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Animal behaviour

Electric shock causes physiological stress
responses in shore crabs, consistent
with prediction of pain

Robert W. Elwood and Laura Adams

School of Biological Sciences, Queen’s University, Belfast BT9 7BL, UK

Animal pain is defined by a series of expectations or criteria, one of which is that

there should be a physiological stress response associated with noxious stimuli.

While crustacean stress responses have been demonstrated they are typically

preceded by escape behaviour and thus the physiological change might be

attributed to the behaviour rather than a pain experience. We found higher

levels of stress as measured by lactate in shore crabs exposed to brief electric

shock than non-shocked controls. However, shocked crabs showed more vigor-

ous behaviour than controls. We then matched crabs with the same level of

behaviour and still found that shocked crabs had stronger stress response com-

pared with controls. The finding of the stress response, coupled with previous

findings of long-term motivational change and avoidance learning, fulfils the

criteria expected of a pain experience.
1. Introduction
In the UK, vertebrates are protected in scientific investigations and this has recently

been extended to cephalopod molluscs (Directive 2010/63/EU). However, the

vast bulk of invertebrates are considered not to experience pain and receive no pro-

tection, their responses regarded as purely nociceptive reflexes. Indeed, a recent

review dismisses the idea that any invertebrates (or fish) experience pain because

they lack the specific brain areas implicated in human pain experience [1]. How-

ever, this reasoning ignores the different neuronal structures in widely divergent

taxa that have the same function, e.g. visual processing occurs in very different

brains of vertebrates and invertebrates [2,3]. Nevertheless, we cannot determine

what any animal specifically feels when exposed to noxious stimuli [4]. Thus, to

guide investigations, recent definitions of animal pain include criteria that

should be fulfilled before we accept possible pain experience (e.g. [5]). In particu-

lar, we expect activities that go beyond mere reflex response and instead indicate

central processing and long-term motivational change that protects the animal

from further damage [3,5], and physiological changes in response to aversive

stimuli [5,6]. Cephalopods fulfil such criteria, showing complex and long-

lasting motivational change accompanied by physiological changes after tissue

damage and increased wariness against subsequent predatory attempts [7–10].

Importantly, these changes confer an advantage to the animals’ survival [10].

Here we focus on decapod crustaceans, which also show responses consistent

with the idea of pain. For example, shore crabs rapidly learn to avoid particular

locations associated with electric shock [11]. Hermit crabs shocked briefly

within their gastropod shell show a marked prolonged increase in their motiv-

ation to get a new shell [12,13]. Hermit crabs [12] subject to shock on the

abdomen, and glass prawns that have acetic acid or sodium hydroxide applied

to an antenna [14] show prolonged grooming and rubbing of the specific afflicted

abdominal area or antenna, which in the latter is reduced by local anaesthetic.

Hermit crabs subject to a shock on the abdomen differ in the tendency to abandon

the shell depending on their shell preference, indicating central processing and a

motivational trade-off between retaining a desired shell and shock avoidance [13].
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Figure 1. Means and standard errors of lactate (mmol l21) for shock and
control crabs that showed walking as most active response. (Online version
in colour.)
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Further, crabs that have formalin injected into a cheliped show

shaking of the appendage and prolonged changes in brain and

thoracic ganglion function [15]. Finally, crayfish subject to a

noxious electric field response show a subsequent greater

avoidance of light arms of a dark/light plus maze, which has

been interpreted as anxiety [16].

Thus, decapods show behavioural responses to noxious

stimuli that meet criteria expected for animals that experience

pain [5]. However, we also expect to see physiological changes.

Certainly, stressed decapods show elevated crustacean hyper-

glycaemic hormone (CHH), resulting in elevated glucose

and lactate analogous to the vertebrate stress response [17].

Effective stressors include emersion [17], hypoxia, elevated

temperature, altered salinity and disease [18]. Further, pulling

off a cheliped, in the manner of some commercial fisheries, pro-

duces a rapid elevation of both glucose and lactate in edible

crabs [19]. Also, crayfish repeatedly subject to noxious electric

field over a period of 30 min show elevated glucose [16,20].

However, these two findings may not be due to a pain-like

state because with the appendage removal there is substantial

haemolymph loss and that might cause the stress. Further,

crayfish respond to an electric field with repeated escape ‘tail

flips’ and this prolonged vigorous activity might initiate glu-

cose mobilization. To overcome these problems we compare

animals that vary in the shock they receive but not in haemo-

lymph loss or overt behaviour. We apply electric shock to

some shore crabs and monitor behaviour and lactate levels to

assess if lactate is elevated in shocked animals and if lactate

levels are associated with particular activities during treatment.

We then compare lactate levels of animals that show the same

level of activity.
2. Material and method
European shore crabs (Carcinus maenas; 5–8 cm carapace width)

were collected from Portaferry, Northern Ireland, UK, using

baited pots and transported to Queen’s University, Belfast, UK.

They were housed in plastic tanks (76 � 38 � 17 cm) filled with

aerated seawater to a depth of 5.6–6.5 cm and maintained at a

12 L : 12 D regime. Seaweed (Ascophyllum nodosum) was

provided as shelter.

Each crab (N ¼ 40) was individually transferred to a plastic

tank (34.4 � 11.5 cm) containing a layer of gravel and approxi-

mately 1 cm seawater. Insulated copper wire (0.20 mm diameter),

with the insulation removed from each end was placed around

the proximal joint, where there is no calcification, of each fifth

walking leg. Crabs were randomly assigned to shock (n ¼ 20) or

no-shock (control) (n ¼ 20) groups, decided by a roll of a dice.

The crabs to be shocked then had the other end of each wire

attached to a Grass S9 electric stimulator (West Warwick, RI,

USA). The left and right legs had wires randomly attached to the

positive and negative terminals of the stimulator and, following

Magee & Elwood [11], shock was set to deliver at 10 V and

180 Hz for 200 ms with 10 s intervals for 2 min. The wires for the

control group were not attached to the stimulator but the crabs

were otherwise treated the same.

Behaviour was observed during the 2 min shock or control

period and crabs were categorized into three types, no movement

throughout, walking but no extreme response, and extreme

response, which included animals that attempted to climb the

walls of the tank, showed the threat posture or autotomized a walk-

ing appendage. The number of shocked and non-shocked crabs in

these categories was compared using a x2-contingency test.

We waited for 4 min after treatment to allow for thorough circu-

lation of the haemolymph, before a haemolymph sample was taken
with a syringe inserted into the base of a fifth walking leg and the

lactate level measured using a Lactate pro (Arkray Inc., Arkray

Europe). The data for lactate were not normally distributed and

were transformed (lactateþ 1) log10 and the means compared

using a Student’s t test. We show untransformed means in the figure.
3. Results
Shocked crabs had higher haemolymph lactate than controls

(t38 ¼ 4.97, p , 0.0001). However, the behavioural responses

differed between the two groups with controls only showing

either no movement (N ¼ 6) or walk (N ¼ 14), whereas

shocked crabs showed either walking (N ¼ 16) or the more

extreme responses (N ¼ 4) (x2
2 ¼ 10:13, p ¼ 0.0063). The lac-

tate levels of controls did not differ between those that

walked and remained still (t18 ¼ 0.79, p ¼ 0.42), but for

shocked crabs there was a trend for those that showed the

more extreme responses to have higher lactate than those

that just walked (t18 ¼ 2.06, p ¼ 0.053). Thus, we focused on

crabs that showed walking as their highest activity (non-

shock N ¼ 14, shock N ¼ 16). Those that received shock had

substantially higher levels of lactate than the non-shocked

controls (t28 ¼ 3.71, p , 0.001, figure 1).
4. Discussion
Electric shock as an aversive stimulus is widely used in studies

of animal pain/nociception. The genetic basis of the nociceptor

response to shock has recently been examined in Drosophila
melanogaster [21]. Many identified candidate genes that influ-

ence the nociceptive response affect the mechanosensory

bristles. Thus, it appears that shock triggers mechanoceptors,

which normally respond to tissue damage. Although electric

shock has little ecological relevance to decapods, the same

could be said of almost any animal. Shock induces pain

states in humans although it presumably has played no part

in human evolution. Decapods give up key resources to

avoid shock [13,22] and show rapid avoidance learning [11],

indicating that shock is aversive to these animals.

When we compared all crabs that received electric shock

with all the controls, the former had higher lactate, indicating

that a stress response had been triggered [17,19]. However,

more of the shocked crabs showed active behavioural

responses and this activity could have caused the higher lac-

tate. Indeed, in shocked crabs there was a strong tendency for
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those that showed more extreme responses to have higher lac-

tate than those that just walked. By contrast, in non-shocked

crabs those that walked did not differ in lactate from those

that did not walk, indicating that walking during this short

test did not alter lactate. Nevertheless, we restricted our final

analysis to crabs that showed walking as their most active

response and found that when the behavioural response was

the same the shock nevertheless induced higher lactate. That

is, the elevated lactate is not explained by the behavioural

response and must be a consequence of the shock. The brief

shocks to the base of the legs did not appear to cause substan-

tial muscle contraction, which might have accounted for high

lactate, because the crabs walked normally. The data are thus

consistent with the idea that shock induces a stressful pain-

like state [11,22]. Importantly, this fulfils a key criterion

expected of animals that experience pain [5,6].

Fossat et al. [16] found increased glucose levels in crayfish

repeatedly exposed to an aversive electric field. These animals

showed repeated active tail flick escape responses during the

30-min exposure although the responses declined during this

period [20]. By contrast, shore crabs did not show particularly

energetically demanding behaviour over the much shorter dur-

ation of testing (2 min). That we showed a stress response in

crabs that only showed walking as their most vigorous

response lends support to the crayfish study [20] in concluding

that the stress was induced by the aversive electric field.

The study on crayfish stress/anxiety also noted elevated

serotonin, which seems to be responsible for the marked shift

in risk taking, i.e. entering a brightly lit arm of a plus maze
[16,20]. Serotonin also appears to be involved in the activation

of the CHH stress response and subsequent release of glucose

and increased lactate. Dopamine is also released after aversive

stimuli but its function has yet to be defined [20]. This suggests

a complex physiological stress response, the components of

which presumably serve different functions.

Although these physiological responses are expected

should an animal experience pain [5], they do not prove the

feeling of pain in decapods because absolute proof is not

possible for any animal [4]. Nevertheless, coupled with the

behavioural responses to a variety of aversive stimuli, they

provide evidence of both short- and long-term changes simi-

lar to those changes found in cephalopods and vertebrates.

That is, the criteria suggested to indicate pain in animals [5]

are fulfilled for decapods.
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