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Comparisons of rhythmic movements and the central pattern generators

(CPGs) that control them uncover principles about the evolution of behav-

iour and neural circuits. Over the course of evolutionary history, gradual

evolution of behaviours and their neural circuitry within any lineage of

animals has been a predominant occurrence. Small changes in gene regu-

lation can lead to divergence of circuit organization and corresponding

changes in behaviour. However, some behavioural divergence has resulted

from large-scale rewiring of the neural network. Divergence of CPG circuits

has also occurred without a corresponding change in behaviour. When

analogous rhythmic behaviours have evolved independently, it has generally

been with different neural mechanisms. Repeated evolution of particular

rhythmic behaviours has occurred within some lineages due to parallel evo-

lution or latent CPGs. Particular motor pattern generating mechanisms

have also evolved independently in separate lineages. The evolution of

CPGs and rhythmic behaviours shows that although most behaviours and

neural circuits are highly conserved, the nature of the behaviour does not

dictate the neural mechanism and that the presence of homologous neural

components does not determine the behaviour. This suggests that although

behaviour is generated by neural circuits, natural selection can act separately

on these two levels of biological organization.
1. Evolution of rhythmic behaviours

‘. . . from so simple a beginning endless forms most beautiful and most wonderful
have been, and are being, evolved.’

—Charles Darwin [1, p. 490]
When contemplating life on this planet, one is struck by the vast variety of animal

behaviours. Considering just locomotor behaviours alone, there is swimming,

crawling, flying, gliding, brachiating and running. Reflecting on only terrestrial

locomotion, a small sample includes bipedal walking (humans), knuckle walking

(gorillas), ‘tripedal’ gait (kangaroos), quadrupedal gaits (horses), hexapodal gaits

(insects), octopedal walking (spiders), hopping (frogs), sinusoidal movements

(snakes), contraction and elongation (worms), mucosal gliding (snails) and meta-

cronal waves (millipedes). Any comprehensive description of the evolution of

nervous systems needs to take into account how nervous systems generate this

great diversity of behaviours.

(a) Evolution of central pattern generators
Central pattern generators (CPGs) are neural circuits that produce the patterns of

neural activity that underlie rhythmic motor behaviours such as walking, swim-

ming and feeding [2,3]. As the name implies, these patterns are generated

centrally, without the need for sensory feedback or other patterned input. Thus,

many experimental CPG preparations can continue to produce rhythmic neural

activity even when isolated from the animal, facilitating access to the neurons.

The rhythmic motor behaviour is a direct readout of the pattern of neuronal

activity, making it straightforward to make conclusions about the neural basis

of the behaviour. The cyclic nature of motor patterns provides a robust means

of delineating which neurons produce the rhythmicity and pattern because cellu-

lar members of the CPG are rhythmically active and synaptically connected to
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Figure 1. Independence of behaviours and neural mechanisms. This hypothet-
ical tree shows a how behaviours A, B and C and their variations might have
evolved. There are three clades (a, b, g) which have ancestral neural mech-
anisms a, b and c. See §1b for further explanation. (Online version in colour.)
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other members of the CPG. Furthermore, artificially exciting or

inhibiting CPG members perturbs the motor pattern. In many

invertebrates, individual neurons can be identified from

animal to animal within a species, allowing the neural circuits

to be determined with cellular precision. Moreover, homolo-

gous neurons can be identified across species, permitting

comparative analyses of CPG circuits and the rhythmic behav-

iours that they produce [4,5]. Thus CPGs provide extraordinary

opportunities to study the evolution of behaviour and neural

circuits.
Figure 2. Conservative evolution of axial locomotion. (a) The segmental CPG for
swimming in lampreys, tadpoles and zebrafish larvae is organized as a half-centre
oscillator. The left and right sides are mutually inhibitory through commissural
interneurons (CIN). Excitatory and inhibitory interneurons (EIN and IIN) participate
in motor pattern generation. EIN synapses on motor neurons (MN) that cause
muscle contraction. Each neuron in the diagram represents large pools of hetero-
geneous neurons. Triangles are excitatory synapses and circles are inhibitory. CPG
based on ref. [16]. (b) The lamprey swims with a sinusoidal movement. The left
and right sides of the body alternately flex. (c) Salamanders walk using an
alternating axial muscle gait with left and right sides in alternation.
(b) Behaviours and neural mechanisms represent
different levels of organization

Generally, rhythmic behaviours and the CPGs that produce

them evolved slowly and in unison. However, there

are examples where behaviour and neural mechanisms

had different evolutionary histories. Figure 1 illustrates a

hypothetical phylogenetic tree containing three clades

(a, b, g) in which animals exhibit three basic behaviours

(A, B, C), which are produced by variants of three neural

mechanisms (a, b, c). In this tree, the common ancestor for

clade a used neural mechanism a to produce behaviour

A. Similarly, the common ancestors for clades b and g used

neural mechanisms b and c to produce behaviours B and C,

respectively. For the most part, the neural mechanisms and

the behaviours are conserved within each clade. The bars

mark transitions in the neural mechanisms. For example, a

gradual change in neural mechanism (a! a0 ! a00) was

accompanied by corresponding changes in behaviour (A!
A0 ! A00). Even in cases of convergent evolution, the same

neural mechanisms might produce analogous behaviours as

seen with the independent evolution of neural mechanism a
and behaviour A in clade g (figure 1).

Striedter & Northcutt [6] and Sommer [7] proposed that

behaviour and neural mechanisms represent separate levels

of biological hierarchy. Thus, for example, convergent evo-

lution of behaviour A in clade g could be through the novel

neural mechanism a* rather than through re-evolution of

neural mechanism a (figure 1). Conversely, species might

have homologous behaviours, such as behaviour B in clade

b, yet have diverged in the neural mechanisms that produce

them (b0 and b00). It is important to recognize that there might

not be a clean hierarchical distinction between behaviours

and the neural mechanisms that produce them; the organiz-

ation or development of the nervous system itself constrains

potential behaviours [8–10]. In §§2–5, I will discuss real

world examples of some of these scenarios as well as others.
2. Divergence of central pattern generators and
rhythmic behaviours

Nervous systems tend to be highly conserved. The basic devel-

opmental mechanisms that form the spinal cord are shared by

all vertebrates [11–14]. Similarly, there is a common design for

the segmentally repeated CPGs underlying undulatory move-

ments in lampreys [12], Xenopus tadpoles [15], and possibly

zebrafish larvae [16] (figure 2a,b). This basic organization,

which was first proposed by Brown [17], is the half-centre oscil-

lator, in which two mutually inhibitory ‘halves’ alternate in

activity. Addition of limbs required an elaboration of oscillator

to include flexors and extensors in tetrapods (figure 2c). Simi-

larly, control of fins in fish required more complex patterning

than simple left–right alternation.

(a) Evolutionary developmental mechanisms for
rewiring central pattern generators

We are just at the threshold of understanding the evo-devo

[18,19] mechanisms underlying neural circuit evolution. Frog
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Figure 3. Metamorphosis of Xenopus showing changes in motor patterns. (a) Tadpoles exhibit axial locomotion with left and right sides of the tail alternating. The
plot on the right shows an idealized recording of ventral root activity, with alternation between left and right at root one (VR1) and progressive activity down spinal
segments on the right side (VR1, 8, 15). (b) In early premetamorphosis, limb buds have emerged, but activity is still strictly axial with left right alternation. Flexors
and extensors on hindlimbs are coactive with tail. (c) In late premetamorphosis, the legs are now independent of the tail and two motor patterns exist at the same
time, a rapid tail movement and a slower bilaterally symmetric kicking movement. Now, flexors and extensors alternate, but left and right legs are coactive. (d) In
the adult frog, the tail has been absorbed and the legs continue to exhibit a bilaterally symmetric kicking movement. Adapted from [20]. (Online version in colour.)
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metamorphosis offers a glimpse into how the evolutionary pro-

cess of transforming a CPG based on an axial half-centre to a

limb-based locomotor system might have occurred [20–22].

Tadpoles swim by progressive undulations of their tail

(figure 3a), with the left and right sides in alternation at any

time. In contrast, adult frogs use their hindlimbs for propulsion

with the left and right hind limbs working in synchrony and

alternation occurring between limb flexors and extensors

(figure 3d). During metamorphosis, there is a gradual transition

of the legs from left–right alternation (figure 3b) to left–right

synchrony (figure 3c,d). At one point, there is coexistence of

the tail and leg motor patterns, indicating that these two CPGs

coexist in the spinal cord (figure 3c). The leg circuitry arises

from the axial CPG circuitry. As the leg CPG becomes separate,

the role of nitric oxide (NO) shifts. Initially, nitric oxide synthase

(NOS) is not expressed in the regions of the spinal cord where the

presumptive limb networks are developing [23]. It is thought

that NO inhibits the development of these networks and that

its absence permits the proliferation of the neurons involved in

limb movements. By late pre-metamorphosis (figure 3c), NOS

staining is found throughout the spinal cord, possibly to end

proliferation. Thus, even within one animal, there is a divergence

of CPG circuits underlying radically different behaviours.

It is not hard to extrapolate from this example how limbed

movement might have evolved from an axial-based CPG.

There are some interesting studies with regard to evo-

lutionary development of CPGs, which suggest that small
genetic changes can rewire a CPG and cause significant

changes to the motor pattern. For example, a single gene

mutation in Icelandic horses affects their gait. The horses nor-

mally prefer a trotting gait, in which diagonally opposite legs

move together (figure 4a). A premature stop codon in the

DMRT3 gene is permissive for the horse to have a ‘pacing’

gait, in which the legs on the same side of the body move

together (figure 4b) [24]. When expressed in mice, this allele

disrupts motor pattern coordination (figure 4c,d ). DMRT3 is

normally expressed in a subset of spinal interneurons that

project ipsilaterally and contralaterally, but its exact role is

not known. It might serve as a signalling molecule for axon

growth. For example, the ephrin receptor A4 (EphA4) and

ephrin ligand B3 (EphrinB3) are axon guidance molecules

that regulate whether axons cross the midline of the spinal

cord during development (figure 4e). When either of these

molecules is knocked out in the spinal cord, excitatory inter-

neurons are allowed to cross the midline. Mice with EphA4

knocked out have a hopping gait instead of an alternating

gait (figure 4f,g) [25,26]. Thus, changes in the expression of

single genes can rewire CPGs for locomotion and thereby

alter gait in a heritable manner. Interestingly, regulation of

genes for the SLIT-ROBO axon guidance molecules are

associated with the evolution of vocal learning in birds and

humans [27], suggesting that axon guidance signalling path-

ways, such as these, play an important role in the evolution of

neural circuits in general.
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Figure 4. Single gene mutations cause changes in mammalian gait. (a) When trotting, the legs on the same side move in opposite directions. (b) When pacing,
ipsilateral legs move in the same direction. Icelandic horses homozygous for a nonsense mutation in the DMRT3 gene naturally pace. (c) In typical fictive locomotion
from a neonatal mouse spinal cord, regular rhythmic activity occurs in the left (l) and right (r) lumber (L) roots from spinal ventral roots 2 and 5. (d ) In mice lacking
Dmrt3 expression, the fictive motor pattern is irregular. (e) Neurons expressing the ephrin receptor A4 (EphA4, black) normally are repelled by the ephrin ligand B3
(EphrinB3, dark grey). In EphA4 knock-out mice, these neurons can cross the midline. ( f ) Schematic of the fictive motor pattern from a wild-type mouse shows
normal left – right alternation. (g) In EphA4 knockout mice, left and right flexors burst synchronously and out of phase with extensors, producing a hopping gait.
(a – d) Adapted with permission from [24]; (e) based upon Kiehn [25]. (Online version in colour.)
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(b) Restructuring central pattern generators of
identified neurons

Invertebrates with homologous identified neurons permit a

view of the extent of neural circuit change that can occur

during divergence of behaviour. In nudibranch molluscs,

homologous neurons differ in function in species exhibiting

different behaviours. Most nudibranchs do not swim, but

those species that do, generally use one of two modes, alter-

nating dorsal–ventral (DV) whole body flexions or rhythmic

left–right (LR) flexions [4]. Neurons that are part of the DV

swim CPG have homologues in species that produce LR

swimming [28–30], but these homologous neurons are not

part of the LR swim CPG. Instead, the two types of CPG

are composed of non-overlapping sets of neurons [4]. None-

theless, homologues of DV swim CPG neurons can have a

neuromodulatory effect on the LR swim CPG [31]. Thus,

the functions of homologous neurons differ across species;

they are intrinsic to the DV swim CPG, but extrinsic

modulators of the LR swim CPG.
In nematodes, entire neural networks have been rewired to

produce divergent behaviours from the same set of neurons.

For example, two species of nematode, Caenorhabditis elegans,

which is the common laboratory species, and Pristionchus
pacificus, a predatory nematode, each have individually

identifiable neurons. The pharyngeal system used for feeding

in both species is composed of homologous neurons and

muscles. However, these species differ in feeding behaviour:

C. elegans feeds on bacteria with pharyngeal pumping [32],

whereas P. pacificus has jaws that it uses to feed upon other

nematodes, including C. elegans (figure 5a). Neurons that pro-

duce pharyngeal pumping in C. elegans have different

connectivity in P. pacificus, allowing them to control the jaw

(figure 5b) [33]. In other nematode species that also exhibit

pharyngeal pumping, there has been respecification of the

roles of motor neurons [34]. Remodelling of synaptic connec-

tions has also been seen when comparing nociceptive circuits

in different nematode species [35]. Thus, even in species with

strictly defined cell numbers, homologous neurons have been

rewired to produce divergent behaviour.
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Figure 5. Different feeding neural circuitry in two nematodes. (a) The nema-
todes C. elegans and P. pacificus have different feeding behaviours. In C. elegans,
a terminal bulb structure called the grinder mechanically breaks up bacteria. The
grinder is missing in P. pacificus, which instead has a predatory dorsal tooth that
breaks open prey items. The picture shows P. pacificus feeding on C. elegans. (b)
Schematic of the C. elegans and P. pacificus feeding neural networks showing
massive rewiring of neurons and their connections to muscles and other outputs
such as epithelial cells and glands. Lines curve clockwise from presynaptic to
postsynaptic targets. Line width indicates weight according to the number of
synaptic connections observed in serial electron microscopic images. Based on
Bumbarger et al. [33]. (Online version in colour.)
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(c) Neuromodulatory mechanisms for functionally
rewiring central pattern generators

Neurons do not need to be rewired physically to change the

motor pattern; neuromodulatory actions can functionally

rewire a CPG by strengthening or weakening synapses and

by altering membrane conductances [36–38]. Therefore,

changes in neuromodulation, either through differences in

receptor expression or neurotransmitter content, could cause

species differences in the output of neural circuits [39].

Homologous neurons that provide neuromodulatory input

to CPG circuits in the stomatogastric nervous system of deca-

pod crustaceans differ in the presence of neuropeptides

resulting in species-specific changes to the motor pattern [40].

The same is true for serotonin: in the crab, Cancer borealis and

the lobster, Homarus americanus, serotonin is released from

a set of mechanosensory neurons called GPR cells [41–43].

However, in the spiny lobster, Panulirus interruptus, the GPR
cells do not contain serotonin [44]. Neurons in the stomato-

gastric ganglion of Panulirus are one thousand times more

sensitive to serotonin than their homologues in Cancer and

Homarus, suggesting that serotonin arrives as a neurohormone

in Panulirus instead of as a neurotransmitter from a sensory

neuron. The effects of serotonin also differed in each of the

species [44]. Thus, the mode of release of a neuromodulatory

substance can cause different activity to be produced from

homologous networks.
3. Divergence of central pattern generators
underlying homologous behaviours

Behaviours, like any other trait, are presumed to be homologous

if they are present in every member of a clade. Even if two

behaviours are homologous, the neural circuitry can diverge

(figure 1b0 and b00). This occurred for the CPGs underlying

swimming behaviours of the nudibranchs Dendronotus iris
and Melibe leonina. Both species exhibit a similar swimming be-

haviour consisting of alternating LR whole body flexions

(figure 6a,d). The two species are members of the

monophyletic clade, Cladobranchia [47,48]. Recent phylogenic

analysis suggests that Dendronotus and Melibe belong to a mono-

phyletic subclade that, to the best of our knowledge, contains

only species that swim with LR body flexions [49]. Therefore,

these behaviours are likely to be homologous.

The Dendronotus swim CPG is a half-centre oscillator consist-

ing of two neurons (left and right Si2) that are mutually

inhibitory and fire action potentials in strict alternation

(figure 6b,c) [45]. Another bilaterally represented pair of neurons

(Si1) does not have mutual inhibition and does not exhibit

rhythmic bursting (figure 6b,c). In contrast, the Melibe swim

CPG is much more complex [46]. There is a kernel of electrically

coupled neurons, which forms a half-centre: Si1, Si2 and the

contralateral Si4 are electrically coupled to each other and

each inhibits its contralateral counterpart. There is another

pair of mutually inhibitory neurons (Si3) that interacts with

the Si1, Si2, Si4 kernel (figure 6e). Unlike in Dendronotus, Si1

fires bursts of action potentials in phase with the ipsilateral Si2

(figure 6f). Although the behaviour is a simple alternation,

there are multiple phases of activity within the CPG; Si3 fires

bursts after the contralateral Si2. Thus, even though Dendronotus
and Melibe have homologous swimming behaviours, the CPGs

have diverged, while the outward behaviours have remained

similar.
4. Independent evolution of rhythmic behaviours
Although the list of all locomotor behaviours is long, it is not

‘endless’ as Darwin wrote because they are constrained by

development and physics [50]. Developmental patterning in

vertebrates means that there has never existed, nor is there

likely to ever exist, a horse that resembles Pegasus, with

wings emerging from the back. Not only is the range of pos-

sible behaviours finite, but many of the existing modes of

locomotion have evolved independently several times. For

example, kangaroos, kangaroo rats and jerboas independ-

ently evolved bipedal hopping. Thus, rather than there

being endless forms, in fact there are a limited number of

forms that are reused. The notion that evolution can repeat

itself has suggested to some that it might in fact be predicable
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[51–54] and that there might be genetic causes for convergent

evolution of some features [55]. Similarly, if rhythmic behav-

iours repeatedly evolved, perhaps there are configurations of

neural circuits that re-evolved with them.

It is important to distinguish convergent evolution from

parallel evolution [56–58]. In the former, non-homologous

traits come to have similar properties, whereas in the latter,

homologous traits come to have similar properties
independently. Both are examples of ‘independent evolution’

or homoplasy. However, whereas convergent evolution pro-

vides information about the function of the trait, parallel

evolution provides additional information about the processes

necessary to develop or evolve the character. In other words,

the endpoint similarity in parallel evolution might reveal

more about constraints on phenotypic space than about the ulti-

mate function of the trait [59]. These distinctions are important
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for understanding the evolution of neural mechanisms and be-

haviour. If similar behaviours evolved convergently, then

information about the neural mechanisms could provide

insights into general properties of neural circuits. In contrast,

if similar behaviours evolved through parallel evolution, then

the neural mechanisms could provide insights into constraints

or opportunities for evolution, in other words, the ‘evolvability’

of these behaviours [8,10].

(a) Flapping flight provides examples of divergence,
homology, convergence and parallel evolution

The term ‘homology’ has been defined in many ways [60].

Here, homology refers to any character that was present in

the last common ancestor of two species as determined by

a cladistic analysis. For example, flight is a behaviour that

is homologous in all birds because the common ancestor of

birds flew. The evolution of flight involved changes not

only in the morphology and musculature of the forelimbs,

but in the pattern of neural activity that drives them [61,62]

and in the sensory feedback that they receive [63]. Compari-

sons of muscle histology in birds suggest further that changes

in muscle chemistry also played a role in the evolution of

flight movements [61].

Flight behaviour has diverged significantly across birds

from the graceful flapping of owls to the rapid movements

of hummingbirds [64]. Flight has been lost in many bird

lineages, such as ratites [65,66]. It is possible that the circuit-

ry underlying flight still exists in non-flying birds, but the

external apparatus has been rendered incapable of flight.

Certainly, flightless birds are still capable of flapping their

wings. Clearly, there must have been divergence in the

neural mechanisms underlying diverse forms of flight.

Flapping flight evolved independently in birds, bats,

extinct pterosaurs and insects. There are mechanical differences

in how these animals fly [67]. Furthermore, the sensory input to

the flight circuits differs. Bats have specialized hairs on the skin
of their wings that help sense airflow [68], birds use feather

movements to sense airflow, and insects have various other

types of receptors [69]. Birds, bats and pterosaurs rhythmically

flap their forelimbs, which are homologous in all tetrapods. In

contrast, insect wings are dorsal appendages that are quite dis-

tinct from limbs and not homologous to tetrapod legs. This

mixture of homology and novel components for the tetrapods

demonstrates that for complex traits such as flapping flight,

homoplasy is generally not due to convergence or parallel-

ism alone. In contrast, powered insect flight appears to be

completely convergent with the others.
(b) Independent evolution of central pattern generators
and rhythmic behaviours

Although there are many examples of convergent evolution of

rhythmic behaviours, few of these seem to involve convergent

evolution of neural mechanisms as illustrated by behaviour A

produced by neural mechanism a in clade g (figure 1). There

are, however, examples of independent evolution of behaviour

though parallel evolution of neural mechanisms. That is to say,

homologous neural substrates independently evolved the

same mechanism to produce similar behaviours. For example,

DV swimming evolved independently in two sea slugs Tritonia
diomedea (figure 7a) and Pleurobranchaea californica (figure 7c).

Yet their CPGs contain homologous neurons, including a set

of three serotonergic neurons called the DSIs, which participate

in the rhythmic motor pattern. In both species, release of

serotonin from the DSIs increases the strength of synapses

made by another CPG member, C2 (figure 7b,d ). Furthermore,

serotonin is necessary for the activation of the swim motor pat-

tern. This neuromodulatory action is missing in another

nudibranch, Hermissenda crassicornis, which is not a DV swim-

mer (figure 7e,f ) [70]. This suggests that evolution of the

DV swim CPG may have involved parallel changes in the

serotonergic neuromodulation of homologous neurons.
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(c) Repeated evolution of rhythmic behaviours through
latent central pattern generators

Some traits have been lost and then regained in the same lin-

eage. In some cases, the reversion is permitted by the

retention of gene networks for the lost feature that can be

reactivated. For example, there is strong evidence for

repeated limb and digit loss and the repeated reappearance

of this complex morphological trait in a clade of lizards

[71]. It is of interest to understand whether, like reactivation

of gene networks, the re-evolution of rhythmic behaviour

involves the reactivation of latent neural circuitry.

In general, the nervous system seems to be more highly

conserved than the neuromuscular system. Arbas [72,73] com-

pared the nervous system of locusts, which are excellent flyers,

to that of flightless grasshoppers, which lack hindwings and

have only vestigial forewings. Homologues of motor neurons

that innervate flight muscles in locusts persist into adulthood

in the grasshoppers, even maintaining presynaptic terminals

despite the absence of muscles to innervate [74]. Wing stretch

receptor cells are also retained [72]. Furthermore, interneurons

that play an important role in locust flight are also found, with

very little change in morphology in the flightless grasshoppers

[73]. This suggests that the components of the nervous system

are highly conserved, whereas the periphery can exhibit much

more phylogenetic variability.

Insect flight has been lost several times [65,75]. In a study on

stoneflies, it was found that the loss of flight preceded loss of the

wings [76], suggesting that the evolutionary pressure is on the

behaviour, not the structure. The ability to generate the flight

motor pattern and the presence of wings are therefore discon-

nected. For example, larval locusts lack wings, yet the flight

motor pattern can be recorded from the nervous system when

the monoamine, octopamine, is applied [77]. This suggests

that the flight CPG is latent in the larval nervous system and

requires octopamine to be activated. Similarly, a recent molecu-

lar phylogeny of stick insects indicates that they have lost and

regained flight several times [78]. One potential mechanism

for such apparent repeated loss and gain is that the developmen-

tal programme was never actually lost. It is possible that the

flightless stick insects have the potential for flight, but perhaps

have had their development arrested in a neotenous state that

lacks the correct neuromodulatory activation.

(d) Independent evolution of rhythmic behaviours
produced by distinct neural mechanisms

Leeches and C. elegans have sinusoidal locomotor behaviours

that resemble lamprey swimming behaviour, but are pro-

duced by CPG circuits that are fundamentally different

from each other and from that of lamprey. In lampreys, the

left and right sides contract in antiphase, producing an LR

alternation of each body segment (figure 2b). However, in

leeches and nematodes, the dorsal and ventral sides are out

of phase with each other, causing them to undulate up and

down rather than side-to-side (figure 8a,b).

Although these behaviours resemble each other, the compo-

sition and structure of the underlying CPGs differ substantially.

Whereas the lamprey segmental CPG has a half-centre organiz-

ation with the left and right sides mutually inhibitory and firing

1808 out of phase [82] (figure 2a), the neurons in each segment of

the leech swim CPG fire in three phases, each 33% out of phase

with the others [79,83] (figure 8c).
The CPG for sinusoidal movement in C. elegans has not been

definitively determined [84]. However, one model suggests that

it is not segmentally organized [81]. Instead, the CPG is located

in the head ganglion (figure 8d). The CPG outputs to muscles in

the head and to two interneurons that run the length of the

animal (not shown). These interneurons, along with a third

interneuron from the tail, coordinate the activity of excitatory

and inhibitory motor neurons along the length of the animal.

The CPG itself does not resemble the segmental CPGs of

either leech or lamprey. The alternations of dorsal and ventral

firing do not arise through a set of mutually inhibitory neurons,

but rather though crossed excitatory neurons that synapse onto

inhibitory neurons. Unlike the leech swim CPG, where most of

the connections are inhibitory, most of the synapses in the C. ele-
gans locomotor CPG are excitatory [81]. Thus, lampreys, leeches

and nematodes converged onto sinusoidal movement, but used

three different network architectures and non-homologous

neurons. This is equivalent to the evolution of behaviour A in

clade g using neural mechanism a* (figure 1).
5. Convergent central pattern generator
properties underlying distinct behaviours

There are many commonalities to CPGs regardless of the be-

haviour or species or even phylum. These include membrane

and synaptic properties and circuit connectivity. These

common properties, which have been called the ‘building

blocks’ of CPGs [85–88], often represent examples of conver-

gent evolution. Finding them in different phyla provides

evidence of their importance for generating rhythmic activity.

Most CPG circuits rely on inhibition rather than excitation to

maintain rhythmicity. As discussed, mutual inhibition in the

form of a half-centre oscillator is a common, but not universal,

network architecture of CPGs. It is found in molluscan swim-

ming [46], leech heartbeat [84], lamprey swimming [89] and

tadpole swimming [15], among others [90]. The flapping move-

ments of the pteropod mollusc Clione limacina are also

produced by a CPG organized around a half-centre oscillator

[91]. The membrane properties of neurons in CPGs also show

convergence. For example, CPG neurons often exhibit post-

inhibitory rebound, intrinsic bursting and bistability [92].

One indication that these are convergent properties rather

than conserved in all neurons is that they are emergent proper-

ties that arise from different sets of ion conductances [93]. Thus,

these common features of CPGs have been established as prin-

ciples of operation that occur across phylogenetic groups and

across different types of behaviours [94]. Comparisons of the

mechanisms used by different half-centre oscillators have pro-

vided insights into the production of rhythmic behaviour [95].
6. Summary
Work on CPGs has shown that, to a large extent, behaviour and

neural mechanism act as separate levels of the biological hierar-

chy with respect to evolution (figure 1). The nervous system is

generally conservative and gradual evolution of CPGs goes

hand in glove with evolution of rhythmic behaviours. The mech-

anisms for rewiring a CPG network might be quite simple, such

as changes in axon guidance molecules. Networks also can be

functionally rewired through changes in neuromodulation.

There are also striking examples where evolution of

neural circuitry and behaviour are not aligned. Analogous
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behaviours can be produced by different neural mechanisms.

In fact, even homologous behaviours can diverge in their

neural mechanisms. Homologous neurons can diverge in

their functionality in networks, with entire networks being

rewired. Within a clade of closely related species, a rhythmic

behaviour can be lost and regained several times, perhaps

because of retained latent circuitry.

CPG circuitry itself might be under evolutionary pres-

sure that is invisible at the behavioural level. Thus, there can

be divergence of neural circuitry underlying similar

behaviour. Although the details of the behaviours and the

circuits differ, CPG circuits continually converge on particular

properties, such as mutual inhibition and post-inhibitory

rebound, which have been recognized as important from

a reverse engineering standpoint. The convergent evolution of

these emergent properties across the phylogeny is a strong indi-

cation of their importance in production of rhythmic behaviour.
In summary, the diversity of animal behaviour comes

about through a variety of different mechanisms. It is clear

that knowing the neurons and knowing the behaviour is not

sufficient for understanding the neural basis of that behaviour,

but it is an important start. This has significance for neuroscien-

tists trying to extrapolate from one species to another and for

evolutionary biologists interested in explaining the evolution

of behaviours.
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