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The origin of brains and central nervous systems (CNSs) is thought to have

occurred before the Palaeozoic era 540 Ma. Yet in the absence of tangible evi-

dence, there has been continued debate whether today’s brains and nervous

systems derive from one ancestral origin or whether similarities among them

are due to convergent evolution. With the advent of molecular developmental

genetics and genomics, it has become clear that homology is a concept that

applies not only to morphologies, but also to genes, developmental processes,

as well as to behaviours. Comparative studies in phyla ranging from annelids

and arthropods to mammals are providing evidence that corresponding

developmental genetic mechanisms act not only in dorso–ventral and

anterior–posterior axis specification but also in segmentation, neurogenesis,

axogenesis and eye/photoreceptor cell formation that appear to be conserved

throughout the animal kingdom. These data are supported by recent studies

which identified Mid-Cambrian fossils with preserved soft body parts that pre-

sent segmental arrangements in brains typical of modern arthropods, and

similarly organized brain centres and circuits across phyla that may reflect

genealogical correspondence and control similar behavioural manifestations.

Moreover, congruence between genetic and geological fossil records support

the notion that by the ‘Cambrian explosion’ arthropods and chordates shared

similarities in brain and nervous system organization. However, these simi-

larities are strikingly absent in several sister- and outgroups of arthropods

and chordates which raises several questions, foremost among them: what

kind of natural laws and mechanisms underlie the convergent evolution of

such similarities? And, vice versa: what are the selection pressures and gen-

etic mechanisms underlying the possible loss or reduction of brains and

CNSs in multiple lineages during the course of evolution? These questions

were addressed at a Royal Society meeting to discuss homology and conver-

gence in nervous system evolution. By integrating knowledge ranging from

evolutionary theory and palaeontology to comparative developmental gen-

etics and phylogenomics, the meeting covered disparities in nervous

system origins as well as correspondences of neural circuit organization

and behaviours, all of which allow evidence-based debates for and against

the proposition that the nervous systems and brains of animals might

derive from a common ancestor.
1. Emergence, convergence and correspondences
Among the huge diversity of extant species, the existence of what appear to be

many different kinds of brains and central nervous systems (CNSs) provides not

one but numerous conundrums. One is the possibility, discussed in this issue,

that neurons may have evolved twice independently, and thus that nervous sys-

tems would have separate origins [1]. Such possibilities emphasize an intriguing

landscape of questions and hypotheses punctuated by enormous gaps, in which

our knowledge is still profoundly deficient. We still are not able to determine

whether circuits and pathways in what we define as a brain in one taxon share

common ancestry with circuits and pathways in the brains of distantly related

taxa. Which taxa can be experimentally shown to exhibit commonality both at
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the morphological and genetic levels that would lead to claims

of genealogical correspondence? Which taxa might be com-

prehensively excluded from such commonality? For

example, the recent discovery that the unique organization

of the octopus CNS is a reflection of this taxon’s unique geno-

mic organization, including the observation that Hox genes

play a conserved role in the development of rostral regions

of the brain, would seem to define the CNS of cephalopod

molluscs as wholly distinct from all other taxa [2]. Yet even

the nervous systems of cephalopods are likely to be extreme

examples of evolved divergence from a far simpler ladder-

like arrangement, such as those found in present-day aculi-

feran molluscs where colinearity of Hox gene expression

during development is comparable to that in annelids, arthro-

pods and deuterostomes [3], the nervous systems of which are

linearly ganglionated.

In more general terms, in suggesting homology of brain

and nervous system organization across phyla, one would

have to admit that many taxa would have acquired evolved

reduction, loss or radical modification of ancestral neural

arrangements. The likelihood of such events can be observed

in extant species, for example in tunicates, whose chordate-

like larvae are subject to extensive rearrangements during

metamorphosis to form sessile adults [4]. These events entail

regression of parts of the CNS that are regulated by ERK/

JNK signalling and the complement cascade [5–7]. Thus,

evolved loss, reduction or radical modification of the CNS

can occur during ontogeny of a species, and could thus have

occurred multiple times during the evolution of the nervous

system. A case in point is the selective advantage obtained

by late developmental atrophy in cavefish of the eyes and

optic tecta, conserving what would normally consume 17%

of the resting metabolism of the brain, as it does in related sur-

face fish [8]. However, favouring convergent evolution of the

CNS would seem to be more comfortable because no other

explanation could seem to account for the observed disparity

among extant nervous systems [9]. Yet, opposite views have

also been held, in one form or another, since the middle of

the nineteenth century when early investigators were struck

by similarities of brain organization in arthropods, vertebrates

and worms.

Felix Dujardin, for example, publishing in 1850, argued that

the folds of the honeybee’s mushroom bodies correspond to the

gyri and sulci of the human cerebral cortex, ascribing to both

the properties of sociality and industriousness [10]. Guiseppe

Bellonci in 1883 dedicated papers to the structural correspon-

dences shared by the glomerular organization of olfactory

centres in Squilla mantis, a stomatopod crustacean, a freshwater

eel and a cricket [11]. A century later, functional and circuit

correspondences among olfactory systems were argued to be

universal across most phyla [12]. In the early 1890s, Gustav

Retzius, the great Swedish biologist, in his privately published

journal Biologische Untersuchungen made explicit his view that

the neuronal organization of the ventral cord of annelids and

crustaceans correspond in detail. Furthermore, his Golgi

study of the dorsal cord of the hagfish Myxine glutinosa reveals

his fascination in similarities of ganglionic organization

[13–15]. Fridtjof Nansen’s discovery that nerve cells were dis-

crete elements, not part of a syncytium, also distinguished

monopolarity versus bipolarity of invertebrate and vertebrate

nerve cells [16,17]. Today, studies on ctenophores go much

further in suggesting not different morphologies but two

wholly separate origins of the neuron [1].
Fascination in, and questions about, the origins of nervous

systems are today no less enthralling than they were over a hun-

dred years ago. Such has been the prime motivation for the

Royal Society for sponsoring two meetings to debate the

origin and evolution of nervous systems. The results of these

two events are now published, one referring to the ‘Origin

and evolution of the nervous system’ published in volume 370

of Philosophical Transactions B [18], and the second ‘Homology

and convergence in nervous system evolution’ in this compa-

nion issue that presents a variety of topics centred around

whether what we know about the evolutionary emergence of

neurons, sensory systems and circuits might assist in resolving

questions about nervous system origins.

2. Organization and contributions to this issue
The first contribution to this issue is by Budd & Jackson [19],

who consider origins: the origins in the Early Cambrian; and

the earliest fossil evidence for bilaterian radiation that

occurred after the beginning of the Cambrian, about 541 Ma.

This time was preceded by an about 9–19 Myr period in the

Late Ediacaran during which detectable trace burrows suggest

the presence of organisms able to express extremely simple

avoidance-like behaviours. The earliest Cambrian trace fossil

Treptichnus pedum, which already indicates an appreciable

elaboration of behaviour compared to Ediacaran evidence

[20], denotes the beginning of the Cambrian’s Terreneuvian

series which, as proposed by Budd & Jackson, saw the appear-

ance of characteristically U-shaped tubes that are best ascribed

to trace fossils of sessile stem group lophotrochozoans. While

the preponderance of this fauna may explain the rarity of

traces ascribable to deuterostomes or spiralians, it also suggests

that such sessile taxa are likely to have given rise to modern

lineages of errant lophotrochozoans with homologous neural

attributes.

If the earliest animals moved and were able to actively

respond to stimuli, then they must have been equipped

with sensory-motor organization. The second article in this

issue is by Brunet & Arendt [21], who theorize how such cir-

cuits might have originated in unicellular eukaryotes with the

first action potentials appearing with the evolution of sensory

cilia, whereby potentials generated in cilia would spread

through the cell, itself a motile unit. In the first multicellular

organisms, these would have provided systems of mechanor-

eceptive cells, from which evolved true neurons and muscles.

The implications are that metazoan origins would have been

concomitant with the origin of nervous systems.

In the following article [22], Eisthen & Theis emphasize

the degree to which environmental and symbiotic microbes

play a central role in the physiology of the CNS. The sugges-

tion is that such interactions, which today command the

attention of biomedical researchers, may have archaic origins

to the extent that microbes once played a crucial role in the

evolution of neural systems by driving the evolution of epi-

thelial–microbial interactions leading to internalization of

specialized conducting cells, which assumed the role of

proto-neurons. The authors suggest that throughout

metazoan evolution, microbes likely played a role in the

evolution of cellular communication, defences and relevant

sensory systems.

Already posed in the Introduction is the question whether

neurons and nervous system evolved just once, or more than

once. This is discussed in detail by Moroz & Kohn [1], the
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focus here being on Ctenophora, semi-transparent marine pre-

dators known as comb jellies. Their nervous systems are

proposed by the authors to be uniquely distinct from the ner-

vous systems of Cnidaria and all bilateria. The authors’

conclusions are based on the unique genomic properties of

the ctenophore nervous system, which suggest that it evolved

independently, as did its preponderance of peptide signalling

coupled with the absence of transmitter substance that charac-

terize other metazoan nervous systems. The authors explain

their view of neurons as a functional category of cells. By pro-

posing that neurons have evolved several times

independently they refute the notion that neurons are homolo-

gous across phyla and suggest that their synaptic structures

have likewise evolved several times.

Martinez and colleagues [23] debate similar questions

about origins, here with reference to the nervous system of

Xenacoelomorpha, an equivocal clade comprising three acoe-

lomate groups, the nervous systems of which range from

simple to well-ordered networks, the latter associate with

an anterior condensation of neurons that relate to apical

sensory organs. The authors propose that by studying Xena-

coelomorpha both at the genomic level and with regard to

nervous system organization, it should be possible to deter-

mine whether within this group, and thus by extension to

other evolutionary trajectories, brains can, and indeed may

have evolved several times independently.

Considerations about the origin of sensory organs are

crucial to an understanding of brain evolution. Among sensory

systems, the origin of eyes has dominated discussions and the-

ories about what selection pressures have driven eye evolution;

from the first appearance of photosensitive receptors to the

appearance of single lens eyes and compound eyes and their

underlying circuits. In their paper, Randel & Jékely [24]

discuss the origin of the simplest eyes and the function that

such an innovation might have served. The proposal is that

dynamic phototaxis, a helical propulsive movement, could

have arisen as an early light-driven behaviour mediated by

paired eyespots appropriately wired by a simple sensory-

motor circuit. With reference to connectomics of larval eyes

of the annelid Platynereis dumerilii, the authors provide a scen-

ario for the evolutionary transition from a non-visual sensory

system to one that is visual and from thence to the evolution

of image-forming eyes.

Similar to the evolution of photosensitive cells, the emer-

gence of mechanosensory and sensory-motor neurons likely

played a crucial and selective role in nervous system evolution,

especially for the formation of neural circuits underlying

goal-directed behaviour. A case in point is made by Galliot

and co-workers [25] using Hydra, a genus of Cnidaria, that

are characterized by a simple nerve net that interconnects sen-

sory photoreceptors and touch-sensitive mechanosensory and

sensory-motor neurons located in their body wall and tenta-

cles. The latter neurons continuously differentiate from

interstitial stem cells but perturbation of this mode of adult

neurogenesis results in cell-type-specific alterations of gene

expression. Wenger et al. [25] determine transcriptome data

which reveal that epitheliomuscular cells switch on expression

of genes encoding proteins involved in neurogenesis and

neurotransmission typical for sensory neurons. The authors

suggest that ancestral multi-functional epithelial cells in

basal metazoans possessed proto-neuronal functions which

progressively diversified into more specialized cells during

evolution.
Divergent evolution of certain clades within Metazoa is

epitomized by the arthropod radiation, a diversification that

has provided at any time since (and including) the ‘Cambrian

Explosion’ the most species-rich phylum. In her review,

Angelika Stollewerk demonstrates that clear variation in neu-

rogenesis may have supported such divergence despite the

fact that a subset of conserved genes is known to underlie

neurogenesis in all Metazoa [26]. Here, the author compares

arthropod neurogenesis to demonstrate how variations of

function and regulation of neural genes could have facilitated

divergent evolution of developmental neurogenesis in this

phylum, using examples from its major representatives.

Divergence of body plans underlies the next paper in

this series by Nick Holland [27], who provides a comprehen-

sive overview of the various scenarios, both historical and

current, that have attempted to explain the origin of the

vertebrate nervous system from an invertebrate predecessor.

Ideas about how the transformation from invertebrate-

to-vertebrate might have occurred are discussed with special

reference to two theories, one originating historically from

Anton Dohrn’s nerve cord inversion theory [28], the other

from William Bateson [29], who suggested that the chordate

ancestor was vermiform and unsegmented, exemplified by

the acorn worm Balanoglossus. According to Bateson this

species showed clear evidence of a condensed nervous

system during development. Bateson’s work was published

in 1884. Today, Balanoglossus is viewed as a key for investi-

gating deep ancestry of the vertebrate CNS as this taxon

possesses a diffuse nervous system expressing many

‘proneural’ genes involved in patterning the chordate brain

and spinal cord [30]. In his article, Holland demonstrates the

many difficulties inherent in deciding which of the two theories

is the more plausible and suggests strategies and their attend-

ant requirements for further resolving this.

Since the 1990s, numerous papers have appeared arguing

from evidence that specific attributes of the brains of ver-

tebrate and arthropods share similarities that can best be

interpreted as homologous. In their comparisons of arthropod

and vertebrate brains, Wolff & Strausfeld [31] identify numer-

ous structural, molecular and genetic characters that are

shared by the vertebrate hippocampus and the arthropod

mushroom bodies. The correspondences include a neuronal

ground pattern that defines these forebrain structures and

their ancestral relationships with the olfactory system. Pro-

teins that have been shown in flies and mice to be crucial

for memory acquisition denote these centres and, in addition,

reveal mushroom body-like structures in annelids, nemer-

teans and polyclad flatworms. That these proteins define

discrete brains in certain acoels emphasizes the question

whether such circuits might have originated very early in

bilaterian evolution.

Studying the CNS of species belonging to less familiar taxa

is an absolute requirement for gaining information about the

diversity of brain evolution. The contribution by Hejnol and

co-workers [32] describes the organization of the nervous

system in the larva of the penis worm, a member of Priapulida.

Priapulida is recognized as an ecdysozoan that is little different

from fossil priapulids from Early [33] and Mid-Cambrian

Lagerstätten [34], in which traces of a nervous system with

ganglion-like arrangements have been identified [35]. Here

the authors describe the larval a nervous system using a palette

of antisera raised against cytoskeletal proteins and neuropep-

tides to resolve the early development of a circumstomodeal
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condensation of neurons leading to a single ventral nerve con-

fluent with a caudal ganglion. It is suggested that studies of

such early developmental stages may provide a window on

the early evolution of the ecdysozoan CNS.

Drawing from a wealth of studies of circuits that mediate

rhythmically patterned motor actions, particularly in gastropod

molluscs, Paul Katz [36] shows that comparative studies reveal

a common Leitmotif: that of divergent evolution of behaviours

resulting from evolutionary modifications of homologous

underlying circuits. The author also shows that whereas

major rewiring of an ancestral circuit leads to corresponding

changes of behaviour, in some instances divergence of wiring

has arisen without any observable behavioural alteration.

Moreover, where corresponding rhythmic behaviours are

known to have evolved convergently, the neural circuits for

such homoplasic behaviours are obviously different. The

summed results of Katz’s research suggest that one cannot

assume simplistic assumptions about the behavioural conse-

quences of convergent evolution of circuits nor assume

that homologous neural components necessarily underlie

homologous behaviours.

An altogether different level of behavioural analysis

tackles questions about neurological constituents that con-

tribute to the evolution of intelligence [37]. The authors of

this contribution emphasize that it is not simply brain size

that should be taken into consideration; indeed, such con-

sideration can be misleading. Rather, intelligence relates

to the volume of cortex, the packing of its neurons and

high conduction velocities enabling rapid sensory inte-

gration and synthesis. These features define in common

the brains of corvids and primates, both taxa that display

high levels of intelligence as defined by introspective

problem-solving.

It is claimed that the extraordinary evolution of intelligence

in hominids, which sets them apart from all other species, is one

coordinate in an evolutionary matrix representing advanced

cognitive behaviours, distinguishing vertebrates from most

invertebrates with the exception of some cephalopod molluscs

and, possibly, stomatopod crustaceans and some hymenop-

teran insects. In his article, Seth Grant [38] makes the case for

this distinction in our own species due to the expansion of the

synaptic proteome and the consequent diversity of synapses,

a diversity suggested to specifically relate to the evolution of

unique human cognitive attributes.

The finale of this special issue is written by Michael

Ghiselin, the foremost exponent of the concepts and ideas

underlying what is meant by Darwinian evolution [39].

Ghiselin’s article reminds us how important it is to use

terms correctly, because each holds a unique meaning and

thus value in discussions about evolution, whether it is

about brains or, for example, the evolutionary diversification

of nudibranch molluscs. An understanding of some hom-

ology, meaning a correspondence of parts due to common

ancestry, is a lynchpin in evolutionary considerations yet
the term is easily used with abandon and thus incorrectly

applied, even to convergence. This final essay is one that

every evolutionist should keep in the back of her or his

mind when trying to communicate our ideas in a language

that is understood by scientist and layman alike.

3. Some concluding remarks
It has been argued that the evolution of the nervous system, its

centralization and the emergence of a brain and mind are

inevitable events in the course of evolution [40,41]. While

this may sound like a heretical and misplaced reprise of tele-

ology, the proposition does indeed question previous

attempts to find basic rules of organization in ‘what unites
form rather than divides it’ [41]. Homology and convergence

are two conceptual frameworks for discussing correspon-

dences and to identify genealogical order amongst the many

different types of nervous systems that characterize extant

species across large phylogenetic distances. Both the concepts

of homology and convergence can be united for a common

aim: that of identifying the ‘geometry of life’ [41] whose algor-

ithms, if uncovered, would enable an explanation for the

many similarities observed, for example, between the brains

of arthropods and chordates and the stunning differences

exemplified by the brains of cephalopods. In other words:

what might be the laws of nature that can lead to nervous

system centralization and the formation of brains, or their

evolved reduction and loss several times during the course

of evolution? In one–now historical–search for such a “geo-

metry of life,” D’Arcy Thompson’s thesis ‘On growth and

form’ [42] identified correlations between biological forms

and mechanical phenomena. Yet, while such correlations

have found some mechanistic footings (e.g. [43,44]), they are

however insufficient to grasp key aspects of brain functionality

such as mediating allocentric memory, goal-directed beha-

viours and voluntariness [45,46], which themselves are

driving forces of evolution. It is becoming clear that more

than genes, genomes and morphologies are needed to eluci-

date the origin and evolution of the nervous system,

although a start has been made.
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Siebeck.

http://dx.doi.org/10.1098/rstb.2015.0039
http://dx.doi.org/10.1098/rstb.2015.0039
http://dx.doi.org/10.1098/rstb.2015.0042
http://dx.doi.org/10.1098/rstb.2015.0040
http://dx.doi.org/10.1098/rstb.2015.0044
http://dx.doi.org/10.1098/rspl.1884.0058
http://dx.doi.org/10.1098/rspl.1884.0058
http://dx.doi.org/10.1016/S0092-8674(03)00469-0
http://dx.doi.org/10.1016/S0092-8674(03)00469-0
http://dx.doi.org/10.1098/rstb.2015.0055
http://dx.doi.org/10.1098/rstb.2015.0050
http://dx.doi.org/10.1666/13-082
http://dx.doi.org/10.1111/pala.12168
http://dx.doi.org/10.1098/rstb.2015.0057
http://dx.doi.org/10.1098/rstb.2015.0057
http://dx.doi.org/10.1098/rstb.2015.0180
http://dx.doi.org/10.1098/rstb.2015.0051
http://dx.doi.org/10.1098/rstb.2015.0051
http://dx.doi.org/10.1098/rstb.2015.0035
http://dx.doi.org/10.1098/rstb.2009.0154
http://dx.doi.org/10.1126/science.1215280
http://dx.doi.org/10.1016/j.tig.2014.11.005
http://dx.doi.org/10.1016/j.tig.2014.11.005
http://dx.doi.org/10.1038/459164a

	Introduction to ‘Homology and convergence in nervous system evolution’

	Emergence, convergence and correspondences
	Organization and contributions to this issue
	Some concluding remarks
	Competing interests
	Funding
	Acknowledgements
	References


