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Abstract

Significance: Deceased patients who have suffered severe traumatic brain injury (TBI) are the largest source of
organs for lung transplantation. However, due to severely compromised pulmonary lung function, only one-
third of these patients are eligible organ donors, with far fewer capable of donating lungs (*20%). As a result
of this organ scarcity, understanding and controlling the pulmonary pathophysiology of potential donors are key
to improving the health and long-term success of transplanted lungs. Recent Advances: Although the exact
mechanism by which TBI produces pulmonary pathophysiology remains unclear, it may be related to the
release of damage-associated molecular patterns (DAMPs) from the injured tissue. These heterogeneous, en-
dogenous host molecules can be rapidly released from damaged or dying cells and mediate sterile inflammation
following trauma. In this review, we highlight the interaction of the DAMP, high-mobility group box protein 1
(HMGB1) with the receptor for advanced glycation end-products (RAGE), and toll-like receptor 4 (TLR4).
Critical Issues: Recently published studies are reviewed, implicating the release of HMGB1 as producing
marked changes in pulmonary inflammation and physiology following trauma, followed by an overview of the
experimental evidence demonstrating the benefits of blocking the HMGB1-RAGE axis. Future Directions:
Targeting the HMGB1 signaling axis may increase the number of lungs available for transplantation and
improve long-term benefits for organ recipient patient outcomes. Antioxid. Redox Signal. 23, 1316–1328.

Introduction

Severe neurologic injury due to trauma often results in
numerous cells that are killed in a nonspecific manner as

well as displacement of physical structures of the brain, in-
cluding damage to blood vessels, axonal shearing, alterations
in the blood–brain barrier, and intracranial hemorrhaging.
Subsequent to the initial traumatic brain injury (TBI) is a
secondary injury cycle, which includes ischemia, cerebral
hypoxia, hypotension, cerebral edema, and raised intracranial
pressure. This array of events is also accompanied by the
release of excitotoxic neurotransmitters, which damage both
neural and non-neural cell types and further amplify the in-
duction of numerous biochemical cascades and initiate neu-
rodegeneration (61). Depending on the severity of the trauma,

TBI patients may also be subjected to complications of non-
neurologic organ dysfunction (NNOD).

The pathophysiology of NNOD following TBI is unclear.
Apart from the direct nervous system involvement, includ-
ing the hypothalamus–pituitary axis and sympathetic ner-
vous system efferent limbs and resultant massive release of
catecholamines (31), there is also systemic release of in-
flammatory mediators, such as pro- and anti-inflammatory
cytokines, chemokines, complement factors, and reactive
oxygen species, which can produce direct injury within the
heart and lungs (43, 48, 54, 65). Although the concentrations
of many of these factors may be highest within the brain
extracellular compartment due to decreased cerebral blood
flow (18, 102), release into venous drainage can occur rapidly
following disturbances of the blood–brain barrier (48, 118),
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propagating tissue damage in susceptible organ systems,
leading to further inflammation, tissue damage, and mortality
(29). By some analyses, NNOD produces mortality that is
proportionally similar to initiating neurological complica-
tions (91).

Pulmonary Complications Related to TBI

Pulmonary complications are among the most prevalent
NNODs encountered in the TBI population (95). Although
intensive care units (ICUs) strive to optimize oxygen delivery
following severe brain injury, little is known regarding the
pathophysiology of pulmonary dysfunction secondary to
the neurologic insult. The most frequent NNODs present in
the pulmonary system include the acute respiratory distress
syndrome (ARDS) and neurogenic pulmonary edema (NPE).
Clinical recognition of ARDS is classically associated with
inflammatory processes, including the onset of hypoxemia,
reduction in pulmonary compliance, and presence of cellular
infiltrates (14). In contrast, NPE often occurs in the absence
of direct lung injury and is marked by pulmonary interstitial
and alveolar fluid accumulation likely due to disruptions
in the integrity of the alveolar capillary membrane (9, 10).
Although exploration of either condition can be justified
based upon its own specific merits and mechanisms, one must
also consider that the temporal elements may potentially act
as a continuum; one condition may essentially contribute to
the onset of the other. This common pathway may exhibit
characteristics of both hemodynamic and inflammatory re-
sponses (Fig. 1). The hemodynamic attribute may serve to
increase in pulmonary vascular pressure, resulting in hydro-
static edema, while the inflammatory mechanism of brain
cytokine and chemokine release causes an increase in the
permeability of pulmonary capillaries causing both exudative
edema and leukocytic infiltration of the tissue.

Numerous inflammatory mediators are thought to con-
tribute to the latter response and include interleukin (IL)-1
beta, IL-6, and tumor necrosis factor (TNF)-alpha (43, 48, 54,
65). In addition to these factors are damage-associated mo-
lecular patterns (DAMPs) (80). Extracellular DAMPs are
released from injured or stressed cells and trigger an immune
response to injury or trauma. Damaged cells of all types re-
lease DAMPs and can influence the inflammatory reactions
that follow sterile traumatic injury, such as TBI.

The exact mechanism by which TBI causes pulmonary
dysfunction remains unclear, but it may be related specifi-
cally to nervous system release of the DAMP, high-mobility
group box protein 1 (HMGB1). This review focuses on the
numerous inflammatory roles of HMGB1 and its respective
receptors, receptor for advanced glycation end-products
(RAGE) and toll-like receptor 4 (TLR4), and how they
contribute to lung injury, and then specifically addresses the
role of this pathway in acute lung injury (ALI) caused by TBI.

High-Mobility Group Box Protein 1

HMGB1, formerly known as amphoterin, was originally
discovered as an important protein in neurite outgrowth.
HMGB1 was rediscovered and identified as a nuclear factor
to enhance DNA transcription (30, 73). HMGB1 has also
been called HMG-1, p30, sulfoglucuronyl carbohydrate-
binding protein-1 (SBP1), and differentiation-enhancing
factor (56). The nomenclature was eventually revised to
HMGB1 (21).

HMGB1 belongs to a family of nonhistone chromosomal
proteins, including HMGB2-4 (107). The structure of
HMGB1 is very important to its function as post-translational
modifications of the molecule can result in not only a dif-
ference in functionality but also a change in the localization
of the ligand entirely. Expressed as a single polypeptide chain

FIG. 1. Canonical and noncanonical mechanisms of traumatic brain injury induced pulmonary dysfunction. The
canonical pathway (green rectangles) described for traumatic brain injury-induced effects in the lung depends on the release
of catecholamines, which enter the bloodstream and cause elevated pulmonary capillary pressures and permeability. Fluid is
able to cross capillary endothelial cells causing pulmonary edema. The noncanonical pathway (blue rectangles) for the
effects of traumatic brain injury on pulmonary function involves the release of damage-associated molecular patterns
(DAMPs) by injured or dead neurons, which then enter venous blood in the lungs via the pulmonary circulation and cause
pulmonary injury and dysfunction. To see this illustration in color, the reader is referred to the web version of this article at
www.liebertpub.com/ars
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of 215 amino acids, HMGB1 contains two N-terminal
DNA-binding domains, HMG box A and box B, and an acidic
C-terminal domain. Interestingly, HMGB1 lacks endoplas-
mic reticulum localization sequences, but instead has two
nuclear localization sequences (17, 46, 93, 126). When not
acetylated, HMGB1 remains localized in the nucleus and is
not secreted or released regardless of injury or insult (34, 64,
70). However, hyperacetylation of the molecule results in
cytosolic relocation, allowing for further secretion into the
cellular milieu under proper signaling stimulation (34, 70).
The N-terminal DNA-binding domains, box A and box B,
demonstrate nonspecific interaction with DNA and transcrip-
tion factors to alter chromosomal architecture. Additional
molecular properties of three cysteine residues have been
implicated to be involved in extracellular HMGB1 activity,
including the redox state of cysteine (C) 106, and a disulfide
bond between C23 and C45 (50, 96, 97, 111) (Fig. 2).

HMGB1 is known to interact with transcription factors and
chromatin, although this interaction is generally transient or
unstable (116). For example, HMGB1 interacts with nu-
merous transcriptional regulators, such as p53, HOX pro-
teins, Rel, NFAT2, and PU.1, to facilitate expression or
repression of targeted genes (2, 68, 71, 76, 140). There is also
substantial evidence demonstrating that HMGB1 and histone
H1, a chromatin-binding protein, compete for binding sites
on chromatin, further regulating transcriptional activation
(25, 59, 77). Collectively, HMGB1 can interact directly with
DNA, chromatin, and transcription factors to regulate tran-
scription and genetic recombination. HMGB1 is also able to
activate cells via several surface receptors, including TLR2,
TLR4, and RAGE (51, 57, 84).

Extracellular Forms of HMGB1

Although HMGB1 is typically associated with chromatin
in normal cells, it can be quickly released into the cytoplasm
following stress, injury, or disease. The extracellular form of
HMGB1 is known to differ dramatically based on the oxi-
dative environment, be it saliva, serum, or tissue paren-
chyma, and subsequently produces different cellular action
(4). For example, the initial form of HMGB1 present upon
release into the extracellular space is the all-thiol state. All-
thiol HMGB1 is thought to largely act on a member of the Ig
superfamily, RAGE, and produces chemoattractant actions
on leukocytes (120). There are also reports that all-thiol
HMGB1 can form a complex with the chemokine, CXCL12,
and act through its cognate receptor, CXCR4 (101, 120).

When present in the oxidative environment, cysteines 23 and
46 present in the HMGB1 A box form a sulfide bond, ef-
fectively producing the disulfide form of HMGB1 (133).
Disulfide HMGB1 can only act on the receptor, TLR4 (110),
and influences the production of inflammatory cytokines
(133–135). Important work using an NMR-based approach to
distinguish the oxidation states and half-lives of HMGB1 in
serum, saliva, and cell culture media revealed that the half-
life of all-thiol HMGB1 is as short as 17–18 min in human
serum and saliva, and the subsequent clearance of the dis-
ulfide HMGB1 varies between 65 and 642 min depending on
the extracellular fluid (139) (Fig. 3). Disulfide HMGB1 is
then further reduced following oxidation of Cys-106 in the
B-domain to an inert form (139).

HMGB1 Release

Numerous cells types throughout the body can undergo
passive release of loosely bound nuclear HMGB1 following
tissue injury, including cells of the nervous system (41, 62,
63, 100, 114). However, 25 years after HMGB1 was dis-
covered, Tracey and colleagues determined that HMGB1 can
also be actively released from primary monocytes and it
functions as a critical cytokine to mediate the immune re-
sponse to infection and injury (123). Other cell types known
to actively release HMGB1 include astrocytes, microglia, and
neurons (37, 38, 40, 62, 86, 123). In both ways, HMGB1
orchestrates different cellular functions in consequence to
environmental and homeostatic cues to act as a signal for
tissue damage, injury, and/or infection.

As noted previously, extracellular HMGB1 may form a
complex with other molecules to enhance proinflammatory
responses, including lipopolysaccharide (LPS), IL-1, bacterial
DNA, CXCL12, CD24, and viral RNA (24, 52, 103). Inter-
estingly, in some cases, application of recombinant HMGB1
alone was shown to lack cytokine function (113). It is likely
that this protein took the all-thiol form of HMGB1 as it had
chemotactic qualities to recruit enterocytes and smooth mus-
cle, endothelial, and stem cells (32, 51, 74, 81, 99, 121, 131).
During active inflammation, the predominant form of HMGB1
is thought to be the disulfide bond between C23 and C45
(disulfide HMGB1); however, when inflammation begins to
subside, HMGB1 is terminally oxidized at the cysteine resi-
dues, rendering it biological inactive (oxidized HMGB1) (6,
121, 135). Subsequently, an oxidizing environment following
inflammation or injury may promote HMGB1 cytokine ac-
tivity instead of cellular repair by monocyte recruitment (121).

FIG. 2. HMGB1 structure. HMGB1 structure with the A and B box-binding regions as well as the acidic tail. The TLR4
and RAGE4-binding regions are also highlighted. The three cysteine residues are apparent at the 23, 45, and 106 positions.
HMGB1, high-mobility group box protein 1; RAGE, receptor for advanced glycation end-products; TLR4, toll-like receptor 4.
To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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Less is known about HMGB1-mediated degradation. Ex-
tracellular HMGB1 undergoes limited proteolysis by serine
proteinases that are secreted by stimulated cells. Although the
degradation of HMGB1 can produce a 10-amino acid frag-
ment that retains some functional activity in leukocytic cells
(105), the kinetics of HMGB1 oxidation and the half-lives of
all-thiol and disulfide HMGB1 species in serum, saliva, and
cell culture medium are relatively restricted (139).

HMGB1 Receptors: RAGE and TLR4

Extracellular HMGB1 transduces cellular signals through
plasma membrane receptors, including TLR2, TLR4, and
RAGE (51, 57, 84). Notable binding domains present on the
all-thiol HMGB1 form are amino acids 150–183 on the
RAGE-binding portion (55), whereas the disulfide HMGB1-
binding domains to TLR4 are amino acids 89–108 (133, 135)
(Fig. 3). The disulfide bond between C23 and C45 further
increases the stability of the folded full-length HMGB1
molecule (97).

Downstream signaling of HMGB1 is facilitated by a
number of adaptor proteins, which converge through path-
ways involving mitogen-activated protein kinase (MAPK)
and nuclear factor kappa B (NFjB) and transcriptional reg-
ulator, p53 (82, 83, 89, 98) (Fig. 4). Activation of these
cascades is known to result in the production and release of
proinflammatory cytokines, TNFa, IL-1, IL-6, and IL-8, and
several chemokines (5, 85, 87, 94, 128).

TLR4: Form and Function

Toll-like receptors, or TLRs, are membrane receptors that
play a vital role in host defense by recognizing pathogen-
associated molecular patterns or DAMPs with subsequent

activation of immune responses. In the 1990s, Janeway and
colleagues discovered TLR4, the first identified TLR, by li-
gating antibodies to induced immune responses (72). Since
that discovery, a total of 13 TLRs have been identified, which
play a role in multiple pathways, including pathogen recog-
nition and cellular repair and regeneration (39). Ligands for
TLRs are numerous and those known to interact with TLR4
include exogenous molecules such as LPS as well as en-
dogenous ligands (DAMPs), such as heat shock proteins, fi-
brinogen, peptidoglycan, and HMGB1, and others (15, 80,
138). In particular, the HMGB1-TLR4 axis has been impli-
cated in several disease processes such as cerebral ischemia
(135, 136) as well as ischemia reperfusion (IR) injury in the
heart, liver, and lungs (35, 132). In particular, a translational
study using clinical samples and a mouse model demon-
strated that TLR4 activation by HMGB1 contributes to the
development of pulmonary hypertension and that HMGB1
levels correct with pulmonary arterial pressures (13). After
binding with HMGB1, TLR4 downstream inflammatory
pathways are both myeloid differentiation primary response
gene 88 (MyD88) independent and dependent (Fig. 5).

RAGE: Form and Function

In addition to TLR-mediated pathways of inflammation,
HMGB1 is known to bind to the transmembrane receptor,
RAGE. RAGE is highly conserved across the mouse, rat, and
human and is constitutively expressed at high levels both on
pulmonary endothelial and alveolar cells (104). It binds to
several proinflammatory molecules, including S100, amyloid
fibrils, and HMGB1. Upon binding, the downstream signal-
ing pathway is MyD88 dependent, which is common to one
of the TLR4 pathways (Fig. 6). RAGE exists primarily in two
forms: a full-length transmembrane form as well as a soluble

FIG. 3. HMGB1 redox states and associated biological activity. The three redox states of HMGB1 differ by structure,
half-life, and activity. The reduced form contains a thiol group at all three cysteine residues with a serum half-life of 17 min.
It is this form that is able to bind to RAGE and activate inflammatory pathways. The disulfide form contains a disulfide bond
between the cysteine residues at positions 23 and 45. This bond increases it stability and half-life to 642 min. Additionally,
this is the form that is TLR4 dependent. The final inactivated form is known as the oxidized form and has sulfonated
cysteines at all three positions. This is the predominant form once inflammation has begun to subside.
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isoform generated either by splicing or proteolytic cleavage
(20, 45). An inert form of RAGE is also known to exist (Fig.
7). This soluble form is able to bind to RAGE ligands in the
extracellular space before interaction with the transmembrane
form, suggesting its role as a decoy receptor (20). Additionally,
several studies have documented that RAGE has multiple
splice variants, which have various ligands and functions (36,
53, 84, 137). Recent work has demonstrated that the different
variants are distributed in different tissues with the full-length
form being found most frequently in all tissues (60). However,
over 15 variants were discovered, demonstrating a unique
variant distribution in the body (Fig. 8).

HMGB1 and TBI

Severe TBI is a major public health problem that accounts
for one-third of early mortality due to trauma in the United
States. Late mortality is caused by injuries secondary to head
trauma, which impact distal organ function and increase sus-
ceptibility to infections. In particular, severe brain injury often
produces a pronounced impact on lung function (16, 124). The
mechanisms by which TBI contributes to pulmonary dys-
function are poorly understood, but are thought to involve a
catecholamine surge-associated pulmonary vascular perme-
ability change leading to NPE (7). This injury-induced excess

of catecholamine also lends itself to hypertension, abnormal
heart variability, and neurological deficits (44, 90, 112). More
recent clinical studies implicate the production and release of
inflammatory mediators, including HMGB1 (8, 49, 75, 122).
Although organ failure scoring systems, present clinical
markers, and single cytokine estimates have failed to predict
the onset of organ dysfunction in the clinical setting, patterns of
early circulating trauma markers such as HMGB1 may serve to
guide and streamline damage control following TBI.

There is currently no absolute definition of pathophysi-
ology associated with HMGB1 release following traumatic
injury with or without TBI. Some clinical studies of me-
chanical trauma in the absence of head injury fail to find a
correlation between HMGB1 levels in plasma and measures
of morbidity (88). However, other studies, which included
patients with trauma to the head, suggest that the release of
HMGB1 is predictive of both mortality and neurological
dysfunction in adult and pediatric patients (8, 28, 42). The
presence of the increased HMGB1 levels in both plasma and
cerebrospinal fluid may ultimately reflect release from
damaged and dying cells in the brain.

No single animal model can adequately mimic all aspects
of the human TBI. However, recent investigations using the
controlled cortical impact model or fluid percussion in ro-
dents reveal similar rapid changes in HMGB1 in blood and
brain tissue (78, 125). The different isoforms of the protein
may be integral to pulmonary functional changes and cellular
responses by immune cells. For example, the initial all-thiol
form of HMGB1 released from the brain may contribute to
RAGE-dependent functional chemotaxis of innate immune

FIG. 4. The interaction between HMGB1 and RAGE/
TLR4. Downstream signaling of HMGB1 via RAGE and
TLR4 receptor activation is facilitated by a number of
adaptor proteins, which converge through pathways in-
volving MAPK, NFjB, and the transcriptional regulator,
p53. Activation of these cascades is known to result in the
production and release of proinflammatory cytokines, TNFa,
IL-1, IL-6, and IL-8, and several chemokines. IL, interleu-
kin; MAPK, mitogen-activated protein kinase; NFjB, nu-
clear factor kappa B. To see this illustration in color, the
reader is referred to the web version of this article at
www.liebertpub.com/ars

FIG. 5. HMGB1-TLR4 binding and downstream acti-
vation. TLR4 has two distinct pathway choices, varying by
the involvement of the MyD88 adaptor protein. Both path-
way products are key to the inflammatory process. LPS,
lipopolysaccharide; MyD88, myeloid differentiation pri-
mary response gene 88. To see this illustration in color,
the reader is referred to the web version of this article at
www.liebertpub.com/ars
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system cells (119, 130). However, as the half-life of this
isoform is relatively short, the disulfide form of HMGB1 may
also contribute to organ dysfunction and changes in blood–
brain permeability in a TLR4-dependent manner (78, 125,
139). Subsequently, HMGB1 isoforms present in injury
conditions may suitably act as priming signals, which are
perceived in both the nervous and immune systems (3, 38,
109, 120).

Alternative interpretations include the suggestion that
macrophages exposed to catecholamine induce HMGB1 re-
lease (68). Additional evidence to support this observation
can be obtained by blocking adrenergic receptors or using an
agonist of a2-adrenergic receptors, dexmedetomidine, to re-
duce levels of HMGB1 in blood post-TBI (26, 58).

RAGE and Lung Disease

RAGE has been implicated in several disease processes,
such as cancer, diabetes, and Alzheimer’s disease. Con-
sidering its high expression in the lung, it is not surpris-
ing that RAGE has also been associated with several
pulmonary diseases, including lung cancer, pulmonary fi-
brosis, and ALI (12, 33). Multiple studies have demon-
strated that several RAGE ligands, including HMGB1, are
upregulated in lung cancer and are associated with metas-
tasis and poor outcomes. The HMGB1-RAGE interaction
appears to contribute to tumor invasion and metastasis and
is believed to be an important target and opportunity for

antitumor therapy (69). Additionally, recent work has
demonstrated that blocking of the HMGB1-RAGE pathway
decreases tumor cell proliferation, invasion, and MMP
activity (108).

In addition to lung cancer, RAGE has also been implicated
in idiopathic pulmonary fibrosis (IPF). IPF is a progressive
debilitating disease with an unclear pathogenesis and no re-
liable treatment. In a mouse model of pulmonary fibrosis
induced by bleomycin, HMGB1 production was elevated
from inflammatory cells in the airway and RAGE - / - mice
did not respond to HMGB1, suggesting that RAGE may
contribute to bleomycin-induced pulmonary fibrosis (47).
Conversely, other studies have reported that the loss of
RAGE may contribute to pulmonary fibrosis. In clinical
studies, patients with IPF demonstrated RAGE expression
that was downregulated in lung homogenates and alveolar
cells (92). Additionally, soluble RAGE (sRAGE) levels were
lower in the BAL fluid of patients with IPF (11). These
conflicting reports highlight that RAGE may be implicated in
the pathogenesis of fibrosis, but the underlying mechanisms
remain uncertain.

RAGE, IR Injury, and Lung Transplantation

Work has also been done to explore the connection between
RAGE and IR injury in the setting of lung transplantation. In a
murine model of pulmonary reperfusion injury, pharmacologic
blockade of RAGE diminished pulmonary function measured
by arterial oxygenation, capillary leakage, and histologic injury.
Additionally, genetic deletion of RAGE attenuated evidence of
ischemic reperfusion injury (106). Similar findings were also
obtained in the setting of IR injury of the liver where RAGE
blockade protected against hepatocellular death and necrosis in
a murine model (141). More recently, lung injury and pul-
monary dysfunction were attenuated in RAGE - / - mice.
Additionally, the deletion of RAGE was also able to prevent
IR injury in a hyperglycemia-enhanced IR animal model (67).

The connection between RAGE and short-term outcomes
after lung transplantation has also been studied. Among 20
patients who underwent lung transplantation, plasma RAGE
levels were obtained 4 h after the transplant. Among these pa-
tients, higher levels of RAGE predicted long durations of me-
chanical ventilation and ICU stays (22). Among 317 patients
undergoing lung transplantation, plasma levels of sRAGE were
measured 6 and 24 h post-transplant. Patients who developed
primary graft dysfunction had higher levels of sRAGE. Higher
levels of sRAGE were also associated with blood transfusions
and cardiopulmonary bypass (27). Both these studies demon-
strate that elevated levels of sRAGE are associated with worse
short-term outcomes after transplantation.

The HMGB1-RAGE Axis and ALI

Several recent studies have demonstrated a connection
between HMGB1, RAGE, and ALI and ARDS. HMGB1 has
been identified as a marker of ALI in both human and animal
studies (1, 117). Aside from the brain injury, elevated
HMGB1 levels have been associated with diseases such as
sepsis, hemorrhagic shock, and rheumatologic disorders (66,
79). Additionally, both experimental and clinical studies
have implicated HMGB1 in ALI (129). Analysis of plasma
and lung epithelial lining fluid of patients with ALI secondary
to sepsis demonstrated increased levels of HMGB1. HMGB1

FIG. 6. HMGB1-RAGE binding and downstream ac-
tivation. The signaling pathway of RAGE involves the key
adaptor proteins, MyD88 and TIRAP, which it shares in
common with TLR4 signaling. All-thiol HMGB1 also
serves to signal an increase in chemotactic activity. To see
this illustration in color, the reader is referred to the web
version of this article at www.liebertpub.com/ars
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was also elevated in plasma and lung fluid from LPS-induced
ALI in a mouse model (117). In this scenario, it is believed
that HMGB1 is released from normal airways and leaks into
the bloodstream after destruction of the alveolar capillary
barrier (127).

Additionally, clinical studies in patients with ALI have
demonstrated a correlation with plasma sRAGE levels
and worse outcomes as defined by severity of lung injury,
ventilator-free days, and mortality (23). One study dem-
onstrated sRAGE to be a marker of alveolar cell injury in a

FIG. 7. Forms of RAGE. The RAGE receptor can be found in several forms throughout the organism due to splicing
variations. (A) Full-length RAGE is the most prominent isoform of the receptor. (B) A soluble form of the receptor exists
without the transmembrane domain, signaling domain, or C-Terminus. (C) Inert RAGE receptors can be found with
modifications to the signaling domain, preventing signal transduction down the pathway.

FIG. 8. Splice variants of RAGE. Although full-length RAGE is the most common form isolated in various tissues,
multiple variants exist. mRAGE_v1 and mRAGE_v3 have an inclusion of intron 9 causing a shift in the reading frame
hypothesis to be a source of soluble RAGE. mRAGE_v2 has a premature stop codon and is most prevalent in the brain.
Exon 9 is deleted in mRAGE_v4, which does not affect the reading frame or remove either the transmembrane or
cytoplasmic domains. This form is most prominent in the lung (60). To see this illustration in color, the reader is referred to
the web version of this article at www.liebertpub.com/ars
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rat model. In both experimental and human studies, higher
sRAGE concentrations were found in the alveolar space
compared with controls (115). Furthermore, RAGE levels
in the alveolar fluid were measured after human lungs de-
clined for transplant were perfused, ventilated, and re-
warmed. RAGE was found to be inversely correlated with
alveolar fluid clearance, suggesting that RAGE can be used
as a marker for alveolar cell injury in donor lungs and
possibly ALI (19).

Conclusions

This review has sought to describe evidence for the role of
HMGB1-RAGE and the HMGB1-TLR4 axis associated with
pulmonary dysfunction and central nervous system injury.
Better understanding of the manner in which the redox iso-
forms of HMGB1 influence organ systems following trauma
or disease may directly lead to the development of new
therapeutic strategies, applying to not only patients with TBI
but also the patients who demonstrate subsequent pulmonary
complications as a result, as well as the recipients of trans-
planted lungs. Moreover, the pathogenesis manifested by
release of HMGB1 throughout a number of organ systems
suggests that therapeutic blockade of the protein will lead to
novel directions in transplantation research. Further investi-
gation of the mechanisms behind HMGB1 release, as well as
its subsequent signaling pathways, is necessary to advancing
understanding of the inflammatory process given that it is no
longer restricted or solely related to the immune system. The
study of HMGB1 and its receptors provides an exciting di-
rection for the improvement of clinical outcomes of a sig-
nificant portion of the patient population in a novel manner,
all the while allowing for a direct translational connection
from the bench to the bedside.
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Abbreviations Used

ALI¼ acute lung injury
ARDS¼ acute respiratory distress syndrome
DAMP¼ damage-associated molecular pattern

HMGB1¼ high-mobility group box protein 1
ICU¼ intensive care unit

IL¼ interleukin
IPF¼ idiopathic pulmonary fibrosis
IR¼ ischemia reperfusion

LPS¼ lipopolysaccharide
MAPK¼mitogen-activated protein kinase
MyD88¼myeloid differentiation primary response

gene 88
NFjB¼ nuclear factor kappa B

NNOD¼ non-neurologic organ dysfunction
NPE¼ neurogenic pulmonary edema

RAGE¼ receptor for advanced glycation end-products
SBP1¼ sulfoglucuronyl carbohydrate-binding

protein-1
sRAGE¼ soluble RAGE

TBI¼ traumatic brain injury
TLR4¼ toll-like receptor 4

TNF¼ tumor necrosis factor
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