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Abstract

Significance: Traumatic injury elicits a complex, dynamic, multidimensional inflammatory response that is
intertwined with complications such as multiple organ dysfunction and nosocomial infection. The complex
interplay between inflammation and physiology in critical illness remains a challenge for translational research,
including the extrapolation to human disease from animal models. Recent Advances: Over the past decade, we
and others have attempted to decipher the biocomplexity of inflammation in these settings of acute illness, using
computational models to improve clinical translation. In silico modeling has been suggested as a computa-
tionally based framework for integrating data derived from basic biology experiments as well as preclinical and
clinical studies. Critical Issues: Extensive studies in cells, mice, and human blunt trauma patients have led us to
suggest (i) that while an adequate level of inflammation is required for healing post-trauma, inflammation can
be harmful when it becomes self-sustaining via a damage-associated molecular pattern/Toll-like receptor-driven
feed-forward circuit; (ii) that chemokines play a central regulatory role in driving either self-resolving or self-
maintaining inflammation that drives the early activation of both classical innate and more recently recognized
lymphoid pathways; and (iii) the presence of multiple thresholds and feedback loops, which could significantly
affect the propagation of inflammation across multiple body compartments. Future Directions: These insights
from data-driven models into the primary drivers and interconnected networks of inflammation have been used
to generate mechanistic computational models. Together, these models may be used to gain basic insights as
well as serving to help define novel biomarkers and therapeutic targets. Antioxid. Redox Signal. 23, 1370–1387.

Trauma: A Significant Burden

Trauma/hemorrhagic shock remains the leading cause
of death in patients younger than 45 years (70). It is the

third leading cause of death worldwide, resulting in five
million or 10% of all deaths annually and thus considered the
fifth leading cause of significant disability (137). Traumatic
injury is a pandemic disease, one that affects every nation in

the world regardless of the level of socioeconomic develop-
ment (70, 71).

The disease is acute in onset, but often results in chronic,
debilitating health problems that have effects beyond the
individual victims. The financial impact of traumatic injuries
is staggering: in 2000 in the United States, 10% of hospital
discharges were due to injuries, and the direct cost of treating
50 million injury cases was $80.2 billion, with an estimated
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additional $326 billion in indirect costs (38). Indeed, ac-
cording to the best available data, trauma will equal or surpass
communicable disease in the year 2020 as the number one
cause of morbidity and mortality worldwide (96).

Diversity of Immune Regulation

The immune system responds rapidly to traumatic injuries
by reacting to tissue damage. Following this initial response
to injury, both innate immune (myeloid) and lymphoid-
derived cells and mediators drive responses that have
been categorized broadly as proinflammatory or counter-
inflammatory components. A more nuanced view of these
systemic responses has suggested the presence of a systemic
inflammatory response syndrome (SIRS), a compensatory
anti-inflammatory response, or a mixed antagonist response
syndrome (117, 122). Although these descriptive terminolo-
gies for this complex host response were first suggested over
20 years ago, they persist and remain useful as terms for
delineating the clinical manifestations of trauma (28).

Indeed, these syndromes have become more relevant re-
cently: with recent advances in clinical care, the outcome
landscape in trauma has shifted from mortality to multiple
organ dysfunction, nosocomial infection, and extended hos-
pital and intensive care unit length of stay (25, 110). Thus, in
the current clinical setting, the clinical outcomes of trauma
patients who do not achieve full recovery from the initial
insult can progress to a state of persistent inflammation, im-
munosuppression, and catabolism syndrome (57). Rather
than return to a functional life, these patients are discharged
to long-term acute care facilities, subsequent intensive care
unit readmission, or indolent death.

However, as we discuss below, insights from computa-
tional modeling suggest a much more intertwined process,
where dynamic is not the same as sequential. Rather, the in-
nate and adaptive immune responses overlap temporally,
despite regulating aspects of each other. Similarly, we believe
that these intertwined changes in typical innate immune cells
and T-cell-derived phenotype and function ultimately disrupt
immune system homeostasis. It is the loss of homeostasis that
predisposes trauma patients to opportunistic infections and
other complications of traumatic injury such as multiple organ
dysfunction. We also suggest that injuries induce an adaptive
type of immune response that may have evolved to protect the
injured host from opportunistic infections and excessive re-
activity to damaged tissues and cells. This adaptive response
can become dysregulated in patients who survive due to
modern trauma care advances (110, 156).

The Conundrum of Acute Inflammation

Trauma-induced inflammation, with its manifold mani-
festations at the molecular, cellular, tissue, organ, and whole-
organism levels, is a key driver of outcomes following injury.
These dynamic processes involve the activation of signaling
pathways at the cellular level, which mobilize inflammatory
cells and stimulate the secretion of chemokines, cytokines,
and damage-associated molecular pattern (DAMP) mole-
cules (160).

Although properly regulated inflammation allows for
timely recognition and effective reaction to injury, the acute
immune dysregulation that can accompany trauma/hemor-
rhage impairs physiological functions and predisposes to late

complications such as nosocomial infection (34, 56, 59, 72).
It is critical to note that inflammation is not in and of itself
detrimental; rather, well-regulated self-resolving inflammation
is necessary for the appropriate resolution of injury and for
maintenance of proper physiology and homeostasis. Thus,
injury-induced inflammation presents the paradox of a robust,
evolutionarily conserved network whose very structure may
lead to disease (144, 149, 150). Indeed, most evidence suggests
that either insufficient (105) or self-sustaining (114) inflam-
mation (Fig. 1) drives the pathobiology of trauma/hemorrhage
and subsequent processes such as persistent critical illness.

The complexity of this response has stymied attempts at
early diagnosis and therapeutic modulation of trauma-
induced inflammation, resulting in a dearth of targeted ther-
apeutic options. The use of animals in inflammation research
has been essential for defining specific mechanisms of dis-
covery of possible therapeutic targets (92, 129). However,
translating the basic knowledge into clinical intervention has
often been unsuccessful. This reflects lack of complete un-
derstanding of human inflammatory response, which has led
to challenges of the validity of animal models that are used
for drug discovery (153). However, as we discuss below,
novel approaches from computational studies may help in
deciphering this complexity and driving novel translational
approaches (11, 60, 113).

We and others have carried out combined experimental,
clinical, and computational studies with the explicit goal of
advancing the understanding of the immune networks in-
volved in trauma/hemorrhage and sepsis at the clinical level
(6, 10, 11, 108, 144, 145, 149, 151). Over a decade of studies
in cells, mice, large animals, and humans, we have developed
an integrated view of the postinjury acute inflammatory re-
sponse, which is regulated by initial chemokine-driven cues
and propagated by DAMPs. These studies involved multiple
paradigms of acute inflammation, including endotoxemia and
experimental sepsis in mice (32, 35, 109, 125), rats (39, 107,
112), and swine (43, 50, 112, 116)), experimental trauma/
hemorrhagic shock in mice (35, 45, 81, 84, 97, 125), and
traumatic injury in humans (3, 31, 84, 110, 136, 158).

FIG. 1. Course of acute inflammation following injury.
Properly regulated and self-resolving inflammation allows
for effective resolution, while inadequate or overly exuberant
inflammation can result in immune dysregulation and sub-
sequent processes such as persistent critical illness. To see
this illustration in color, the reader is referred to the web
version of this article at www.liebertpub.com/ars
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We propose that the pathways identified in these studies
are associated with defined trajectories and distinct dynamic
networks of inflammatory mediators, in turn resulting in a
state of immune dysregulation in a large proportion of trauma
patients (Fig. 2). Although these mediators have been ap-
preciated as being central to the acute inflammatory response,
computational modeling has allowed for both their integra-
tion into a system-based process and raising the potential
for novel translational applications targeting nonintuitive
central mediators as defined by modeling. In this review, we
will discuss this framework and suggest how it can lead to the

rational discovery of both basic and clinically applicable
insights.

Acute Inflammation: Can We Extrapolate
from Mice to Humans?

Injury-induced acute inflammation has been a conundrum:
how can relatively well-studied inflammatory mechanisms
that lead to well-defined outcomes in experimental mice
models lead to such diverse outcomes in trauma patients?
Thus, one key question pursued by investigators is whether or

FIG. 2. Schematic representation of activation of innate and T-cell-mediated responses following traumatic injury.
Tissue injury generates damage-associated molecular patterns (DAMPs) from damaged cells, which initiate innate immune
pathways by activation of pattern recognition receptors (PRRs) and, at least in part, through Toll-like receptor (TLR) signaling.
This results in the release of inflammatory cytokines and chemokines from both structural cells (epithelial and fibroblasts) and
antigen-presenting cells, such as resident macrophages (MF) and dendritic cells (DCs). These mediators are responsible for the
activation of the endothelium (e.g., upregulation of adhesion molecules) and the recruitment and activation of leukocytes
critical for innate immune responses (neutrophils, eosinophils, basophils, natural killer [NK] cells, and monocytes) and T-cell-
mediated responses. The activation of these immune responses is essential to eliminate the inciting insult and to repair the
destroyed tissue, thereby maintaining homeostasis. However, when uncontrolled, sustained, and exaggerated, the immune
response becomes dysregulated, resulting in further damage through vicious feed-forward circuits causing further harm. To see
this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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not it is possible to extrapolate directly from studies in cells or
mice to define mechanisms operant in humans (5, 11).

Some investigators have suggested that there is a discon-
nection between the responses of mice versus humans, at
least at the transcriptomic level (58, 132), and yet, others have
suggested that as long as experimental studies were carried out
in a manner that reproduces at least some of the features of
clinical reality, animal models can be predictive of human
outcomes (88, 121, 140). However, while animal models of the
human inflammatory response have provided powerful in-
sights into the possible underlying pathologies, these preclin-
ical models are often insufficiently reflective of a particular
human disease to be predictive of clinical success (127, 138).

We have taken a computational modeling approach to the
question of whether or not studies of trauma/hemorrhage in
murine models can be extrapolated to humans. We have
postulated that reasonably conserved principal drivers and
dynamic networks of inflammation in human blunt trauma
patients can be replicated experimentally in mice models as
long as the time frame of the experiment (*24 h) is matched
to a similar time frame in patients. We further hypothesize
that these computationally identified mechanisms, when su-
perimposed upon distinct initial conditions of injury severity,
patient age, and sex, comorbidities that affect inflammation
(e.g., obesity, metabolic syndrome) in turn can lead to highly
diverse inflammatory trajectories, but only a few outcomes
(survival with a low degree of organ dysfunction, survival
with high degree of organ dysfunction, and death).

To test these hypotheses, we have carried out studies in
both mice and human trauma patients. The former studies were
carried out in several strains of mice. The latter studies were
carried out in the form of an *500-patient observation study
of blunt trauma patients (110). Importantly, the early sampling
time points in both mice and humans were similar (multiple
time points within the first 24 h postinjury). In the clinical
study, we followed patients up to 30 days, discharge, or death.
From these patients, three blood samples were obtained within

the first 24 h postinjury, then daily thereafter for the first week,
and then weekly until 30 days (or discharge or death).

A central goal of our studies was to dock our own and
others’ mouse work to our clinical data, and the criteria for
determining this concordance included similarity in dynam-
ics and networks of inflammatory mediators produced over
comparable time courses. Our findings suggest that multiple
key mediators and dynamic networks (3) (Fig. 3) are similar
between mice and humans undergoing trauma/hemorrhage.
Clearly, computational studies alone will not end the debate
regarding the ability to extrapolate from mice to humans with
regard to postinjury inflammation and pathophysiology.
Nonetheless, as we discuss below, we suggest that in silico
tools can help our understanding of—and connection
across—in vitro, in vivo (animal), and clinical studies.

Translational Systems Biology of Inflammation

As mentioned above, therapies for trauma-induced in-
flammation and multiple organ dysfunction are lacking.
Translational research aims to apply discoveries in basic
science into clinical practice to improve healthcare (74). As
an adjunct to translational research in the setting of trauma,
sepsis, and related inflammatory processes, we have sug-
gested the concept of Translational Systems Biology (7, 8,
11, 145, 150, 151). This concept encompasses the use of
computational simulations of clinical trials (4, 36, 79, 147),
computational models of individuals to drive personalized
medicine (31, 84, 116, 136), streamlined usage of experi-
mental murine animal models (146), and rational device
design (106). The cornerstone of Translational Systems
Biology is computational modeling (1, 7, 9, 98, 143, 149,
151), which could allow for overcoming translational chal-
lenges inherent to complex diseases.

The initial step in the development of these computational
models, whether generated using equation- (22, 37, 49, 115,
147, 150, 151), agent- (9, 51, 61, 147, 150, 151), or rule-based

FIG. 3. Dynamic Bayesian network inference suggests that interleukin (IL)-6 is regulated by monocyte chemotactic
protein 1 (MCP-1) and monokine induced by gamma interferon (MIG) following trauma/hemorrhage in both mice
and humans. Plasma inflammatory mediators were assessed over 0–24 h postinjury in hypotensive blunt trauma patients
(A) or 0–5 h postinjury in C57Bl/6 mice (B) by Luminex�. Dynamic Bayesian network inference was carried out as
described previously (3, 18, 19, 50, 158). Red: chemokines. Green: pro-inflammatory cytokine. Blue: anti-inflammatory
cytokine. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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(52, 64) computational techniques (see below), involves
integrating literature-derived information after a thorough
evaluation/survey to determine a consensus on well-vetted
mechanisms of inflammation. Thus, Translational Systems
Biology involves the use of dynamic mathematical model-
ing based on mechanistic information generated in basic
science research to simulate higher-level behaviors at the
organ and organism level, thus affecting a means of trans-
lating reductionist experimental data to the level of clini-
cally relevant phenomena.

Computational Models of Inflammation

Computational biology approaches used for the study of
inflammation in trauma or sepsis span a broad range of
techniques and can be categorized roughly into correlative
(data-driven) or causative (mechanistic) approaches, with
focus on either learning basic principles of system organiza-
tion and function (67, 76, 95) or building predictive compu-
tational models (17, 95). Although there is an overlap between
these areas, most efforts at elucidating biological mechanisms
from high-dimensional data have traditionally focused on
particular points along this spectrum of computational ap-
proaches. We have suggested that gleaning translationally
relevant insights into the inflammatory response and its in-
terconnected (patho)physiology will require the successful
navigation of this spectrum in a logical progression from data
to models to understanding and prediction (11).

Data-driven mathematical models

Correlative, data-driven modeling approaches include re-
gression techniques that build models predictive within the
conditions of the data they were trained on (66). Although
these methods do not provide detailed mechanistic insight,
they can be used to understand abstract features of the re-
sponse, such as the presence of nonlinearities and the order of
the response. The main drawback of this class of models is
that they often lack mechanistic insight and can be overfit to
the data on which they were trained.

We and others have leveraged data-driven modeling
methods to (i) avoid possible bias in selection of variables;
(ii) discern principal drivers, key nodes, and positive/nega-
tive feedback; and (iii) facilitate the rapid analysis of com-
plex, dynamic, multidimensional datasets with the ultimate
goal of generating predictive mechanistic models (11, 18,
145). We carried out an iterative process of evidence-based
modeling (146, 148), consisting of biomarker assay, data
analysis/data-driven modeling to discern main drivers of a
given inflammatory response (67), literature mining to link
these principal drivers based on well-vetted and likely
mechanisms, calibration to the original data, and then vali-
dation using data separate from the calibration data.

With regard to data-driven modeling, various methods
such as principal component analysis (PCA) (97, 107, 116)
and dynamic Bayesian networks (DyBNs) have been used to
discern principal characteristics of inflammation and dy-
namic networks, respectively, of interaction (3, 19, 50, 97,
110, 158, 161) in multiple inflammatory contexts, including
trauma, sepsis, and liver failure. PCA can reduce a high-
dimensional dataset into a few principal components that
account for much of the observed variance in the data. When
applied to time series data, the variables (gene transcripts/

protein levels/etc.) that constitute these principal compo-
nents may be interpreted as the principal contributors of the
observed response and can give some mechanistic insights
into the underlying process (67).

In the setting of inflammation, correlative approaches such
as PCA may facilitate the development of diagnostics by
analyzing the inflammatory mediator milieu in the blood,
resulting from systemic spillover of local inflammation, to
identify the health state of individuals and possibly inform
patient-specific interventions (98). While these methods
correlate gene transcript/protein levels with the phenotype
and can suggest relevant molecular players involved in a
given inflammatory process, these methods do not provide
much information about how the gene transcripts/proteins
interact with each other (67).

To better discern organizational aspects of interacting net-
works of mediators, such as coregulation or autoinduction, a
variety of methods have been developed. Hierarchical clus-
tering and Bayesian methods use high-throughput genomic or
proteomic data of several time points and/or conditions to
correlate gene expression patterns with function and infer
regulatory networks of correlated genes. Several develop-
ments in these methods over the last two decades have yielded
more informative networks that can be more easily translated
into mechanistic models. Among these methods, DyBNs are
particularly suited for inferring directed (causative) networks
of interactions based on the probabilistic measure of how well
the network can explain observed data. DyBNs can be sup-
plemented by additional experimental evidence and expert
knowledge to hypothesize mechanistic models (Fig. 4).

Mechanistic mathematical models

Mechanistic computational models, which are based on
causative interactions, are derived from more detailed bio-
logical and physical descriptions of a system and have a rich
set of tools for both analysis and simulation. These models
are a core component of Translational Systems Biology and
are a class of models in which the (biological) mechanism is
abstracted in some manner, leading to insights regarding the
way that component pieces interact to form a larger whole
(whose properties are usually difficult to infer from the pieces
themselves). This class of models is typically also known as
dynamic mathematical models because the processes are
represented in a way that aims to reproduce the changes in
the real-world systems as a function of time.

The primary methods of dynamic mathematical modeling
used in translational systems biology that work in acute in-
flammation are agent-based modeling (ABM) and equation-
based modeling (EBM) (13, 14, 80). ABM consists of viewing
a system as an aggregation of components (agents), which can
be classified into populations or agent classes based on similar
intrinsic rules of behavior (51). While a particular population
of agents will have the same rules for behavior, the behavior of
the individual agents is heterogeneous due to agents im-
plementing their rules based on local conditions that may differ
considerably (51). EBM approach begins with assigning var-
iables to various quantities that evolve over time (such as
populations of cells or levels of measured mediators) and
writing functions or differential equations that describe how
those variables change over time (150). The primary EBM
used in the inflammation modeling is ordinary differential
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equation (ODE) (81). In the prominent case of ODEs, the
equations are linked to capture the dynamics of the system
using time as the sole independent variable (150).

In addition, rule-based models (e.g., BioNetGen) have
been used to model inflammatory signaling (7), and Boolean
models have been used to study T-cell differentiation and
signaling (152). Moreover, mechanistic modeling studies
using ODEs, ABMs, and rule-based models have served as a
platform for prediction of inflammatory mechanisms and
outcomes (9, 145, 151). Table 1 summarizes the main dif-
ferences between ODE and ABM models.

The limitation of ABM is that it is not a direct inferable
relationship between the agent rules and the system’s be-
havior, so it can be very difficult to calibrate in a quantitative

way (147). ODEs, on the other hand, have limitations as they
are completely deterministic with respect to their behavior,
given a certain set of initial conditions (128). Increasing
evidence of stochastic behavior in critical biological pro-
cesses, such as gene regulation and cellular behavior, points
to the possible need to account for stochasticity in mathe-
matical models (128).

In addition, ODEs require the assumption that spatial as-
pects can validly be ignored, which allows for mean field ap-
proximations and mass action kinetics rather than partial
differential equations (150). There is growing concern that the
crowded environment and spatial architecture within cells, and
at a higher level in tissues and organs, might violate these
assumptions to a point where ODEs are no longer valid (128).

FIG. 4. Overview of workflow for integrating data-driven and mechanistic modeling. Multiplexed time course data
are measured and causal interactions are inferred by dynamic Bayesian networks (DyBNs). Inferred network topology forms
the basis of mechanistic equation-based models that can be simulated to compare with experimental/clinical data, suggest
diagnostic initial conditions, and analyzed and validated with further experiments. Along this path, more focused hypotheses
are generated, from associating dynamic patterns of inflammatory mediators with phenotype to hypothesizing functional
roles for particular interactions in the inflammatory network. To see this illustration in color, the reader is referred to the
web version of this article at www.liebertpub.com/ars

Table 1. Summary of Main Differences Between Ordinary Differential Equations

and Agent-Based Models

Ordinary differential equation Agent-based Model

Highly aggregate (makes an abstraction from multiple
events and individuals)

Highly disaggregate (based on actions of individual agents
and their interactions with other agents)

Broad boundary Narrow boundary
Perfect mixing assumption Heterogeneity in agent attributes
Small number of parameters Large number of parameters
Computationally efficient Computationally intensive
Continuous time Discrete time
Does not capture spatial dynamics or stochastic effects Captures spatial dynamics or stochastic effects
Evaluation of what-if scenarios Observing patterns of emerging behavior
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While we wish to navigate through the process of data to
data-driven model to mechanistic model to prediction and
understanding of the innate immune response, we seek to put
it in the perspective of translational applications with a focus
on clinical and preclinical settings. Both data-driven and
mechanistic modeling have helped us link data to the
mechanism (116), link in vitro studies to clinical biomarkers
(161), and discern novel interactions among biomarkers
based on comparisons of multiple clinical datasets (158).
Below, we discuss the response to injury and the insights that
we have gained from these computational approaches.

From Injury to Initial Decision of Inflammatory Fate

Table 2 summarizes the main inflammatory mediators that
propagate the inflammatory and immune responses to injury
in mice and humans. These mediators include pathogen-
associated molecular patterns (PAMPs), DAMPs, chemo-
kines, cytokines, and nitric oxide (and related redox species).

PAMPs and DAMPs

The inflammatory response following trauma comprises
various systems of the human body, which are cross-linked
with each other within a highly complex network of inflam-
mation driven by numerous inflammatory mediators. There is
evidence that the immune system has evolved to recognize
both key molecular signatures of (dangerous) pathogens (68,
93, 94) and endogenous signals that originate from stressed,
injured, or necrotic cells, signifying danger to the host (89).
Initially, it was believed that necrotic cells and not apoptotic
cells are a source for DAMPs. However, it became evident
that DAMPs can also be released during a specific modality
of programmed cell death, referred to as immunogenic apo-
ptosis (55, 119, 123).

DAMPs share structural and functional similarities with
exogenous, conserved, microbial surface structures released
from invading microorganisms, so-called PAMPs. These
PAMPs, like DAMPs, are recognized by a set of receptors,
termed pattern-recognition receptors (2, 69, 91, 133, 154),
which include the Toll-like receptors and NOD-like receptors
(2, 24, 134). However, this definition of DAMPs is not always
used consistently, and sometimes endogenous alarmins and
exogenous PAMPs are collectively classified as DAMPs (26).

In the context of computational modeling of injury-induced
inflammation, we have focused much of our mechanistic
modeling work on the positive feedback loop of inflammation
driving damage or dysfunction (at the cellular, tissue, organ,
and whole-organism levels), which in turn stimulates further
inflammation (150). In this context, our overarching hypoth-
esis is that DAMPs stimulate and propagate inflammation in
both infectious and sterile inflammatory settings using simi-
lar signaling pathways (90, 99, 150) and act as integrators of
the inflammatory response and surrogates for an individu-
al’s health status.

Mechanistic models developed by our group integrate both
PAMPs and DAMPs to describe and predict features of acute
inflammation, such as priming, desensitization/tolerance,
nonlinear dose effects and interactions between trauma and
hemorrhage, individual-specific differences in inflammatory
responses, the impact of probiotics on local and systemic
inflammation in the setting of necrotizing enterocolitis, and
the effects of aging on the inflammatory response (15, 16, 23,

35, 36, 39, 41, 79–81, 109, 116, 125, 126, 142). As we de-
scribe in the following section, this view of DAMPs as pos-
itive feedback elements has become more nuanced and
integrated with a chemokine-centered inflammatory archi-
tecture (Fig. 5).

Chemokines

The migration of immune cells into and through tissues is
coordinated by chemokines, which are thought to act early
following injury or infection. Chemokines are generally
considered redundant in their actions. However, an emerging,
but not yet fully accepted, notion with regard to early in-
flammatory fate decision involves a nuanced and central role
for chemokines induced as an immediate consequence of cell
stress and damage. While chemokines have generally been
considered to be redundant in their strictly proinflammatory
actions (20, 33), some investigators have hypothesized that
different polymorphonuclear neutrophil (PMN) subsets—
including those with anti-inflammatory activity—are re-
cruited to sites of injury/inflammation and exhibit different
profiles of chemokine and cytokine expression (77).

Although PMNs are critical to host defense against bac-
terial infection postinjury, pathologic PMN hyperactivity is
also implicated in adult respiratory distress syndrome and
multiple organ failure (27, 29, 44). Early studies attributed
this PMN priming to plasma levels of the CXC chemokine
interleukin (IL)-8 through activation of PMN CXC receptors
following injury, which may influence the clinical course of
trauma patients (30, 48).

Recent studies from our group support this latter notion.
Analysis of dynamic networks of inflammation based on
multiple experimental and clinical systems (as shown sche-
matically in Fig. 4) suggests that the chemokines, monokine
induced by gamma interferon (MIG), monocyte chemotactic
protein 1 (MCP-1), and interferon gamma-induced protein 10
(IP-10), form a core control structure—which we have termed a
chemokine switch.

Essentially, we hypothesized a three-way switch—much
like an electrical three-way switch—comprising the chemo-
kines, MCP-1, MIG, and IP-10. We hypothesize that de-
pending on the chemokine whose levels predominate in any
given patient at the time of (or very shortly following) injury,
this switching architecture drives the production of cyto-
kines, such as IL-6 and IL-10 (19, 158) (Fig. 5). Indeed, a key
aspect of the chemokine switch architecture exhibits this
feature of intertwined responses since the activation of this
chemokine network appears simultaneous in various aspects.

Multiple lines of evidence suggest the presence and im-
portance of the chemokine switch. Our initial attempt at de-
fining dynamic networks of inflammatory mediators induced
by trauma/hemorrhage in mice showed that MIG was the
dominant early chemokine in the hemorrhage group, while IP-
10 was the dominant chemokine in the control (surgical can-
nulation) group (97). In recently published studies by our
group (Fig. 3), we utilized DyBN inference to analyze time
course data from circulating inflammatory mediators obtained
within the first 24 h posthemorrhage in blunt trauma patients
(3) (Fig. 3A) versus mice (Fig. 3B). We noted that the che-
mokines, MIG, MCP-1, and IP-10, appeared to play central
coordinating roles in the inflammatory response postinjury/
hemorrhage, with IL-6 being an output of these networks.
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Table 2. Summary of Some Known Inflammatory Mediators, Damage-Associated Molecular

Patterns, and Reactive Oxygen Species in Mice and Humans

Inflammatory mediators Mouse Human Major cellular/tissue source

Cytokines
IL-1a x x Monocyte/macrophages, neutrophils, epithelial cells,

endothelial cells, fibroblasts, and dendritic cells
IL-1b x x Monocyte/macrophages, neutrophils, epithelial cells,

endothelial cells, fibroblasts, and dendritic cells
IL-2 x x Th1 cells
IL-3 x x Activated T helper cells, mast cells, NK cells,

endothelium, and eosinophils
IL-4 x x Th2 cells, mast cells, macrophages, and basophils
IL-5 x x Th2 cells, mast cells, and eosinophils
IL-6 x x Monocyte/macrophages, Th2, B cells, fibroblasts,

and epithelial and endothelial cells
IL-7 x x Thymus and bone marrow stromal cells, dendritic

cells, epithelial cells, and hepatocytes
IL-9 x x Th2 cells
IL-10 x x Th2 cells, B cells, and monocytes
IL-12 p40 x x Macrophages, B cells, and Langerhans cells
IL-12 p70 x x Macrophages, B cells, and Langerhans cells
IL-13 x x Th2 cells, mast cells, and NK cells
IL-15 x x Epithelial cells and monocytes
IL-17A x x Neutrophils, mast cells, activated memory T cells,

and cd T cells
IL-21 x x Activated T helper cells and NK cells
IL-22 x x Th17 cells
IL-23 x x Macrophages and dendritic cells
IL-24 x x Melanocytes, keratinocytes, monocytes, and T cells
IL-25/17E x x T cells, mast cells, eosinophils, macrophages, and

mucosal epithelial cells
IL-26 x x T cells and monocytes
IL-27 x x Macrophages and dendritic cells
IL-33 x x Th2 cells, mast cells, and group 2 innate lymphocytes
IFN-a x x Macrophages, fibroblasts, lymphoblastoid cells
IFN-c x x Th1 cells, NK cells, and dendritic cells
TNF-a x x Monocyte/macrophages, T cells, and fibroblasts
GM-CSF x x T cells, fibroblasts, endothelial cells, and macrophages
TGF-b1 x x Neutrophils and macrophages

Chemokines
RANTES (CCL5) x x T cells and epithelial cells
MCP-1 (CCL2) x x Monocyte/macrophages, dendritic cells (immature),

memory T cells, fibroblasts, endothelial cells,
hepatocytes, and epithelial cells

MIP-1a (CCL3) x x Monocytes, fibroblasts, and activated T cells
MIP-1b (CCL4) x x Monocytes, fibroblasts, and activated T cells
Eotaxin (CCL11) x x Th2, eosinophils, basophils, and mast cells
KC (CXCL1) x – Neutrophils, monocytes, microvascular endothelium
IL-8 (CXCL8) – x Neutrophils, monocyte/macrophages, fibroblasts,

epithelial cells, and endothelial cells
IP-10 (CXCL10) x x Th1, mast cells, monocytes, endothelial cells,

fibroblasts, and mesangial cells
MIG (CXCL9) x x Th1, mast cells, and mesangial cells
IL-8RA (CXCR1) – x Neutrophils
PPBP (CXCL7) – x Platelets
I-TAC (CXCL11) – x Leucocytes, pancreas, liver, thymus, spleen, and lung
MCP-4 (CCL13) – x Monocytes, T cells, eosinophils, and basophils
HCC-1 (CCL14) – x Spleen, bone marrow, liver, muscle, and intestine
MIP-5 (CCL15) – x Liver, small intestine, colon, and macrophages of lung
PARC (CCL18) – x Monocyte/macrophages and dendritic cells
MPIF-1 (CCL23) – x Lung, liver, bone marrow, and placenta
MRP-1 (CCL6) x – Neutrophil and macrophages
MIP-1c (CCL9) x – Follicle-associated epithelium

(continued)
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We have seen similar networks when comparing blunt
trauma patients without spinal cord injury with patients with
spinal cord injury. In that setting, IP-10 was a major node that
distinguished spinal cord injury patients from blunt trauma
patients. Moreover, we inferred that IP-10 drove the produc-
tion of the anti-inflammatory cytokine IL-10 in these patients
(158). Separately, using mutliple data-driven analyses, in-
cluding PCA and DyBN, we demonstrated that MCP-1 is a
key driver of hepatic inflammation in vitro and a biomarker of
clinical outcomes in blunt trauma, likely by controlling IL-6
production (161).

The hypothetical mutually antagonistic and self-reinforcing
regulatory motif characteristic of our chemokine switching
model was used to generate a mechanistic computational

model, in which each chemokine upregulated its own ex-
pression while downregulating the expression of the other two
in a manner dependent on injury severity. This model pre-
dicted key qualitative features of systemic inflammation in
patient subgroups as well as the different patterns of hospital
discharge of moderately versus severely injured patients.

Switching behavior is prevalent throughout biology. Re-
cently, a similar two-way switch motif was described by
other investigators in the control of Th17 differentiation,
leading to the production of either Th17-promoting or T
regulatory cell (Treg)-promoting gene activation (157). Thus,
we suggest that the balance of early chemokine production
may regulate the production of key inflammatory mediators
such as IL-6 and possibly also clinical outcomes.

Table 2. (Continued)

Inflammatory mediators Mouse Human Major cellular/tissue source

Lungkine (CXCL15) x – Epithelial cells of lung, mucosa of gastrointestinal
and urogenital tract

MCP-5 (CCL12) x – Lymph node and thymus

DAMPs Derived from many sources within the cell, including
the plasma membrane, nucleus, cytosol, endoplasmic
reticulum, and mitochondria

HMGB1 x x
Heat shock proteins x x
Hyaluronan x x
Heparan sulfate x x
Uric acid x x
Galectins x x
Thioredoxin x x
Adenosine x x
S100 x x
DNA x x
PAMPs Molecules associated with groups of pathogens that

are recognized by cells of the innate immune system
Lipopolysaccharide Gram-negative bacteria
Diaminopimelic acid
Porins
Peptidoglycan Gram-positive bacteria
Lipoteichoic acid
Lipopeptide
Lipoarabinomannan
Chitin Fungi
b Glucans
Zymosan
Double- and single-stranded RNA Viruses
Hemagglutinin
CpG unmethylated DNA Bacteria, viruses, protozoa
Flagellin Flagellated bacteria
GPI-mucin Protozoa
Glycoinositol phospholipids

Reactive oxygen species Chemically reactive molecules formed as a natural
by-product of the normal metabolism of oxygen
and have important roles in cell signaling, homeostasis,
and immune regulation

Peroxides x x
Superoxide x x
Hydroxyl radical x x
Singlet oxygen x x

Mediators/molecules that are present in either mice or humans are signified by (x), whereas those that are absent are signified by (–).
DAMP, damage-associated molecular pattern; IL, interleukin; IP-10, interferon gamma-induced protein 10; MCP-1, monocyte

chemotactic protein 1; MIG, monokine induced by gamma interferon; NK, natural killer; PAMP, pathogen-associated molecular pattern;
TGF-b1, transforming growth factor beta 1; TNF-a, tumor necrosis factor alpha.
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Nitric oxide

Nitric oxide is the metabolic by-product of the conversion
of L-arginine to L-citrulline by the activity of nitric oxide
synthase (NOS). To date, three isoforms of NOS have been
identified: neuronal NOS (nNOS or NOS1), endothelial NOS
(eNOS or NOS3), and inducible NOS (iNOS or NOS2),
which is expressed only in response to certain inflammatory
stimuli such as bacterial products and cytokines (100, 103). It
has been suggested that low amounts of NO derived from
eNOS and nNOS are generally beneficial, whereas the large
quantity produced by iNOS is generally harmful and contrib-
utes to the injury observed in different experimental models of
inflammation. However, other investigators showed that in-
hibition of iNOS may exacerbate injury in certain situations,
suggesting that iNOS-derived NO may be protective in the
setting of acute inflammation (62).

In view of this, NO seems to have paradoxical actions in
biological systems. One mechanism by which NO may
modulate the inflammatory process is via its interaction with
the Rel/nuclear transcription factor jB family of transcrip-
tion factors (82).

In vivo metabolism of NO results in the formation of nitrate
and nitrite as stable end products, along with a multitude of
other reactive nitrogen species such as S-nitrosothiols; al-
terations in the plasma concentrations of these stable end
products have been demonstrated in critically ill patients (63,
75, 120). Trauma patients were observed to have plasma
nitrate levels below the normal range. Interestingly, even
when trauma patients became septic, they were apparently
still unable to upregulate NO production (120). During shock
and sepsis, superoxide is formed. This cytotoxic compound
can combine with NO to form peroxynitrite, which is difficult
to measure in plasma (78). When peroxynitrite combines

with tyrosine residues, it forms nitrotyrosine, which is a de-
tectable marker in human plasma and urine in various in-
flammatory conditions (65). Nitrotyrosine has been reported
to be present in several forms of shock (139) and in patients
with acute lung injury post-trauma (141).

The complex biological chemistry of NO has been ex-
amined in various mathematical modeling contexts. Com-
putational mechanistic models were recently utilized to
evaluate ratios of kinetic expressions for interactions be-
tween NO and superoxide based on a number of simplifying
cases to gain insight into the protective role of superoxide
dismutase and predict the relative rate of peroxynitrite and
hydrogen peroxide formation in the setting of acute in-
flammation (85). This mechanistic model provided insights
into complex interactions between reactive oxygen and ni-
trogen species in blood and tissue. The model inferred that
accelerating the removal of oxygen molecules could prevent
oxidation of biological targets and that superoxide dis-
mutase should improve the bioavailability of NO, restrict
peroxynitrite formation, and reduce its potentially harmful
effects. We have also incorporated the impact of NO on the
process of apoptosis in hepatocytes, suggesting that reactive
NO species can impact various interacting and competing
pathways (21).

Furthermore, multiple mechanistic models from our group
have incorporated both eNOS- and iNOS-derived NO in the
context of multiple other inflammatory mechanisms, ulti-
mately affecting blood pressure and whole-organism health
status (31, 35, 36, 79, 81, 109, 116, 125, 142). We suggest that
these insights provide the potential to drive a novel genera-
tion of diagnostic and therapeutic modalities.

Innate Immune and T-Cell-Mediated Pathways
in Trauma-Induced Acute Inflammation

Perturbations of both the innate immune cells (neutrophils,
mast cells, monocytes, and macrophages) and lymphoid cells
have been described in both injured patients and animals (53,
101, 135, 155) undergoing experimental injury. However, the
relative contributions of each of these cell types to SIRS,
multiple organ dysfunction, and death postinjury remain
speculative. In the classical view, the innate immune system
is responsible for the initial inflammatory reaction to trau-
matic or thermal injury, and the adaptive immune system is
activated only by antigen presentation and costimulation. A
more current view suggests an intertwined dynamic activa-
tion of both typical innate immune cells and lymphoid cells
directly following trauma (Fig. 6). This interaction is needed
to ultimately drive specific, focused immune responses that
better allow innate immune cells to augment antimicrobial
immunity and resolve inflammation.

Antigen-presenting cells (APCs) provide one direct link
between innate and adaptive immune cell activation during
infections and vaccinations. On activation by APCs, naive
CD4+ T cells differentiate into at least four T helper subsets:
Th1, characterized by production of IFN-c, which mediates
cellular immunity; Th2 cells that synthesize IL-4, IL-5, IL-
10, and IL-13 and promote humoral immunity and allergic
responses; Th17 cells that produce IL-17, IL-21, and IL-22,
which are implicated in host defense and autoimmunity (46,
47, 102); and Tregs (131). These CD4+ T-cell subsets pro-
duce cytokines, which then provide activating signals to cells

FIG. 5. A hypothetical chemokine-switching network.
In this hypothetical framework based on protein-level (Lu-
minex) data and DyBN inference from multiple studies in
mice and humans, trauma stimulates the release of three key
chemokines (interferon gamma-induced protein 10 [IP-10],
MIG, and MCP-1). We hypothesize that MIG drives low-
level adaptive production of IL-6, while MCP-1 drives high-
level detrimental production of IL-6. We further hypothe-
size that IP-10 drives IL-10 production, which is beneficial
within a range, but detrimental when overproduced. To see
this illustration in color, the reader is referred to the web
version of this article at www.liebertpub.com/ars
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of the innate immune system, such as neutrophils, macro-
phages, and natural killer cells.

It is generally agreed that trauma suppresses CD4+ T-cell
responses (54, 83, 124, 159). For example, Th1-type immune
responses have been shown to be reduced markedly follow-
ing trauma in patients and in mouse injury models (42, 73,
104). Trauma can also promote Th2-type immune responses
and T-cell anergy (a tolerance mechanism, in which the
lymphocyte is intrinsically functionally inactivated following
an antigen encounter, but remains alive for an extended pe-
riod of time in a hyporesponsive state) in human trauma
patients and in mice (87, 118). These observations underlie
the idea that major injury triggers the development of a
counter-inflammatory adaptive immune response that may
help control excessive innate immune inflammatory reac-
tivity.

We and others (86, 111) have focused significant efforts on
identifying how trauma might suppress CD4+ T-cell activa-
tion and push the adaptive immune response toward a
counter-inflammatory phenotype. Early studies suggested
that the counter-inflammatory behavior of that adaptive im-
mune system may be a result of a shift toward high Th2 and
low Th1 responses in mice and in patients.

Other investigators (42) argued that as Th1- and Th2-type
immune responses were found in trauma patients, T-cell
anergy may be another mechanism contributing to suppressed
CD4+ T-cell responses following trauma. However, we now
propose that trauma-induced changes in adaptive immune re-
sponses might occur to protect the injured host from DAMP-
induced innate responses and to prevent possible self-antigen
reactivity to injury antigens released by tissue damage. In
addition, CD4+ Th2 cells can produce typical anti-
inflammatory cytokines such as IL-10. Therefore, a persistent
Th2 response predisposes trauma and septic patients to sub-
sequent infection.

To help define the potential role of T-cell subsets in trau-
ma, we created a mechanistic, differential equation-based
model of acute inflammation, in which, in addition to the
innate components previously considered in our models of
acute inflammation (35, 81, 125, 142), we included dendritic
cells as well as Th1 and Th2 cells in this augmented model
(40). The model was partially calibrated to circulating levels
of tumor necrosis factor alpha (TNF-a), IL-6, IL-10, and
NO2

-/NO3
- over a 24-h time course from experimental data

of mice subjected to endotoxemia, surgical trauma, or sur-
gical trauma+hemorrhagic shock. The model reproduced the

FIG. 6. A systems view of innate immune and T-cell-mediated acute inflammation. Trauma leads to early release of
DAMPs, stimulating either proinflammatory (M1 macrophages, neutrophils, cytokines such as TNF-a) or anti-inflammatory
(M2 macrophages, cytokines such as IL-10) pathways via the early production of defined chemokine subsets. This leads to
either the resolution of inflammation via chemokines such as IP-10 or exacerbated inflammation via chemokines such as
MIG and MCP-1 in concert with secondary release of DAMPs. In the setting of post-trauma infection, proinflammatory
agents (e.g., TNF-a) cause further inflammation and tissue damage/dysfunction. When the positive feedback loop of
inflammation/damage/inflammation (indicated in red) exceeds certain thresholds (tipping points), T-cell-mediated
responses are initiated via activation of dendritic cells, NK, NK-T cells, cytotoxic T lymphocytes (CTL), and innate
lymphoid cells (ILC). T-cell-mediated responses include early (min) cd T cells and later (4–12 h) Th17 cells. This response
either resolves via IL-10, with relatively low systemic spillover of mediators and little organ damage, or propagates in a
feed-forward manner, with worsening of organ damage and the attendant elevation of IL-6. Thus, chemokines such as IP-10,
MCP-1, and MIG, as well as cytokines such as IL-6 and IL-10 (indicated in blue), can be both biomarkers and potential
therapeutic targets under the appropriate circumstances. TNF-a, tumor necrosis factor alpha. To see this illustration in color,
the reader is referred to the web version of this article at www.liebertpub.com/ars
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kinetics of cytokine and NO production following en-
dotoxemia, surgical trauma, or surgery+hemorrhage over
24 h (Fig. 7).

Importantly, to simulate these accurate time courses of
inflammation under these diverse inflammatory challenges,
the model invoked differential Th1 versus Th2 activation in
endotoxemia versus surgical trauma/hemorrhagic shock.
Figure 7 shows the Th1 and Th2 time courses produced by the
model simulations for each of these three experimental sce-
narios, respectively. This figure illustrates that all the sce-
narios are predicted to elicit both Th1 and Th2 responses. In
line with the general dogma, the model predicted an initial
Th1 response, followed by a Th2 response, with some overlap
in the setting of experimental endotoxemia. However, the

mathematical model predicted that in trauma–hemorrhage,
both Th1 and Th2 responses are reduced compared with
endotoxemia, and that the Th1 and Th2 responses are initi-
ated early postinjury and evolve simultaneously. These re-
sults support the concept of an early T-cell-mediated
response as well as a dominance of a Th2 response postinjury.

From Data to Knowledge in Acute Inflammation:
A Computational Modeling Framework

As can be readily discerned from the foregoing discussion,
a large number of cells and the mediators they produce are
induced following traumatic injury. The complexity of this
response can be daunting, and it may be argued that this has

FIG. 7. Predicted dynamics of Th1 and Th2 cells in mouse models of acute inflammation. A differential equation
model of acute inflammation was modified to include DC, Th1 cells, and Th2 cells. The model was partially calibrated
against trajectories of TNF-a, IL-6, IL-10, and NO2

-/NO3
- obtained from C57Bl/6 mice subjected to endotoxemia (A),

surgical cannulation trauma (B), or surgical cannulation+hemorrhagic shock (C). Predicted trajectories of Th1 and Th2 cells
are shown for the three inflammatory scenarios. To see this illustration in color, the reader is referred to the web version of
this article at www.liebertpub.com/ars

FIG. 8. From data to models: a roadmap. Cells respond to cues regarding injury by elaborating chemokines that form
defined networks, which can be detected using dynamic network analysis techniques. As the presence of signals and
networks persists, early regulatory cytokines such as TNF-a and IL-1b begin to be secreted. These mediators are present at
low levels, often with high variance, and their presence and effect may be inferred using techniques such as principal
component analysis (PCA). Dynamic chemokine networks and initial cytokines together overcome thresholds of activation
for later innate and lymphoid mediators such as IL-4 and IL-13, which would then be significantly elevated as defined by
standard statistical analyses. To see this illustration in color, the reader is referred to the web version of this article at
www.liebertpub.com/ars
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presented a major barrier to clinical translation. We have
suggested that appropriately obtained data on the dynam-
ics of inflammation in cells, experimental murine animal
models, and patients could be integrated via data-driven
modeling; that key inferences from these modeling ap-
proaches could be encoded into explicitly mechanistic com-
putational models; and that those computational models
could be used to make testable predictions regarding emer-
gent properties that would not otherwise be readily discerned
from the data or from standard statistical analyses (6, 10–12,
18, 98, 108, 144, 145, 151).

We hypothesize that both parenchymal and inflammatory
cells (resident and infiltrating) sense cues regarding injury
and, in response, elaborate chemokines that form defined
networks. In these networks, we hypothesize the presence of
negative feedback among chemokines that results in their
cross-regulation, along with DAMP-mediated positive feed-
back that amplifies the expression of a given chemokine. As
the presence of signals regarding the original stress/injury
persists, along with the development and actions of these
chemokine/DAMP networks, early regulatory cytokines such
as IL-6, trasforming growth factor beta 1 (TGF-b1), TNF-a,
and IL-1b begin to be secreted. Interestingly, some of these
mediators (e.g., TNF-a and IL-1b) are present at low levels,
often with high variance, and thus may be considered insig-
nificant using standard statistical analyses. However, their
presence and effect may be inferred using computational
techniques such as PCA.

Indeed, IL-1b was identified as a principal mediator in a
recent study from our group on endotoxemia in swine (116)
as well as in trauma patients (unpublished observations). We
hypothesize that the dynamic chemokine networks and initial
cytokines together overcome thresholds of activation for later
innate and lymphoid mediators such as IL-4 and IL-13. These
mediators are usually sufficiently significantly elevated as
defined by typical statistical analyses and thus are typically
defined as biomarkers of elevated inflammation. We and
others have suggested that by using techniques such as DyBN
and PCA, other mediators or networks thereof can be con-
sidered novel biomarkers (11, 12, 145).

As summarized conceptually in Figure 8, this process in-
volves obtaining highly granular, time series data on relevant
inflammatory mediators or biomarkers (at any level from the
transcriptomic through the ultimate metabolic response),
discerning dynamic networks of interaction using tools such
as DyBN (possibly with PCA as an initial filter) (130), and
then focusing on central nodes (e.g., nodes that exhibit self-
feedback and connectivity to other nodes) as potential novel
biomarkers or therapeutic targets.

In conclusion, although we have learned much from combined
in vitro, in vivo, clinical, and in silico studies, there is much more
yet to be elucidated regarding the acute inflammatory response to
injury and infection. We hope that the methodology and ap-
proach we have described will help drive a rational frame-
work for gaining clinically actionable knowledge from data.
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