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Abstract

The main goal of this paper is to present the case for shifting the focus of research on aging and anti-aging from
lifespan pharmacology to what I like to call healthspan pharmacology, in which the desired outcome is the
extension of healthy years of life rather than lifespan alone. Lifespan could be influenced by both genetic and
epigenetic factors, but a long lifespan may not be a good indicator of an optimal healthspan. Without improving
healthspan, prolonging longevity would have enormous negative socioeconomic outcomes for humans.
Therefore, the goal of aging and anti-aging research should be to add healthy years to life and not merely to
increase the chronological age. This article summarizes and compares two categories of pharmacologically
induced lifespan extension studies in animal model systems from the last two decades—those reporting the
effects of pharmacological interventions on lifespan extension alone versus others that include their effects on
both lifespan and healthspan in the analysis. The conclusion is that the extrapolation of pharmacological results
from animal studies to humans is likely to be more relevant when both lifespan and healthspan extension
properties of pharmacological intervention are taken into account.

Introduction

Aging is a complex and multi-factorial process that
is not well defined. The majority of evolutionary

biologists, like Michael Rose, characterize aging as a de-
cline or loss of adaptation with increasing age, caused by a
time-progressive decline of William D. Hamilton’s forces of
natural selection.1 Although there are a number of variants
of this definition, we can all agree that as we age, we will
experience a progressive accumulation of cellular damage
and a degradation of repair and maintenance mechanisms,
leading to a gradual deterioration of physiological func-
tions. This process, which is highly conserved across species
throughout evolution, creates progressive dysfunction as-
sociated with frailty and age-related diseases and eventually
leads to the death of the organism.

Over recent decades, improvements in medical diag-
nostics and procedures, as well as improvements in
hygiene, have resulted in a steady increase in human
lifespan,2–10 but this increase has unfortunately been ac-
companied by ever-growing occurrences of diseases of
aging, such as diabetes, neurodegenerative diseases, can-
cer, and cardiovascular diseases.11 Therefore, understand-
ing the mechanisms of aging, defining the most important
risk factors for the development of chronic diseases of
aging, and identifying pharmacological interventions to
ameliorate the aging process are more important today than

ever. Over the last two decades, using several model sys-
tems, such as yeast, fruit flies, worms, and mice, numer-
ous evolutionarily conserved pathways that regulate
longevity have been identified, and the modification of
these pathways either intrinsically (e.g., genetic modifica-
tions for deletion, down-regulation or over-expression) or
extrinsically (e.g., environmental factors, use of pharmaco-
logical agents) have been shown to extend the lifespan of
the model organisms.12–30

Most of pharmacological intervention studies have
focused on lifespan extension of animals, but very little
attention has been given to the aspect of pharmacologically
induced healthspan extension, which I refer to as health-
span pharmacology. Clearly, this omission is a serious
one if results from animal studies are to be relevant to
humans, many of whom consider their quality of life with
advancing age to be just as important as their longevity.
There appears to be an emergence of assays in animal
models to evaluate healthspan. One of the tests that can be
used to evaluate age-related changes in mice, in an effort
to quantify the impact of pharmacological interventions
on healthspan, is the frailty index (FI), also known as the
index of cumulative deficits.31,32 A recent study with the
goal of evaluating the utility of FI as a tool to evaluate
the impact of caloric restriction and resveratrol on
healthspan showed that these interventions reduced FI.33

There is no obvious reason that this tool could not be used
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Table 1. Studies Focusing on Lifespan Pharmacology Only

Intervention Model organism
Mean lifespan

extension Mechanism of action

a-ketoglutarate
Chin et al., 201447

C. elegans 50% Inhibition of ATP synthase and TOR
signaling

Alpinia zerumbet Extract
Upadhyay et al., 201348

C. elegans 23% Anti-oxidant

Aspirin
Strong et al., 200849

Mice 8% (male) Anti-oxidant, anti-inflammatory

b-Guanidinopropionic acid
Yang et al., 201550

D. melanogaster Increase in
mean lifespan

Activation of AMP-activated protein
kinase, autophagy

Black tea
Peng et al., 200951

D. melanogaster 9.8% Anti-oxidant

Blueberry extract
Wilson et al., 200652

C. elegans 28% Anti-oxidant

Blueberry extract
Peng et al., 201253

D. melanogaster 10% Anti-oxidant

Caffeic acid phenethylester
Havermann et al., 201454

C. elegans 9–17% Modulation of the insulin-like DAF-16
signaling

Chicoric acid
Schlernitzauer et al., 201355

C. elegans Increase in
mean lifespan

Activation of AMP-kinase

Cinnamon
Yu et al., 201056

C. elegans 12% Regulation of Insulin/IGF-1 signaling

CoQ-10
Ishii et al., 200457

C. elegans 6–18% Anti-oxidant

Diallyl trisulfide (garlic)
Powolny et al., 201158

C. elegans 12–13% Activation of SKN-1

Ethosuximide
Collins et al., 200859

C. elegans 17% Regulation of chemosensation

EUK-8/ EUK-134
Melov et al., 200060

C. elegans 44% Anti-oxidant

Ginko biloba
Wu et al., 200261

C. elegans 8% Anti-oxidant

Glaucarubinone
Zarse et al., 201162

C. elegans Increase in
mean lifespan

Induction of mitochondrial activity

Green tea
Li et al., 200763

D. melanogaster 16–19% Inhibition of iron accumulation, anti-
oxidant

L-Theanine
Zarse et al., 201264

C. elegans Increase in
mean lifespan

Anti-oxidant

Lipoic Acid
Benedetti et al., 200865

C. elegans 21% Anti-oxidant

Lithium
McColl et al., 200866

C. elegans 46% Modulation of histone methylation
and chromatin structure

Lonidamine
Schmeisser et al., 201167

C. elegans 8% Anti-oxidant

Mainserin
Petrascheck et al., 200768

C. elegans 31% Activation of DR metabolism

Metformin
Anisimov et al., 200869

Mice 38% Activation of DR metabolism, oxida-
tive stress

Metoprolol
Spindler et al., 201370

Mice 10% Inhibition of b-AR signaling

Myriocin
Cutler et al., 201471

C. elegans 24% Decrease of ceramides

N-acetylcysteine
Brack et al., 199725

D. melanogaster 27% Differential gene expression

Natto extract
Ibe et al., 201372

C. elegans 16% Anti-oxidant

Oxaloacetic acid
Williams et al., 200973

C. elegans 25% Regulation of FOXO/DAF-16

Propyl gallate
Benedetti et al., 200865

C. elegans 12% Anti-oxidant

(continued)
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to quantify the effect of other pharmacological interven-
tions on healthspan in animal model studies with the goal
of extrapolating the results to humans.

The pharmacological agents that are known to extend
lifespan in animal studies appear to act mainly through
anti-oxidant defense, protein homeostasis, dietary restric-
tion (DR) modulation, inhibition of kinases, or modulation
of insulin/insulin-like growth factor (IGF) signaling. Among
numerous agents that have been tested using multiple model
systems over the last two decades, the spectrum includes
anti-depressants (e.g., mianserin), anti-convulsants (e.g.,
valproic acid, lamotrigine), anti-diabetics (e.g., metformin),
immunosuppressants (e.g., rapamycin), and natural products
(e.g., resveratrol, Rhodiola rosea, curcumin, green tea,
blueberry). The mechanism of action and the extent of
lifespan extension vary among each agent (Table 1), and
most can be classified under the aforementioned groups. In
addition to the widely known pharmacological interven-
tions that prolong lifespan (e.g., resveratrol, Rhodiola rosea,
rapamycin, metformin) across species, high-throughput
chemical screening approaches have been used to identify
new candidate molecules that extend lifespan in Caenor-
habditis elegans and Drosophila melanogaster model sys-
tems.14,34–40 With the convenience of C. elegans and
Drosophila as platforms to discover new lifespan–extending
compounds, it is inevitable that the number of identified anti-
aging compounds that extend lifespan will continue to in-
crease dramatically.

Although the end point of prolonged longevity is clear
(i.e., the death of the organism), the physiological mecha-
nisms of extending lifespan via anti-aging interventions
have been elusive. The implicit assumption that increasing
the mean lifespan of a model organism not only delays
aging but also the onset of the age-related physiological
effects is unsupported and should be re-evaluated to include
measurements of health parameters to determine if an
intervention has the potential to add healthy years to the life
of the model organism and eventually to humans. Even
though a given intervention may extend the lifespan of
the organism, if it decreases overall health, it should not
be tested in a clinical study to evaluate its potential for
human life prolongation, which is the ultimate goal of the
longevity research.

The list of studies reporting lifespan extension via phar-
macological agents (Table 1) is rather extensive compared to
studies where healthspan was also taken into consideration
(Table 2). There is no doubt that it is important to identify
anti-aging compounds because, aside from their impact on
lifespan, they will assist us in elucidating molecular pathways
that may impact aging as outlined in Table 1. However,
evaluating the impact of such compounds on healthspan is
just as important as knowing their impact on lifespan.

The reason for this assertion is rather subtle. Although
lifespan and healthspan have been thought to be highly cor-
related, recent reports indicate that they may not be as closely
linked as previously thought. A recent study that uncoupled

Table 1. (Continued)

Intervention Model organism
Mean lifespan

extension Mechanism of action

Pyrrolidine dithiocarbamate
(PDTC)
Moskalev & Shaposhnikov
201174

D. melanogaster 20% Inhibition of NF-jB

Quercetin
Kampkotter et al., 200875

C. elegans 15% Anti-oxidant

Rapamycin
Harrison et al., 200920

Mice 9–14% Inhibition of the mTOR pathway

Resveratrol
Howitz et al., 200312

S. cerevisiae 70% Activation of NAD+ dependent protein
deacetylases of the sirtuins

Resveratrol
Viswanathan et al., 200576

C. elegans 10–14%

Rhodiola rosea
Bayliak & Lushchak 201177

S. cerevisiae 25% Sensitization to oxidative stress

Rhodiola rosea
Wiegant et al., 200978

C. elegans 10–20% Increased stress resistance

Rifampicin
Golegaonkar et al., 201579

C. elegans 60% Activation of DAF-16

Spermidine
Eisenberg et al., 200980

C. elegans 15% Autophagy
D. melanogaster 30%

Thioflavin T
Alavez et al., 201181

Tullet et al., 200882

C. elegans 60% Inhibition of SKN-1

Tocotrienols
Adachi et al., 200083

C. elegans 17% Anti-oxidant

Trolox
Benedetti et al., 200865

C. elegans 31% Anti-oxidant

Vitamin E
Harrington & Harley 198884

C. elegans 17–23% Anti-oxidant
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Table 2. Studies Focusing on Both Lifespan and Healthspan Pharmacology

Intervention Model organism
Mean lifespan

extension
Healthspan
parameters Mechanism of action

4-phenylbutyrate
(PBA)
Kang et al.,

200285

D. melanogaster 33% Locomotion, reproduction Increased histone
acetylation

Caffeine
Sutphin et al.,

201286

C. elegans 37% Locomotion Regulation of Insulin/
IGF-1 signaling

Catechin
Saul et al., 200987

C. elegans 12–14% Reproduction, pharyngeal
pumping

Stress resistance

Celecoxib
Ching et al.,

201188

C. elegans 20% Locomotion Inhibition of PDK-1

Cinnamon
Schriner et al.,

201489

D. melanogaster 12–24% Reproduction, locomotion Regulation of Insulin/
IGF-1 signaling

Curcumin
Alavez et al.,

201181

C. elegans 45% Locomotion Activation of HSF-1
and SKN-1

Curcumin
Lee et al., 201090

D. melanogaster 16–19% Reproduction, locomotion

Dichloroacetate
Schaffer et al.,

201191

C. elegans Increase in
mean lifespan

Locomotion Inhibition of pyruvate
dehy-drogenase kinase

Ethosuximide
Evason et al.,

200592

C. elegans 17% Reproduction, locomotion,
pharyngeal pumping

Regulation of
chemosensation

Green tea
Lopez et al.,

201493

D. melanogaster 16–19% Reproduction Inhibition of iron accu-
mulation, anti-oxidant

Icariin & Icariside II
Cai et al., 201194

C. elegans 21% Locomotion Regulation of Insulin/
IGF-1 signaling

Lamotrigine
Avanesian et al.,

201045

D. melanogaster 12–17% Locomotion Metabolic rate depression

Metformin
Onken & Driscoll,

201044

C. elegans 40% Locomotion Activation of DR metab-
olism, oxidative stress

Metformin
Anisimov et al.,

200869

Mice 38% Estrus, metabolic parameters

Metoprolol
Spindler et al.,

201370

D. melanogaster 23% Locomotion Inhibition of b-AR
signaling

Nordihydroguaiare-
tic acid (NDGA)
Harrison et al.,

201495

Mice 12% Metabolic markers Anti-oxidant, anti-
inflammatory

Quercetin
Pietsch et al.,

200996

C. elegans 15% Reproduction Anti-oxidant

Rapamycin
Bjedov et al.,

201097

D. melanogaster Increase in
mean lifespan

Reproduction Inhibition of the TOR
pathway

Rapamycin
Zhang et al.,

201398

Mice Decrease in
mortality

Locomotion, reduced sleep
fragmentation

Inhibition of the mTOR
pathway

Rhodiola rosea
Schriner et al.,

200999 201328

D. melanogaster 24% Reproduction, locomotion Decrease in endogenous
superoxide levels,
DR-Independent
lifespan extension

(continued)
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lifespan and healthspan in C. elegans by examining wild-type
and four long-lived mutants provided evidence that in a
number of cases, where lifespan was extended, the health of
the worms suffered drastically.41 Given that life expectancy
has been on the rise for humans, further extending lifespan
alone without improving healthspan will have significant
adverse outcomes, such as unmanageable health care costs
due to declined quality of life and increased incidence of age-
related diseases, which further underscores the importance of
studying healthspan as opposed to just lifespan.

Healthspan Pharmacology

Despite the necessity of evaluating healthspan in the
context of lifespan, a comprehensive definition of health-
span in the laboratory requires an all-inclusive approach
defining and evaluating a number of physiological param-
eters that contribute to the state of health. Describing mea-
surable parameters to determine healthspan is more
challenging compared to lifespan, which is simply measured
by the mean and maximum life expectancy of the organism.
A few parameters for healthspan have been utilized for in-
vertebrates model systems. For instance, movement and
feeding behaviors have been used as healthspan markers for
C. elegans,41–44 whereas locomotion and reproduction serve
as the indicators of health for D. melanogaster.45 Not sur-
prisingly, when it comes to a mammalian model system,
such as mice, the definition of healthspan parameters be-
comes more complex. Even though there are a number of
validated tests that measure behavior, locomotion, cogni-
tion, and metabolism in young mice, there is no uniform set
of tests to measure healthspan in aging mice. A recent
perspective article 46 put forward several recommendations

for measuring healthspan in mice in an effort to provide a
unified method of focusing on healthspan in aging research.
Perhaps the FI that measures cumulative deficits in mice can
also be incorporated to quantify the impact of pharmaco-
logical interventions on healthspan. Given the challenge of
reproducibility of a specified connection between a com-
pound and lifespan extension among different laboratories
around the world, correlating the effects of pharmaco-
logical interventions with healthspan will be even more
challenging.

In conclusion, to extrapolate the result of any potential
anti-aging pharmacological agent from the laboratory model
systems to humans, evaluation of healthspan absolutely
needs to be part of the equation. This is why we now need to
shift the focus of the scientific community studying aging
and anti-aging from lifespan pharmacology to healthspan
pharmacology.
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