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Animals ubiquitously interact with environmental and symbiotic microbes, and

the effects of these interactions on animal physiology are currently the subject of

intense interest. Nevertheless, the influence of microbes on nervous system evol-

ution has been largely ignored. We illustrate here how taking microbes into

account might enrich our ideas about the evolution of nervous systems. For

example, microbes are involved in animals’ communicative, defensive, predatory

and dispersal behaviours, and have likely influenced the evolution of chemo-

and photosensory systems. In addition, we speculate that the need to regulate

interactions with microbes at the epithelial surface may have contributed to the

evolutionary internalization of the nervous system.
1. Introduction
We live in a microbial world. Since their origin, multicellular organisms have

been co-evolving with microbes, a collection of organisms including bacteria,

archaea, fungi, protozoa and viruses. Microbes colonize the gut and external

surface of animals, as well as some reproductive organs. Some animals even

have additional, specialized organs that harbour selected groups of microbes.

In general, despite the ubiquity of microbes, associations between animals

and microbes are not random [1]. Animals do not merely tolerate microbes;

we possess complex suites of adaptations to provide beneficial microbes with

food, suitable habitats and protection from other microbes.

The contributions of microbes to animal biology—including human biology—

are significant [2,3]. Many readers will be aware that current estimates suggest that

our bodies contain 10-fold more microbial cells than human cells, and up to 500-

fold more microbial genes than human genes [4]. More concretely, the cumulative

mass of the human microbiota is 1–2 kg [4], which is sobering considering that the

average human brain has a mass of approximately 1.5 kg [5].

Given the relative proportion of microbes and microbial genes in animal

bodies as well as the fidelity of these associations across animal generations,

researchers have begun to refer to such ensembles as ‘holobionts’ and to

suggest that holobionts are valid units of selection in animal evolution (e.g.

[6,7]). This idea has come to be known as the hologenome model of evolution

[7–9]. This change in focus has the potential to upend the way we think about

evolutionary change, often defined as a change in gene frequency over time.

Brucker & Bordenstein [10], for example, argue that we should be thinking of

animal evolution as a change over time in the frequencies of genes in the

nucleus, in organelles and in microbial symbionts.

With the recent proliferation of research on animals and their associated

microbes, biologists are increasingly learning that microbes play key roles in

physiological processes of animals, including in neural function. In this

paper, we briefly review three examples of current relationships between

microbes and the neurobiology and behaviour of animals: chemosensory detec-

tion of microbial products (§2), the role of microbes in foraging and predation
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(§3), and microbial influences on cognition and social behav-

iour (§4). In §5, we propose that microbes may have played a

key role in the evolution of nervous systems.
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2. Chemosensory detection of microbial products
Microbes and microbial products play important roles in

animal behaviour. At arguably the simplest level, animals

can taste and smell chemical compounds produced by

microbes and use this sensory information to avoid pathogenic

microbes, as indicators of the presence of food sources or

conspecifics, and even as chemical signals.

The nematode Caenorhabditis elegans eats soil bacteria, but

it must be discriminating: it has to avoid pathogenic microbes

while selecting those that are palatable and beneficial. One

pathogen avoided by C. elegans is Serratia marcescens, which,

if ingested, produces compounds that kill the nematode

and dissolve its eggshells. Nematodes detect Serratia using

the paired AWB chemosensory receptor neurons [11]. Of

the 302 neurons in C. elegans, 16 paired neurons function as

chemosensory receptors; the AWB cells, along with two

other pairs of cells, detect cues that mediate avoidance

responses [12]. Although the ASJ cells are normally involved

in attraction responses and dauer formation [12], they can

also mediate avoidance responses induced by bacteria.

Specifically, when at high density in low-oxygen environ-

ments, Pseudomonas aeruginosa is pathogenic to C. elegans.

Under these conditions, the bacterial metabolites phen-

azine-1-carboxamide and pyochelin are detected by the ASJ

neurons, which then produce neuromodulators that alter

activity in adjacent neurons. This activity leads the animal

to seek higher oxygen environments, away from potential

pathogens [13]. Thus, it appears that C. elegans possesses

distinct sensory-neural pathways for generating appropriate

behavioural responses to specific cues from potential

microbial pathogens.

The fruit fly Drosophila melanogaster is strongly repelled by

geosmin, a volatile odorant produced by Penicillium fungi

and Streptomyces bacteria. These microbes grow on decaying

fruit and are lethal to Drosophila [14]. Thus, fruit flies must

discriminate fruit that is at the optimal level of ripeness:

when fruit is overripe by most human standards, the yeast

that grow on it provide food for Drosophila and are highly

attractive [15], but fruit that is so overripe that it smells of

geosmin must be avoided. Indeed, the odour of geosmin

abolishes the normal attraction to vinegar and other food-

related odorants; it also inhibits oviposition [14]. Stensmyr

et al. [14] have shown that geosmin is detected by a specific

class of antennal olfactory receptor neurons, ab4B, that

appears to be narrowly tuned to detect only this molecule.

These neurons project exclusively to the DA2 glomeruli in

the antennal lobe, the first olfactory processing region in

insect central nervous systems. The projection neurons from

the DA2 glomeruli are also narrowly tuned to geosmin,

suggesting the presence of a labelled line for detecting geos-

min. Finally, the authors found geosmin-specific olfactory

receptor neurons in seven other species of drosophilids,

strongly suggesting that microbial products have shaped

the evolution of the Drosophila nervous system.

In addition to warning of the presence of dangerous

microbes on substrates, microbial products can provide infor-

mation about the infection status of conspecifics, including
potential mates, in a wide diversity of organisms [16–18].

Mice avoid conspecifics that are ill [19], and recent evidence

suggests that mice use receptors that normally function as

part of the innate immune system to smell compounds

characteristic of bacterial infection in conspecifics. Mamma-

lian leucocytes possess specialized receptors for formylated

peptides, which are released by bacteria as metabolic

by-products. Formylated peptides attract leucocytes to sites

of infection (reviewed in [20]). Interestingly, two formyl pep-

tide receptors are expressed in the vomeronasal organ, an

accessory olfactory organ, in mice [21,22]. In vitro, the recep-

tors can be activated by formylated peptides and other

infection-related molecules [22]. More recent work shows

that the vomeronasal organ is essential for mice to dis-

tinguish the odours of infected and uninfected conspecifics

[23]. Taken together, these results strongly suggest that

formyl peptide receptors in the vomeronasal organ warn

mice of the presence of infected conspecifics.

Microbial products are not always aversive to animals, as

anyone who likes the taste of miso or a ripe cheese, or the

smell of wine or baking bread can attest. Stable flies

(Stomoxys calcitrans) select oviposition sites based on the pres-

ence of particular bacteria, likely detected from a distance by

odorant cues [24]. In addition, settlement cues for marine

invertebrate larvae, such as barnacles and polychaetes, are

often produced by biofilms of microbes either on stable sea

floor substrates or on adult conspecifics [25–28]. Given the

critical importance of choosing an appropriate habitat—

immobile benthic animals that settle far from conspecifics

will not reproduce—cues produced by microbes play a

critical role in the life history of these animals.

Although the details of the mechanisms whereby marine

invertebrate larvae detect settlement cues are still being

worked out, studies with drosophilids have recently revealed

remarkably precise and robust systems for detecting and

responding to volatile odorants produced by microbes. In

general, drosophilids are strongly attracted to volatiles

produced by yeasts, their main food source—so much so

that the Solomon lily (Arum palaestinum) is pollinated by

drosophilids attracted to its scent, which contains volatiles

normally produced by yeasts rather than by plants [29]. In

addition, D. melanogaster is attracted to hydroxycinnamic

acids, antioxidant molecules that can prolong life when

included in the diet. Although they cannot directly detect

the presence of these compounds, flies are acutely sensitive

to the presence of the volatile odorants 4-ethylphenol and

4-ethylguaiacol, which are produced by a variety of yeasts

as a result of metabolizing hydroxycinnamic acids. The dedi-

cated olfactory receptors used to detect the compounds differ

between adults and larvae, but in both cases the animals are

attracted to and feed on substrates containing these odorants;

adults also preferentially lay eggs on such substrates [30].

Odorants emitted by symbiotic bacteria also play important

roles in what used to be called intraspecific communication

among animals, although given the importance of microbes

in producing some of these odorants, ‘intraspecific’ is not

quite the appropriate term. Nevertheless, we here use the

word ‘cues’ to refer to sensory stimuli that provide information

about the animals that emit them, sometimes to the detriment

of these animals. ‘Signals’ also provide information about the

animals that emit them, but signals have been selected over

evolutionary time to efficaciously communicate this infor-

mation between senders and receivers, both of whom benefit
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from the exchange. To the extent that their contributions to

variation in hosts’ scents accurately reflect underlying traits,

symbiotic microbes can broadcast information about their

hosts to other animals through chemical cues and signals

[31,32]. Animals rely heavily on chemical signals to communi-

cate their species, group and individual identities, as well as

information about their sex and reproductive state [33,34],

and odour-producing symbiotic microbes have been broadly

hypothesized to contribute to animal chemical signalling

[31,32,35–37].

Among insects, symbiotic microbes can produce volatile

compounds that are used as host-specific pheromones

(reviewed in [36,37]), although some microbes can also

convert pheromones into repellents (e.g. [38]). The best-

understood example involves the aggregation pheromone of

the desert locust (Schistocerca gregaria). Adult desert locusts

can be solitary or gregarious, and during the transition to gre-

gariousness, locusts undergo dramatic genetic, hormonal and

behavioural changes that render them capable of forming

massive swarms that can decimate crops over large distances

[39]. After adopting the gregarious morph, locusts aggregate

in response to volatiles that are present in the faeces of adult

males, but not females or younger animals; the key com-

ponent of the aggregation pheromone is guaiacol [40,41].

Morphologically distinct sensillae on the antenna respond

to sex pheromones, plant odorants and organic acids, and

the aggregation pheromone [42]. Notably, the aggregation

pheromone inhibits responses in sensillae to plant odorants

[42]. Further, the percentage of antennal lobe neurons that

respond to guaiacol increases with age and is higher in gre-

garious than solitary adults [43]. Guaiacol is not produced

by locust cells but by gut bacteria, likely as a product of metab-

olizing vanillic acid derived from lignans in the locusts’ diet

[44–46]. Surprisingly, the microbe is not unique, as several

different microbes, including Pantoea agglomerans, Klebsiella
pneumoniae and Enterobacter cloacae, can produce guaiacol

within locusts [45]. This example of apparent coevolution

between an animal and its symbiotic microbes raises many

interesting questions. For example, if guaiacol is produced

by gut bacteria, why is it produced by adult males but not

females? Do sex hormones play a role? In addition, it

would be interesting to determine whether the presence of

guaiacol-producing gut bacteria changes with age, and if so

whether the bacteria contribute to age-related changes in

olfactory sensitivity to guaiacol. Desert locusts have the

potential to serve as a powerful model system for under-

standing the behavioural and physiological processes that

contribute to selection of gut microbes as well as their

influence on host nervous systems.

Among mammals, preliminary evidence indicates that

symbiotic microbes substantially contribute to their hosts’

complex signature scents [31,32,37]. For example, many

mammals communicate using specialized scent glands,

which are known to harbour diverse communities of odour-

producing microbes [31]. In original cultivation-based studies

of the Indian mongoose (Herpestes auropunctatus), bacteria

from scent glands were shown to produce a suite of short-

chain fatty acids (SCFAs) typical of scent secretions. In

addition, a broad-spectrum antibiotic eliminates both the

bacterial communities and scents from these glands, and

mongooses respond to both scent secretions and experimen-

tal mixtures of SCFAs in a manner suggesting that

they communicate information about signallers’ individual
identities to receivers [47,48]. More recent cultivation-

independent studies of spotted hyaenas (Crocuta crocuta)

and striped hyaenas (Hyaena hyaena) showed that the

bacterial and SCFA profiles of the two hyaena species differ

and that the two profiles covary within each hyaena species.

Further, among spotted hyaenas, the two profiles are

social group-specific, and reflect sex and reproductive state

among members of the same social group [49–51]. Similar

patterns are evident among mammals that communicate via

urine marking as well. For example, microbes associated

with the urine marks of male African elephants, Loxodonta
africana, are responsible for the production of urinary ketones

and alcohols believed to signal male musth status [52,53].

Similarly, microbes in the urine marks of house mice (Mus
musculus) appear to function in communicating individual-

and genotype-specific information among competitors and

prospective mates [54,55].
3. Role of microbes in neural mechanisms
of foraging and antipredator behaviour

At an arguably more complex level, microbes play important

roles in foraging and antipredator behaviour in a broad

spectrum of animals. For example, one of the best known

anti-predator defensive molecules is the neurotoxin tetrodo-

toxin (TTX). TTX blocks the pore of voltage-gated sodium

channels, preventing neurotransmission in almost all multi-

cellular animals. TTX is sufficiently toxic that sympatric reef

fishes gain protection from predation by visually mimicking

pufferfish [56], and in pufferfish and many other animals,

TTX is produced by symbiotic bacteria [57]. Although posses-

sing TTX confers obvious advantages to pufferfish, it also

requires physiological adaptations beyond providing a suit-

able habitat for TTX-producing bacteria: all eight genes

coding for voltage-gated sodium channels possess mutations

that confer TTX resistance [58], and toxic pufferfish possess

a novel gene duplication that created a protein involved in

the transport and accumulation of TTX [59]. TTX serves

not only in defence, as it is used by both blue-ringed

octopus (Hapalochlaena maculosa) and planocerid flatworms

to envenomate prey [60,61].

Beyond toxicity, symbiotic microbes can function in anti-

predator defence by providing camouflage. The Hawai’ian

bobtail squid (Euprymna scolopes) possesses a ventral light

organ that provides counterillumination, preventing the

squid from casting a shadow that could attract the attention

of predators lurking below. The light organ is colonized by

luminescent Vibrio fischeri, and juvenile squid possess com-

plex adaptations for selecting V. fischeri from among the

many species of environmental bacteria that can enter the

light organ [62,63]. Interestingly, eye-specific genes are

expressed during development of the light organ, and the

organ expresses phototransduction molecules and produces

electrophysiological responses to light [64,65]. The function

of light detection in the organ is not yet understood, but it

may allow the animal to exclude mutants that fail to lumi-

nesce [66] or may enable the squid to match the ambient

illumination level. In either case, the relationship with sym-

biotic Vibrio has clearly led to evolutionary adaptations in

the squid nervous system.

In some cases, microbes hijack normal antipredator be-

haviour, manipulating the nervous systems of animals to
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produce outcomes that are favourable to the microbe but not

the host. For example, the fungal pathogen Ophiocordyceps
unilateralis infects the nervous system of ants (Camponotus
leonardi), leading the ants to attach themselves to leaves for

several days until a fruiting body erupts from the ant’s

head, scattering fungal spores [67]. Other Ophiocordyceps
species infect other species of Camponotus, and the ability to

manipulate the ants’ behaviour is unique to its naturally

occurring pathogen [68,69]. Another well-known example

involves infection of rats by the protozoan Toxoplasma
gondii, which causes rats to become attracted to cat urine,

greatly increasing their risk of predation by the parasites’

definitive host [70]. Describing more examples of parasite

manipulation of host behaviour is beyond the scope of this

review, and the interested reader is directed to recent special

issues of The Journal of Experimental Biology, 216(1), Jan. 2013,

and Integrative and Comparative Biology, 54(2), July 2014 for

more information.

Like bobtail squid, cardinalfish (Siphamia versicolor) pos-

sess a ventral light organ containing luminescent bacteria

(Photobacterium mandapamensis). Instead of using their light

organ for antipredator defences, however, cardinalfish use

their light organs to attract planktonic prey. Emission of

light is under neural control, as the organ can be occluded

using a retractable shutter [71]. Like the bobtail squid, cardin-

alfish can also determine the amount of luminescence in the

light organ: the organ abuts the lower jaw, which is largely

translucent, and the ventromedial portion of the eyes

protrudes into the buccal cavity. Thus it appears that

the fish can directly see the luminescence of the light

organ [71]. Interestingly, olfactory preference tests suggest

that cardinalfish are attracted to chemical cues emitted by

P. mandapamensis [72], which colonize the light organ from

the external environment. Although symbiotic bacteria are

necessary for proper development of the light organ in bob-

tail squid [73], the bacteria that colonize the light organ of

cardinalfish are not necessary for its development [74].

Taken together, these studies indicate that the association

with luminescent bacteria has powerfully shaped the nervous

system and anatomy of cardinalfish.

In addition to facilitating feeding behaviour, symbiotic

microbes may also contribute by influencing dietary

decisions. In a recent essay, Alcock et al. [75] postulate that

gut microbes may manipulate host feeding behaviour by gen-

erating cravings for particular foods that they themselves can

readily access as energy sources, or by inducing dysphoria in

their hosts until those particular foods are consumed. Gut

microbes could accomplish this by affecting host taste recep-

tor expression, vagus nerve activity or neuroendocrine

profiles, for example by producing dopamine, serotonin or

peptides that influence satiety [75]. Evidence for these

hypotheses is to date circumstantial, but elucidating and

evaluating the influences of gut microbes on host feeding

behaviours should be a research priority moving forward.
4. Influence of microbes on cognition and social
behaviour

Recent studies have revealed that microbes contribute to sur-

prisingly complex behaviours, including cognition and social

behaviour. Almost all such studies to date have involved lab-

oratory mice and rats, and compare germ-free animals (raised
in an environment with no microbes) to both specific

pathogen-free and conventionally raised animals.

Interestingly, germ-free mice show reduced exploration of

unfamiliar conspecifics and spend less time near conspecifics

than do control animals (e.g. [76,77]). In addition, rearing

mice in germ-free environments results in an exaggerated

physiological response to stress, which can be reversed by

restoration of normal microbial communities or even just

the bacterium Bifidobacterium infantis [78]. Paradoxically,

several studies indicate that germ-free mice show decreased

anxiety and increased exploratory behaviour and suggest

the existence of a sensitive period after which introducing

microbes does not reverse the effects of germ-free rearing

(e.g. [79,80]). Gareau et al. [81] have suggested that this

discrepancy might be reconciled if the increased exploratory

behaviour in germ-free mice is due to deficits in working

memory rather than decreased anxiety, leading animals to

greater levels of exploration; further, studies using varying

measures of anxiety obtain differing results (e.g. [76]).

The neural correlates of altered behaviours in germ-free

mice are rarely clear, but their nervous systems are altered

in ways that are consistent with changes in anxiety, learning

and social behaviour. For example, germ-free mice show

widespread changes in gene expression in the amygdala

[82]. Such mice also show reduced expression of brain-

derived neurotrophic factor in the dentate gyrus and CA1

layer of the hippocampus [79,81], as well as in the amygdala

and cingulate cortex [82,83]. Expression of N-methyl-D-

aspartate receptor subunits NR1 and NR2A is also reduced

in the hippocampus [78], and of NR2B in the central amyg-

dala [79], in germ-free mice. Finally, such mice also show

increased turnover of dopamine, noradrenaline and

serotonin in the striatum [83]. While such studies are in

their infancy, it is clear that the microbiota plays a powerful

role in normal neural function as well as in behavioural

and neural development in mammals (for recent reviews,

see [5,84–86]). Nevertheless, research to date has largely

focused on a small number of mammalian species, and

broader comparative studies are needed.
5. Could microbes have played a role in
internalization of nervous systems?

Given our long history of co-evolving with microbes, as well

as the examples described in §§2–4, it seems clear that

microbes have played a role in nervous system evolution in

at least some specific cases. In addition, we propose that

microbes played a role in a major event in nervous system

evolution: the internalization of nervous systems in animals

derived from ancestors that possessed nerve nets.

The nature of the first neurons is not clear, nor do we

agree how many times neurons may have originated

[87,88]. Data from demosponges suggest that proto-neurons

were sensory cells embedded in the external epithelium

[89–91]. These proto-neurons may have signalled to each

other or to neighbouring epithelial cells in paracrine fashion,

and adaptations for improved signalling fidelity, including

neurites and synapses, might have evolved later [92]. The sig-

nalling molecules used by these proto-neurons were likely

peptides [93]. The molecular components required for the

synthesis and release of neuropeptides are present in demo-

sponges, as are homologues of eumetazoan neuropeptide
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Figure 1. Illustration of a hypothesis concerning the role of microbes in ner-
vous system internalization. Proto-neurons are depicted in blue, epidermal
cells in black, and both coccus- and rod-shaped microbes are depicted in
red. The smaller blue, black and red dots represent peptides and other
small molecules produced by the three classes of cells. (a) The ancestral
condition, in which proto-neurons are distributed among epidermal cells.
In this state, metabolic products and signalling molecules released by
microbes and anti-microbial peptides released by epithelial cells may interfere
with interneuronal signalling. (b) In animals with an internal nervous system,
neuronal signalling is largely protected from interference; in addition, epi-
thelial cells can regulate the composition of the microbial community and
microbes can signal to epithelial cells without interference from neuronal
molecules. (Online version in colour.)
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receptors [91]. Thus, even before nerve nets arose, proto-

neurons, peptide signalling molecules and receptors for

these signalling molecules were likely present.

Among animals with nerve nets, peptide neurotrans-

mission may predominate ([94], but see [95]). Many

neurobiologists think of neuropeptides as functioning as

modulators that activate relatively slow processes; neverthe-

less, fast, peptide-gated ion channels that are related to

acid-sensing ion channels (ASICs) are present in a variety

of animals, including cnidarians [96] and molluscs [97,98].

In addition, although neurotransmission in ctenophores is

poorly understood, large numbers of fast, peptide-gated ion

channels are coded in the genome of Pleurobrachia bachei
[99], and the genome of the demosponge Amphimedon
queenslandica contains at least one putative ASIC (NCBI refer-

ence sequence: XP_011405396.1). Thus, the earliest neural

signalling molecules in animals with nerve nets may have

been peptides that elicited relative rapid responses from

neighbouring neurons.

Although it is not yet clear how many times internal ner-

vous systems arose from animals with nerve nets [93], we

propose that microbes may have played an important role

in driving the evolution of internalized nervous systems.

We can envision three ways in which microbes may have

contributed to internalization of the nervous system; these

hypotheses are not mutually exclusive.
First, as illustrated in figure 1, nervous systems may

have become internalized to optimize signal fidelity. In

general, neuropeptides bind to G protein-coupled receptors

(GPCRs), evolutionarily ancient receptors that predate the

split among plants, fungi and eukaryotes [100,101]. Two of

the five major families of GPCRs—the rhodopsin-like and

glutamate-like GPCRs—are present in animals without ner-

vous systems, such as Amphimedon and Trichoplax, as well

as in ctenophores and cnidarians [102], and could have

functioned as the earliest receptors for neural signalling mol-

ecules. A basic property of GPCRs is that a single receptor can

couple to different intracellular signalling pathways such that

different ligands can influence different physiological pro-

cesses. In other words, GPCRs are inherently promiscuous

[103], although in some cases GPCRs have co-evolved with

particular ligands to a high degree of specificity (e.g. [104]).

Thus, if GPCRs served as receptors for early neuropeptide

signalling molecules, these receptors were vulnerable to

interference by other molecules.

Molecules that could create such interference are abun-

dant at the body surface. Epithelial cells produce peptides

to regulate microbial communities in and on animals’

bodies. Indeed, Hydra use antimicrobial peptides to control

species-specific microbiomes [105,106], suggesting that anti-

microbial peptides date to at least the last common ancestor

of cnidarians and bilaterians and may be widespread across

the animal kingdom. Given that the neurons that comprise

nerve nets are interspersed among these epithelial cells, the

peptides produced by epithelial cells have the potential to

interfere with neuronal GPCRs. Further, microbes also pro-

duce peptides as metabolic products as well as for use in

intraspecific signalling and interspecific competition (for

recent reviews, see [107–109]), providing yet another source

of potential interference with neural signalling. Finally,

many bacterial products are detected by GPCRs (e.g. [110]).

As a result, pathogenic bacteria have evolved mechanisms

to modulate or block activity of animal GPCRs to avoid

detection [111], a process that again could compromise

neural signalling. Taken together, these observations suggest

that nervous systems may have been internalized to protect

neuropeptide receptors from ‘noise’ due to the presence of

antimicrobial peptides and microbial products.

Second, a core group of 16 families of peptidases are ubi-

quitous and as old as life [112], and neuropeptides that are

released into the mucus at the epithelial surface are vulner-

able to degradation by these enzymes. This creates obvious

problems for paracrine signalling, as peptides that are

broken down before they reach their target are poor signals.

Further, degradation poses an additional problem: when

degraded by peptidases, neuropeptides can break down

into smaller products that can also activate or antagonize

either the parent receptor or receptors for other peptides

[113]. Perhaps nervous systems were internalized to avoid

problems related to degradation of neuropeptides, which

can lead to ineffective signalling and receptor noise.

A brief example may serve to illustrate the kind of

cross-talk that we envision among receptors, peptides and

peptidases. The nervous systems of vertebrates contain many

peptides that possess a C-terminal-RFamide, similar to the

invertebrate neuropeptide FMRFamide; such peptides are

often referred to as FMRFamide-like peptides (FLPs). FLPs

interact with a variety of receptor subtypes [114], and

the same receptor can interact with many different FLPs
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(e.g. [115,116]). For example, frog nervous systems contain

members of peptide families that are widely distributed

among vertebrates and could be considered FLPs, including

gonadotropin inhibiting hormone [117–119]; kisspeptin [120];

met-enkephalin and other opioid peptides [121,122]; prolac-

tin-releasing peptide [123]; and neuropeptide Y, peptide YY

and pancreatic polypeptide [124]. The skin of frogs also contains

many anti-microbial peptides [125], including several FLPs

[126]. Finally, frog skin also contains numerous peptidases

[127]. Thus, it seems that unless the nervous system were

internal to the epidermis, the multiple FLPs in both neurons

and skin cells, multiple FLP receptors on neurons, and multiple

peptidases produced by skin cells could all interfere with both

neural signalling and epithelial–microbial signalling in frogs.

Third, nervous systems may have become internalized to

protect them from invasion by microorganisms. Neural recep-

tors on the surface of an animal are risky, as viruses can gain

entry to neurons through receptors; to cite some familiar

examples, rabies, herpes and measles viruses all enter neurons

through cell-surface receptors [128–130]. Once inside a neuron,

viruses can use synapses to rapidly spread from cell to cell,

potentially invading large portions of the body [131,132]. Per-

haps nervous systems were internalized to protect the

organism from infection. Notably, the enteric nervous system

of the gastrointestinal tract, which must be in constant com-

munication with the luminal environment [133,134], is

protected from gut microbes by a variety of defences, including

intestinal epithelial tight junctions, a resistant mucosal barrier

and broad and targeted immune responses [134,135].
6. Conclusion
At a time when the influence of microbes is starting to be

recognized as fundamental to all aspects of animal biology,
it is critical that we consider microbial impacts on the func-

tion and evolution of animal nervous systems. All animals

necessarily interact with environmental and symbiotic

microbes, as well as metabolic products of microbes, and

the outcomes of these interactions can be beneficial or detri-

mental to animals. In this paper, we have described how

these interactions have shaped animals’ chemosensory and

photosensory systems in ways that promote the avoidance

of pathogens and predators, the location of important

resources including food and suitable mates, and the effective

signalling of key information among animal conspecifics. We

also introduced a burgeoning line of inquiry regarding the

effects of symbiotic microbes on mammalian neurodevelop-

ment, cognition, anxiety and social behaviour, and call for

comparative studies on these subjects. Finally, we discussed

how beneficial phenotypes conferred by symbiotic microbes

to their animal hosts can require concomitant adaptations in

animals’ nervous systems to accommodate and manage

these residents and suggested that a key event in neural

evolution—the internalization of the nervous system—

may have resulted from selection pressures involving

microbes.
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