maintain Bcl-6 in B cells destined for the GC, allowing IL-21 from Tfh 

cells to take over as the response progresses.

Previous studies showed that cells with a Tfh phenotype appear by day 3 after immunization 

(10, 78). These cells migrate towards follicles where they interact with B cells at the T-B 

border (79) to promote continuous expression of Bcl-6, and entry of Tfh cells into the GC 

(15, 80, 81). Our data suggest that B cells and IgG-ICs are not involved in the formation of 

Tfh cells (day 3). This is consistent with previous studies showing that on days 1–3 post-

immunization, the expression of Bcl-6 and CXCR5 in CD4+ T cells is independent of B 

cells, and hence independent of IgG (10, 56). Instead, BAFF acted downstream of the 

formation of Tfh cells, and stabilized and/or expanded the population between days 3 and 7. 

Thus, previous studies showing a role for B cells in maintaining Tfh cells (22, 78, 82) might 

reflect the need for B cell-elicited Ig, ICs, and DC-derived BAFF. The role of BAFF in 

maintaining the Tfh population may be direct, or may involve GC B cells. One possibility is 

that BAFF promotes the expression of ICOSL on B cells. Previous studies showed that 

signaling through BAFF-R regulates the expression of ICOSL on B cells (32, 33), thereby 

sustaining interaction between Tfh cells and B cells at the T:B border and within GCs (10, 

11). This interaction could also stabilize the expression of Bcl-6 and the downstream 

molecules CXCR5 and PD1 (14, 15, 83) to maintain the “Tfh phenotype”. This possibility is 

supported by studies showing that the absence of ICOSL on B cells reduces the frequency of 

CXCR5+ CD4+ cells after immunization (15), that ICOS:ICOSL interaction prolong the 

engagement between B cells and Tfh cells (80), and that follicular bystander B cells support 
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the formation and/or maintenance of Tfh cells by providing ICOSL in an antigen-

independent manner (84).

Because the interaction between GC B cells and Tfh cells is bidirectional, the maintenance 

of Tfh cells may have also had a role in sustaining GC B cells. Recent work described Tfh as 

a source of local BAFF within GC B cells that is required for affinity maturation (5). Tfh-

derived BAFF, however, is not required for GC initiation or maintenance (5), and its role in 

memory B cell development remains unknown. Our work indicates that early production of 

BAFF is upstream of GC formation and memory B cell development. Interestingly, we 

observed a more complete loss of antigen-specific GC B cells (Ac38+) than total GC B cells 

in BAFF−/− chimeras and CD16−/− mice. This may reflect a loss of local BAFF within the 

GC due to diminished maintenance and/or expantion of Tfh cells. However, more work 

would be needed to determine whether affinity maturation is altered in these models.

Overall, our studies highlight a novel role for IgG-ICs and DC-derived BAFF in the GC 

response. Elucidating the events that initiate GC responses may impact our understanding of 

ICs and BAFF in autoimmunity. Systemic lupus erythematosus (SLE) is an autoimmune 

disease characterized by elevated levels of BAFF, autoantibody/autoantigen ICs, and multi-

organ pathology. The formation of autoreactive memory is thought to be instrumental in 

driving long-lived PCs and sustaining autoantibody production (85, 86); however, the 

mechanisms that regulate memory formation to self-antigens are unclear. Our findings 

suggest that chronically high levels of ICs containing self-antigens could contribute to a 

break in B cell tolerance at the GC checkpoint. In SLE, elevated levels of circulating ICs 

may elevate BAFF and promote the GC response (85, 87, 88). This suggests that 

neutralization of BAFF in patients with SLE may affect both B cell survival and GC 

responses that are necessary in the formation of autoreactive B cells, T cell, and memory 

cells (67, 89, 90).
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Figure 1. BAFF−/− chimeras have defective memory and GC B cells, diminished Bcl-6 levels and 
decreased frequency of Tfh cells
(A) B6 and BAFF−/− chimeric mice were immunized (i.p) with 100 mg NP14KLH in alum. 

Serum IgG anti-NP responses in B6 and BAFF−/− chimeric mice were measured by ELISA 

on days 7, 14, 21, 28, and 35 post immunization. n=4–6 mice per group over 3 experiments. 

(B) Serum IgG anti-NP levels measured on days 39, 42, and 49 (4, 7, and 14 days) following 

boost of 100 mg of soluble NP14KLH on day 35. n = 3–6 mice over 3 experiments. (C) The 

frequency of CD19+Ac38+ IgG+ B cells was determined by flow cytometry from the spleens 
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of B6 and BAFF−/− chimeras immunized for 28 days. The number of splenocytes from B6 

and BAFF−/− chimeras was comparable. n = 4–6 mice over 4 experiments. (D and E) The 

frequency of CD4+CXCR5+PD-1+ T cells from B6 and BAFF−/− chimeric mice was 

measured on days 0, 3 and 7 following immunization. n = 3–6 mice per time point over 2 

experiments. (F and G) The frequency of CD19+, GL-7+, CD95+ GC B cells was measured 

by flow cytometry on day 7 post-immunization. n = 3–5 mice over 3 experiments. (H) The 

frequency of CD19+Ac38+CD95+GL-7+ B cells was measured on day 7 post-immunization. 

n = 3–5 mice over 3 experiments. (I and J) Relative expression of Bcl-6 in GC B cells 

(CD19+CD95+GL-7+) from B6 and BAFF−/− chimeras measured 7 days after NP14KLH 

immunization (i.p.). n = 4–6 mice per group over 2 experiments. Bars display mean (C, E, 
G, H, and I), error bars indicate standard deviation (A and B). ** p ≤ 0.01, *p ≤ 0.05, n.s. = 

not significant.
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Figure 2. Secretion of BAFF by DCs restores Bcl-6 levels and the frequency of GC B and Tfh 
cells
(A–C) BAFF Tg BMDCs, BMMFs, or BAFF−/− BMDCs (8 × 106) were injected (s.c.) into 

B6 or BAFF−/− chimeric mice that were simultaneously immunized (s.c.) with NP14KLH. 

On day 7, inguinal lymph nodes were harvested and the frequencies of (A) GC B cells 

(GL-7+CD95+ cells in CD19+ B cells), (B) Tfh cell (CXCR5+PD-1+ cells in CD4+ T cells), 

and (C) Bcl-6 expression in GC B cells from inguinal lymph nodes was measured by flow 

cytometry. n = 3–5 over 3 experiments. (D) On days 2, 3, and 7 following immunization, 1 × 

106 splenocytes from B6 mice were plated on NP-BSA-coated ELISpot plates. After 18 
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hours, NP-specific ASCs were quantitated. n = 3–4 mice per time point over 3 experiments. 

(E)1 × 106 purified CD11c+ cells from B6 mice immunized for 2, 3, and 7 days were plated 

on BR3-Fc coated ELISpot plates. After 60 hours, the number of BAFF secreting cells was 

enumerated. n = 3–6 mice per time point over 3 experiments. BAFF ELISpots ranged from 

32-137 (D0-D7). (F) BAFF secreting cells enumerated from B6 BMDCs (2.5 × 105) 

cultured for 24 hrs in the presence or absence of anti-μ ICs, with or without Fc blocking 

peptide (TG19320; 50 µg/ml). n = 3–10 over 6 experiments. BAFF ELISpots ranged from 

531–1051 (untreated and treated with IgG-ICs ± TG19320). (G–H) B6 mice were 

immunized with NP14KLH and dosed with 15–30 mg/kg of Fc blocking peptide (TG19320) 

or an unrelated scrambled peptide (control) via i.p. injection. On day 7, the frequency of Tfh 

cells (CD4+CXCR5+PD1+, G) and GC B cells (CD19+GL7+CD95+, H) was determined. n 

= 3–6 over 2 experiments. Bars display mean (A, B, D, G, and H), and error bars indicate 

standard error of the mean (C, E, and F). **p ≤ 0.01, *p ≤ 0.05, n.s. = not significant.
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Figure 3. DC-derived BAFF regulates the expression of Bcl-6 in cultured B cells
Purified B6 B cells (1 × 105) stimulated with anti-μ (30 µg/ml), IL-4 (25 ng/ml), and IL-5 

(25 ng/ml) (designated as B cell activation) were co-cultured with DC CMs. Intracellular 

levels of key transcription factors (Bcl-6, XBP-1, IRF-4) were measured by flow cytometry 

on day 2. (A) Bcl-6 expression in B cells co-cultured with B6 DC CM or rBAFF (5 ng/ml). 

Flow analysis was restricted to live cells. (B) Representative histogram of Bcl-6 expression 

in B cells activated by DC CM as in (A). n = 3–4 mice over 4 experiments. (C) Purified B6 

B cells were co-cultured with CM generated from B6 BMDCs treated with ICs containing 
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intact IgG (B6 DC CM) or F(ab’)2 of IgG (B6 DC CM (Fab’)2), BAFF−/− DC CM, or B6 

DC CM neutralized with BR3-Fc (10 µg/ml) or control IgG-Fc (10 µg/ml). n = 4–7 over 4 

experiments. (D–G) B cells were co-cultured with B6 DC CM. Intracellular levels of XBP-1 

(D, E) and IRF-4 (F, G) were quantitated. n = 3 mice per group over 3 experiments. 

Histograms are representative of 3 experiments and all flow analysis was done after gating 

on live cells. (H) Numbers of splenic plasma cells (CD138+B220−) were enumerated by 

flow cytometry in B6, B6 chimera, or BAFF−/− chimeras at day 5 following immunization. n 

= 1–3 mice per group over 2 experiments. (I) Bcl-6 expression in B cells cultured with DC 

CM from B6, CD64−/−, CD32−/−, CD16−/−, or CD16-2−/− (FcγRIV) mice. n=6–7 mice per 

group over 4 experiments. Bars display mean (H), and error bars indicate standard error of 

the mean (A, C, D, F, and I). **p ≤ 0.01, * p ≤ 0.05, n.s. = not significant.

Kang et al. Page 25

J Immunol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. CD16−/− mice have defective BAFF secretion, secondary antibody responses, frequency 
of memory B cell and Tfh cells
(A) BAFF secreting cells enumerated from purified CD11c+ cells that were isolated from B6 

and CD16−/− mice on day 7. n = 3 over 3 experiments. B6 and CD16−/− mice were 

immunized (i.p) with 100 mg NP14KLH in alum. Serum IgG anti-NP (B) primary responses 

measured by ELISA on days 0, 7, 14, 21, 28, and 35; serum IgG (C) secondary antibody 

levels measured on days 39, 42, and 49 (days 4, 7, and 14) following boost of 100 mg 

soluble NP14KLH on day 35. n = 4–8 mice over 3 experiments. (D and E) The frequency of 
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CD19+Ac38+IgG+ memory B cells was determined by flow cytometry from the spleens of 

B6 and CD16−/− mice immunized for 28 days. The number of splenocytes in B6 and 

CD16−/− mice was comparable. n = 5–6 mice over 3 experiments. Data are expressed as the 

percent of CD19+ cells that are IgG+ and Ac38+. (F) The frequencies of 

CD4+CXCR5+PD-1+ T cells from immunized B6 and CD16−/− mice on days 0, 3, 7, or 10. n 

= 2–8 mice per time point over 4 experiments. (G) B6, BAFF Tg, and BAFF−/− BMDCs (8 

× 106) were injected into CD16−/− mice that were simultaneously immunized with 

NP14KLH. On day 7, the frequencies of CD4+CXCR5+PD-1+ T cells from inguinal lymph 

nodes were enumerated by flow cytometry. n = 3–7 mice over 3 experiments. Bars display 

mean (E, F, and G), and error bars indicate standard error of the mean (A) or standard 

deviation (B and C). **p ≤ 0.01, *p ≤ 0.05, n.s. = not significant.
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Figure 5. CD16−/− mice have diminished germinal center responses
(A and B) The frequency of splenic CD19+GL-7+CD95+ GC B cells was measured by flow 

cytometry from B6 and CD16−/− mice 7 days after immunization. n = 4–11 mice per group 

over 3 experiments. (C) The frequency of NP-specific GC B cells 

(CD19+Ac38+GL-7+CD95+) measured in B6 and CD16−/− mice 7 days after immunization. 

n = 3–10 mice over 3 experiments. (D) The size of GCs and (E) the number of GCs were 

enumerated from B6 and CD16−/− mice 7, 14, and 21 days after immunization using 

confocal microscopy. n = 3–6 mice per time point over 4 experiments. Bars display mean (B 
and C), and error bars indicate standard error of the mean (D and E). **p ≤ 0.01, *p ≤ 0.05, 

n.s. = not significant.

Kang et al. Page 28

J Immunol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Adoptive transfer of BAFF expressing DCs rescues GC and memory B cell populations 
and restores Bcl-6 levels in CD16−/− mice B cells
(A) BMDCs (8 × 106) from BAFF Tg or BAFF−/− mice were injected (s.c.) into CD16−/− 

mice and simultaneously immunized (s.c.) with NP14KLH. On day 7, the frequency of GC B 

cells (CD19+GL-7+CD95+) were measured from inguinal lymph nodes. n = 3–7 mice per 

group over 3 experiments. (B) Same as (A) but on day 28, the frequency of 

CD19+Ac38+IgG+ memory B cells was measured. n = 3–4 over 2 experiments. (C) BAFF 

Tg and BAFF−/− BMDCs (8 × 106) were injected into CD16−/− mice and simultaneously 

immunized with NP14KLH. n = 4 mice over 3 experiments. On day 7, Bcl-6 expression in 

GC B cells from inguinal lymph nodes was measured by flow cytometry. Bars display 
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means (A and B), and error bars indicate standard error of the mean (C). **p ≤ 0.01, *p ≤ 

0.05, n.s. = not significant.
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