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Abstract

Background & Aims—Inflammatory bowel disease (IBD) has familial aggregation in African 

Americans (AAs), but little is known about the molecular genetic susceptibility. Mapping studies 

using the Immunochip genotyping array expand the number of susceptibility loci for IBD in 

Caucasians to 163, but the contribution of the 163 loci and European admixture to IBD risk in 

AAs is unclear. We performed a genetic mapping study using the Immunochip to determine 

whether IBD susceptibility loci in Caucasians also affect risk in AAs and identify new associated 

loci.

Methods—We recruited AAs with IBD and without IBD (controls) from 34 IBD centers in the 

US; additional controls were collected from 4 other immunochip studies. Association and 

admixture loci were mapped for 1088 patients with Crohn's disease (CD), 361 with ulcerative 

colitis (UC), 62 with IBD type-unknown (IBDU), and 1797 controls; 130,241 autosomal single-

nucleotide polymorphisms (SNPs) were analyzed.

Results—The strongest associations were observed between UC and HLA rs9271366 (P=7.5e–

6), CD and 5p13.1 rs4286721 (P=3.0e–6), and IBD and KAT2A rs730086 (P=2.3e–6). Additional 

suggestive associations (P<4.2e-5) were observed between CD and IBD and African-specific 

SNPs in STAT5A and STAT3; between IBD and SNPs in IL23R, IL12B, and C2 open reading 

frame 43; and between UC and SNPs near HDAC11 and near LINC00994. The latter 3 loci have 

not been previously associated with IBD, but require replication. Established Caucasian 

associations were replicated in AAs (P<3.1e-4) at NOD2, IL23R, 5p15.3, and IKZF3. Significant 

admixture (P<3.9e–4) was observed for 17q12-17q21.31 (IZKF3 through STAT3), 

10q11.23-10q21.2, 15q22.2–15q23, and 16p12.2–16p12.1. Network analyses showed significant 
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enrichment (false discovery rate <1e–5) in genes that encode members of the JAK–STAT, 

cytokine, and chemokine signaling pathways, as well those involved in pathogenesis of measles.

Conclusions—In a genetic analysis of 3308 AA IBD cases and controls, we found that many 

variants associated with IBD in Caucasians also showed association evidence with these diseases 

in AAs; we found evidence for loci and variants not previously associated with IBD. The complex 

genetic factors that determine risk for or protection from IBD in different populations require 

further study.
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Introduction

Inflammatory bowel disease (IBD) is a complex genetic disorder of immune dysregulation 

causing chronic idiopathic inflammation of the gastrointestinal tract, estimated to affect 

about 1.4 million Americans. It comprises two major, genetically related phenotypes: 

Crohn's disease (CD) and ulcerative colitis (UC).

IBD shares many clinical and immunological characteristics with other complex genetic 

immune-mediated diseases (IMDs), especially with seronegative auto-inflammatory 

diseases1, such as ankylosing spondylitis, psoriasis and primary immune-deficiencies2, 

indicating overlapping etiological factors. To facilitate genetic studies on IMDs a custom 

Illumina array of ~200,000 SNPs, the Immunochip, was designed based on genome wide 

association (GWA) analyses on Caucasian populations of 12 IMDs including IBD3. The 

main purposes were to fine map established associations and to replicate suggestive, but not 

yet proven, associations3. The Immunochip also contains ancestry informative markers 

(AIMs) allowing for genome-wide admixture estimates and adjustment for population 

stratification.

IBD GWA studies, including those performed using the Immunochip, have expanded the 

number of IBD susceptibility loci to 163 (including 30 CD- and 23 UC-specific loci)2, and 

have enhanced our understanding of IBD immunopathogenesis by identifying key cellular 

pathways, both known – such as barrier function, the role of T cell subsets and cytokine–

cytokine receptor signaling – and unknown – such as autophagy, regulation of interleukin 23 

(IL23) signaling, and host defense4. However, compared to hundreds of IBD genetic studies 

in Caucasian populations including massive GWA mega-analyses and replication studies 

like the Caucasian Immunochip Study (CIS)2, only a handful of IBD-associated gene 

variations have been evaluated in African Americans (AAs), in relatively small sample sizes 

of a few hundred cases and controls, and only for CD, not UC5-7.

AAs are a recently admixed population derived from an average of approximately 80% West 

African and 20% European ancestries8. IBD prevalence is lower in AAs than Caucasian 

Americans (CAs) possibly as a result of both genetic and environmental differences9-11. 

IBD sibling risk in AA IBD patients is relatively high (2.5%), suggesting underlying genetic 
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risk factors are in-part responsible for IBD in AAs, albeit lower than that observed for 

Caucasians (4.6%)12.

An admixed population is one where two or more previously separated populations have 

interbred. Loci that have different allele frequencies in the founder populations become 

correlated because of gene flow, a phenomenon known as admixture linkage disequilibrium 

(ALD). AAs are a typical example of an admixed population, where there has been recent 

introduction of European genetic lineages into a West-African-derived population. A 

powerful technique called mapping by ALD (MALD) can be used on admixed populations 

such as AAs and the underlying assumption is that the difference in disease frequency is due 

in part to differences in allele frequencies of causal variants between populations.

We therefore undertook an evaluation of the Immunochip in ~4000 AA IBD cases and 

controls, primarily to determine the importance of the 163 established CIS IBD loci in the 

understudied AA population and to identify novel IBD loci, including loci identified by 

MALD.

Patients and Methods

Study Population and Phenotyping

The study population included unrelated self-identified non-Hispanic AA volunteers 

recruited from three coordinating centers: (1) Johns Hopkins: Multicenter African American 

IBD Study (MAAIS) coordinated by Johns Hopkins IBD Genetics Research Center (GRC) 

of the NIDDK IBD Genetics Consortium (IBDGC) with recruitment from 13 collaborating 

IBD centers and 4 other IBDGC GRCs5, and additional AA control samples from the 

controls from rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and type 1 

diabetes (T1D) Immunochip studies; (2) Emory: GENESIS AA cohort, an ancillary study of 

the NIDDK IBDGC, coordinated by Emory University with recruitment of IBD cases and 

matched controls from 12 of their collaborating IBD centers; and (3) Cedars: Cedars-Sinai 

Medical Center recruited IBD cases and controls with additional controls from the 

Pharmacogenetics and Risk of Cardiovascular disease Study Group (PARC) from San 

Francisco General Hospital and University of California, Los Angeles13.

All subjects gave informed consent to participate in genetics research studies in protocols 

approved by each sites institutional review board. Cases were confirmed as CD, UC, or IBD 

type undetermined (IBDU) in accordance with the NIDDK IBDGC phenotyping manual14. 

Details regarding controls are described in the Supplement. See Acknowledgements for 

listing of all recruitment centers.

Genotyping and Quality Control (QC)

DNA samples were derived from whole blood. All DNA samples were genotyped using the 

Immunochip3 and genotype determinations (allele calls) were made using GenomeStudio 

version 2011.1 and Genotyping Module Version 1.9.4. All MAAIS samples and the RA, 

SLE, and T1D controls were genotyped at Feinstein Institute for Medical Research. All 

Emory, Cedars-Sinai and PARC samples were genotyped at Cedars-Sinai Medical Center 

Genetics Institute.
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Several SNP-wise and sample-wise quality filters were applied (Supplementary Figure 1). 

Samples were excluded if they had <99% data completeness, differed by >3 standard 

deviations from the mean heterozygosity for the study, had discrepant gender, or were 

unexpectedly the first-degree relative of any other sample in the study. Matching of cases 

and controls was done by determining principal components (PC) using the software 

EIGENSTRAT15, plotting PC1 against PC2, followed by visual inspection and elimination 

of outlier samples. Three successive rounds were necessary until a satisfactory matching of 

cases/controls (Supplementary Figure 2) was obtained.

Local and Global Ancestry Estimation

Because AAs are well-modeled as linear combinations of West African (YRI) and European 

(CEU) ancestries16, to estimate the locus-specific local ancestry, we chose the WINPOP 

model in LAMP package17 for its fast computation with low error rate18. Average West 

African (global YRI) ancestry was estimated by using ADMIXTURE19.

Study-wide Association and Admixture, and Replication of 163 SNPs Established in 
Caucasian Immunochip Study (CIS)

For all analyses, we compared three phenotypes, all IBD, CD, and UC, against the same set 

of AA controls. We performed association and admixture mapping both under generalized 

linear models. Sex, recruitment coordinating center (Hopkins, Emory or Cedars), GRC 

(Feinstein or Cedars), global YRI ancestry, and the first 10 PCs were included in multiple 

regression with IBD affection status, and those significantly associated with IBD were used 

as covariates in association and admixture mapping.

We estimated the testing burdens empirically by assessing the autocorrelation (of genotypes 

for association or local ancestry proportions for admixture) of all the SNPs on each 

autosomal chromosome for each individual, and then summing over the 22 chromosomes 

and averaging across individuals20.

The testing burdens of independent SNPs or admixture regions, specific to our dataset, were 

23,639.4 and 128.4 for association and admixture mapping respectively. Association peaks 

with p<2.1e-6 (5% false positive rate corrected for number of independent SNPs, i.e. 

0.05/23,639.4) were marked as significant, while those with 2.1e-6≤p<4.2e-5 were marked 

as suggestive (i.e. one false positive per study-wide test burden). Admixture peaks with 

p<3.9e-4 (0.05/128.4) were marked as significant.

For chromosomes with multiple significant/suggestive association SNPs, conditional 

regression was performed to determine number of independent signals. Specifically for m 

SNPs, all possible m*(m-1)/2 pairwise combinations were tested. For each pair if the target 

SNP remained significant in the presence of the conditional SNP then they are independent 

of each other; otherwise, they have arisen from the same signal.

To evaluate the 163 loci with reported genome-wide significance in the CIS, we tested the 

most statistically significant SNPs at each locus and present on the Immunochip (Maximal-

CIS SNPs). Criteria for replication was p<3.1e-4 (0.05/163).
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Gene Ontology was utilized to functionally annotate the genes within each significant 

admixture region, using the PANTHER Classification System (http://pantherdb.org). Genes 

with immunological or gastrointestinal-relevant functions were considered to be suggestive 

candidate genes within the region.

eQTL Evaluation

For significant/suggestive association SNPs we also performed local (cis-) and distant 

(trans-) expression quantitative trait locus (eQTL) mapping with R package MatrixEQTL21 

on peripheral blood mononuclear cells (PBMCs) drawn from a different set of 85 unrelated 

AA study subjects profiled with Illumina HumanHT-12 v4 Expression BeadChips and 

genotyped on Illumina HumanOmni1 or HumanOmni2.5 BeadChips22. We defined gene-

SNP pairs within 1Mb of another as local, otherwise distant, and those with false discovery 

rate (FDR) <0.05 were considered significant.

Network Analysis

We first selected genes with association p<0.005, and then the identified genes annotated 

with multiple biologically functional databases including Reactome23, human protein 

reference databases (www.hprd.org), and NCI/Nature Pathway Interaction Database. The 

networks were then constructed from the known interactions in those databases. In addition, 

we identified the top KEGG pathways associated with each network using the enrichment 

analysis tool in STRING (http://string-db.org/). See Supplement for additional details.

Results

After QC measures were performed, 3,308 samples (1,511 IBD cases and 1,797 controls) 

and 130,241 unique autosomal SNPs remained for association and admixture analyses 

(Supplementary Figures 1 and 2). Average West African ancestry was higher in controls 

than cases (81.7±9.7% vs. 80.0±10.3%, p<1e-5), and also differed by coordinating centers 

(p<1e-10), with YRI proportion lowest for AAs from the American West Coast, similar to 

other genetic studies24 (Supplementary Table 1).

Five variables were significantly associated with IBD (p<0.05) and therefore were included 

as covariates for all subsequent analyses: sex (p=5e-7), recruitment coordinating center 

(p=2e-5), GRC (p=4e-4), PC2 (p=0.015), and global ancestry (p=0.03). Quantile-quantile 

plots for association mappings and genomic inflation factors are shown in Supplementary 

Figure 3.

Replication of Maximal-CIS SNPs

152 of the 163 Maximal-CIS SNPs passed QC. The remaining 11 SNPs did not have any 

tagging (r2<0.6) SNPs that could be used as alternative markers. Five SNPs met criteria for 

replication (p<3.1e-4): rs5743289 that tags the three common NOD2 mutations, rs11209026 

that encodes the IL23R R381Q protective variant, rs1801274 that encodes the FCGR2A 

H167R risk variant, rs11742570 in the 5p13.1 gene desert near PTGER4 and rs12946510 on 

17q21 just 3’ of IKZF3 (Table 1).
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For most of the 152 SNPs, the AA odds ratios are in the same direction as those from the 

CIS (correlation=0.78, Figure 1). 81 SNPs had AA ORs within the 95% CIS confidence 

intervals (CI), including one replicated SNP (rs11742570). Nominal levels of significance 

(p<0.05 and same risk allele) were observed for 41 of the 152 (27%) variants 

(Supplementary Table 2).

Study-wide Association

Association results for IBD, CD and UC are shown in Figure 2 (left panels). Suggestive 

association for IBD was observed at the following 7 loci for 15 SNPs (Table 2): 1p at IL23R; 

2p near the p-telomere and 4 Mb upstream of an associated locus in the CIS near C2orf43; 

5p13.1 gene desert (5 SNPs in tight LD, pairwise r2 ranging from 0.52 to 1.00); 5q 70kb 

telomeric of IL12B (2 SNPs in tight LD, r2=0.87); and 17 in the STAT5A/STAT3 region (6 

SNPs in 3 LD blocks). Conditional regression revealed 3 independent signals from the latter 

region: three STAT5A SNPs (rs7220367, rs7217884 and rs13380828, all monomorphic in 

CEU, r2 ranging from 0.46 to 0.99) in one block; two SNPs 200 kb apart (rs730086 in 

KAT2A and rs1053004 in STAT3, r2=0.44); and rs7224339. IBD, being the phenotype with 

the largest sample size had greatest power to detect association evidence. However, 72% of 

cases had CD, and not surprisingly SNPs at 5p15.3 (PTGER4), IL12B, KAT2A and STAT5A 

also showed suggestive association for CD, with CD consistently showing greater 

association evidence at 5p15.3 than all IBD (Table 2).

For UC, the major peak located in the HLA region, with greatest association for rs9271366 

(p=7e-6). Conditional analysis revealed that all suggestive HLA SNPs could be accounted 

for by rs9271366 (Supplementary Figure 4). Two SNPs showed suggestive associations on 

chromosome 3, at 13Mb and at 64Mb (near HDAC11 and LINC00994), neither within 5Mb 

of any established IBD loci.

Raw genotyping intensities were visually examined for all replicated/suggestive SNPs and 

only rs35990859 (at IL12B) had sub-optimal cluster separation (data not shown).

Admixture Association

We observed four chromosomal regions of significant admixture association (Figure 2, right 

panels and Table 3) with all having significant evidence for both IBD and CD except for 

16p12 (IBD-only). For all of these regions, CEU (European) ancestry increases risk and YRI 

(West African) ancestry was protective. Just below significance was an area with increased 

CD risk from CEU, maximal at rs2111112 (p=4.9e-4) and 3 Mb from NOD2 (with increased 

CEU ALD extending through NOD2). Conditioning on NOD2 genotype rs5743289 

weakened this ALD evidence (p=0.017). A list of annotated genes with immune-related 

functions that map to each region is included in Supplementary Table 3.

eQTL Evaluation

We conducted PBMC eQTL mapping for 26 (5 significant replication and 21 suggestive 

study-wide association) SNPs with eQTL data. After controlling for multiple comparisons, 0 

distant and 6 local gene-SNP pairs showed significant association (Supplementary Table 4): 

rs1053004 on chromosome 17 was associated with KRT19 (p=1.7e-4) and with TTC25 
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(p=8.0e-4) expression; 3 SNPs (rs1876141 [p=5.5e-4], rs6866402 [p=7.5e-4], and 

rs1505994 [p=7.5e-4] in tight LD (r2>0.99) at 5p13.1 with Complement Component 6 (C6) 

expression; and rs1801274 with CD84 expression (p=1.2e-3). PTGER4 expression was 

evaluated but was not associated with any SNP evaluated (p>0.05).

Network Analysis

We found multiple networks demonstrating significant influence for IBD, CD and UC in 

AAs even after FDR and Bonferroni corrections (Table 4). Cytokine-cytokine receptor 

interaction was the dominant pathway for CD and IBD overall, but for UC was second in 

effect to Measles (which also played a significant but less prominent role in IBD and CD). 

Jak-STAT and Chemokine signaling pathways were included in top 3 networks for IBD and 

CD (and Jak-STAT alone for UC). In addition, T cell receptor signaling pathway was one of 

the top pathways in UC and IBD, but not CD.

Discussion

In this study of IBD genetics in the AA population, we assembled the largest set of cases 

and controls (more than 4 times larger than any prior AA IBD study and the first genetic 

study of AA UC), evaluated for replication the majority of established IBD associations and 

interrogated the majority of known IBD loci for novel associations, and performed pathway 

and eQTL analyses to further inform about the nature of AA IBD genetics. Although our 

genotyping platform (not being GWA) limited association mapping primarily to replicating 

known associations and interrogating established, immunologically related loci, we also 

used the more powerful method of MALD to identify novel loci throughout the autosomal 

genome and to complement the association mapping.

We replicated, using stringent criteria (p<3.1e-4), five CIS loci. As our study has more CD 

than UC cases, most of our replications were for CD. Not surprisingly we replicated loci 

with greater impact in other populations. Three of the five replications, NOD2, IL23R and 

5p13.1, account for the greatest degree of CD variance estimated in CIS. The two other 

replicated loci also have relatively high OR for Caucasian IBD: FCGR2A and IKZF3 (17th 

and 47th ranked ORs of the 163 CIS loci).

Two replicated CIS SNPs are more frequent in, and hence IBD risk is more likely to arise 

from, CEU than YRI genome: rs5743289 that tags the 3 common NOD2 CD-associated 

mutations rs12946510 at IKZF3 (Table 1). In contrast, the two other replicated SNPs, 

rs11742570 at 5p13.1 and the rs1801274 at FCGR2A with functional variant H167R, have 

similar presence in CEU and YRI genomes, whereas the R381Q wildtype albeit risk variant 

of IL23R at rs11209026 is more common in YRI than CEU genomes.

Given our sample size, we had 80% power to replicate Maximal-CIS SNPs with OR>1.3 

and MAF>0.2. Supplementary Figure 5 illustrates our power at different ORs/MAFs at three 

levels of significance. Although our study was underpowered a-priori for genome-wide 

association (and obtaining enough AA individuals for genetic studies, as statically powerful 

as those in Caucasians, may be impractical for years to come), we have identified SNPs in 

the AA population at a level of association for which to target for independent replication.
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Two replicated loci also had additional SNPs with suggestive association: 5p13.1 and 

IL23R. At 5p13.1 rs4286721 showed greatest association with CD (p=2.97e-6), only 

marginally below study-wide significance (p<2.1e-6). The suggestive SNPs are in LD, are 

protective and more frequent in YRI than CEU, and, in our PBMC eQTL analysis, 

correlated with complement component 6 (C6) instead of PTGER4, the associated gene in 

the original discovery in lymphoblastoid cell lines25. C6 is a reasonable candidate gene, 

given that C2 and other complement-related genes are associated with numerous IMDs. For 

rs7515029 at IL23R the protective allele is almost twice as frequent in YRI (9%) than CEU 

(5%) indicating another African-derived protective variant, in addition to the well-

established R381Q replication.

Our strongest UC signal was in the HLA region, similar to that observed in all examined 

populations. The most significant SNP, rs9271366, known to tag the HLA class II allele 

DRB1*1502 in other populations, is the same SNP found most statistically significant in 

both Japanese26 and Korean27 UC GWASs (p=1e-70 and p=1e-18 respectively). Hence, our 

rs9271366 UC association (p=7.47e-6) is justified as replication of an established UC SNP. 

It also accounted for nearby associations according to conditional analysis (Supplementary 

Figure 4). Interestingly, it was found to be the most associated HLA SNP in AA SLE, a 

disease 4-fold more frequent in AAs than CAs28.

The strongest IBD association was observed for rs730086, with OR=1.4 (p=2.26e-6, just 

below study-wide significance), at an intron of KAT2A, a histone acetyltransferase gene 

recently linked to repression of IFN-beta and innate antiviral immunity through inhibition of 

TKB129. In LD with rs730086 is rs1053004 (r2=0.44), located in the 3’utr of STAT3, which 

is eQTL for two genes (FDR=0.038): KRT19, a gene that produces a major type 1 keratin 

expressed in ileal and colonic epithelium with a broad distribution in simple and stratified 

epithelia; and TTC25, a gene important for celiogenesis expressed in bone marrow but not in 

intestine. The risk variants are much more frequent in CEU than YRI.

We observed two other independent signals for IBD and CD on chromosome 17 centered 

about STAT5A/STAT3 adjacent genes. These two signals are protective and African-specific 

(monomorphic in CEU). We found no association (p>0.1) for rs12942547, the CIS SNP 

located in STAT3 intron with nearly identical frequencies in CEU and YRI. Complementing 

these findings is significant ALD that overlaps this chromosome 17 region (and extends 

through IKZF3 and STAT3) with the CEU genome producing IBD risk and YRI being 

protective. Conditioning on the IKZF3 replicated SNP (rs11742570) and the 3 independent 

STAT5A/STAT3 associations eliminated this ALD (p=0.8). An important implication of our 

association and admixture results is that the common CEU STAT5A/STAT3 haplotype likely 

contributes to IBD risk in the Caucasians – a finding made possible by studying an admixed 

population. Sequencing studies in AAs will be important to identify potential functional 

variants in LD with the YRI-specific protective alleles.

We found three other regions with significant ALD. Although ALD regions should be 

unbiased to known loci (as Immunochip contained AIMs throughout the genome) all four 

regions overlap CIS loci. The most highly associated region is on chromosome 10, includes 

the IPMK/CISD1/UBE2D1/TFAM locus and extends to within 800 kb of ZNF365 (using a 
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genome-wide admixture p=0.10 cut-off). A region with ALD associated with CD and IBD 

on chromosome 15 contains SMAD3, a gene associated with need for multiple surgeries in 

CD30. A region on chromosome 16 contains PRKCB, IL4R and IL21R, and extends 

centromeric just to SBK1. Each of the ALD regions contains additional potential candidate 

genes, as noted in Supplementary Table 3.

The top three KEGG pathways in AA IBD (cytokine, Jak-STAT and chemokines) were 

among the top four KEGG pathways found in CIS. However, not observed in AA IBD was 

the Leishmania infection pathway – second most significant pathway in the CIS; whereas 

AA UC, IBD, and CD all showed strong evidence for measles pathway and UC also showed 

significant evidence for African trypanosomiasis – both pathways not observed in CIS.

The high frequency of genes associated with infectious disease supports the hypothesis that 

IBD genetic susceptibility may be a by-product of evolutionary adaption to human 

pathogens. Hence the differential infectious disease pathways associated with AA and 

Caucasian IBD may be related to adaptation to geographically distinct infectious diseases. In 

total, these findings suggest that, while major pathways are similar across populations, some 

are distinct and may be targets for personalized IBD therapies.

This first, in-depth characterization of AA IBD genetics provides a basis to compare IBD 

genetics with Caucasian2 and East Asian26,27,31-36 populations where multiple GWAS, 

replication and Immunochip studies have been performed (Figure 3). Five of the AA loci 

with suggestive/replication evidence are associated in all three populations: IL23R, 

FCGR2A, IL12B, HLA and STAT5A/3, with the functional SNPs for IL23R and FCGR2A the 

same. The higher OR loci tend to be observed in more than one population. The STAT5A/

STAT3 locus stands out in AAs: the ORs for the three independent associations are 0.76, 

1.40 and 0.55, suggesting that this region likely has a stronger influence in AA than 

Caucasian IBD (OR=1.1 for rs12942547 in CIS). A Japanese CD GWAS found relatively 

strong influence for STAT333, maximal at rs9891119, but we found no evidence in AAs for 

this SNP equally frequent in YRI, CEU and East Asians.

In summary, our study reveals that in AAs HLA SNPs demonstrate the dominant signal for 

UC; STAT5A/STAT3 shows disproportionate association with IBD and CD including novel 

African protective haplotypes and common European risk haplotypes that together with an 

IKZF3 CD replication 3 Mb centromeric likely gives risk to significant chromosome 17 

regional ALD. We identified three other chromosomal regions contributing significant IBD 

risk from European admixture. We replicated Maximal-CIS SNPs for NOD2, IL23R, 5p13.1, 

and FCGR2A, identified additional risk variants at 5p13.1and IL23R. We observed a strong 

correlation in ORs for Maximal-CIS SNPs between our study and the CIS suggesting that 

additional Caucasian established loci likely play a role in AAs. We also demonstrated other 

known (IL12B) and novel (C2orf43, HDAC11 and LINC00994) suggestive areas of 

association interest. The new suggestive associations will need to be validated by 

independent replication. Finally a network analysis showed that, as in other studies, 

cytokines, Jak-STAT signaling and chemokine pathways play major roles, but also suggests 

that measles and African trypanosomiasis pathways may be important for further 

investigation. This study has yielded vital information not only on the etiopathogenesis of 
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IBD specifically for AAs, but also about risk variants and ancestral chromosomal regions 

that may also contribute to IBD pathogenesis in Caucasians, as we continue our exploration 

of AA IBD genetics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations
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CD Crohn's disease
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eQTL expression quantitative trait locus

FDR false discovery rate

GRC genetics research center

GWA genome wide association
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IMD immune-mediated diseases

IBD inflammatory bowel disease

IBDU inflammatory bowel disease type undetermined

OR odds ratio

PBMCs peripheral blood mononuclear cells

QC quality control

RA rheumatoid arthritis

Maximal-CIS SNPs the most statistically significant SNPs at each locus in the 

Caucasian Immunochip study and present on the Immunochip 

genotyping array

SLE systemic lupus erythematosus

T1D type 1 diabetes

UC ulcerative colitis

YRI West African ancestry
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Figure 1. 
Comparison of log2(Odds ratios) estimated in this study with those in Caucasian 

Immunochip Study (CIS) for 110 IBD-general (correlation=0.78), 26 CD-specific 

(correlation=0.77) and 23 UC-specific (correlation=0.61) Maximal-CIS SNPs.
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Figure 2. 
Association mapping (left) and admixture (right) mapping p-values (in −log10) for IBD (top 

panel), CD (middle panel) and UC (bottom panel).
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Figure 3. 
Comparison of log10(Odds Ratios) at the risk alleles by chromosomal position (in Mb, 

Genome Build 37) between Caucasian (black), East Asian (green) and African American 

(red) loci for IBD (hatched), CD (solid) and UC (stippled). Bars with black outlines 

represent loci with reported genome-wide significant association evidence in the CIS (black, 

limited to OR≥1.1) or in East Asian studies (green). Bars without outlines are present for 

AA or East Asian replications (at p<3.1e-4) of CIS-Maximal SNPs, or for SNPs evaluated in 

these populations with suggestive evidence for association at established CIS loci (p<4.2e-5) 

or borderline of genome-wide significance for novel loci (p≤1e-6). Asterisks denote the 

same associated SNPs in AA and additional populations. Red arrows denote overlaps 

between significant admixture regions and association loci.
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Table 4

Significant KEGG pathways for IBD, CD and UC

Top KEGG Pathways Phenotype
a

Genes
b

p-value
c

FDR
c

Bonferroni
c

Cytokine-cytokine receptor interaction IBD 12 1.55E-12 3.66E-10 3.66E-10

Jak-STAT signaling pathway IBD 8 4.07E-09 4.82E-07 9.64E-07

Chemokine signaling pathway IBD 8 1.59E-08 1.26E-06 3.77E-06

Measles IBD 7 3.32E-08 1.97E-06 7.88E-06

Pathways in cancer IBD 9 8.65E-08 4.10E-06 2.05E-05

T cell receptor signaling pathway IBD 5 6.33E-06 2.50E-04 1.50E-03

Focal adhesion IBD 6 9.10E-06 3.08E-04 2.16E-03

Gap junction IBD 4 5.97E-05 1.77E-03 1.42E-02

Fc gamma R-mediated phagocytosis IBD 4 7.47E-05 1.97E-03 1.77E-02

Vascular smooth muscle contraction IBD 4 1.74E-04 4.13E-03 4.13E-02

Cytokine-cytokine receptor interaction CD 18 3.11E-21 7.37E-19 7.37E-19

Chemokine signaling pathway CD 10 4.13E-11 4.89E-09 9.79E-09

Jak-STAT signaling pathway CD 9 2.29E-10 1.81E-08 5.42E-08

Measles CD 6 1.15E-06 6.84E-05 2.74E-04

Pathways in cancer CD 8 1.76E-06 8.32E-05 4.16E-04

Measles UC 7 1.97E-09 4.67E-07 4.67E-07

Cytokine-cytokine receptor interaction UC 8 1.03E-08 1.22E-06 2.43E-06

Jak-STAT signaling pathway UC 6 2.05E-07 1.62E-05 4.87E-05

T cell receptor signaling pathway UC 5 8.88E-07 5.26E-05 2.11E-04

African trypanosomiasis UC 3 2.33E-05 1.11E-03 5.53E-03

NOD-like receptor signaling pathway UC 3 1.15E-04 4.56E-03 2.74E-02

Adipocytokine signaling pathway UC 3 1.88E-04 6.38E-03 4.47E-02

a
Associated phenotype;

b
Number of genes in the pathway;

c
Nominal p-value, false discovery rate (FDR), and Bonferroni-corrected p-value respectively.
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