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Virtually no occupational exposure standards specify the
level of risk for the prescribed exposure, and most occu-
pational exposure limits are not based on quantitative risk
assessment (QRA) at all. Wider use of QRA could improve
understanding of occupational risks while increasing focus on
identifying exposure concentrations conferring acceptably low
levels of risk to workers. Exposure-response modeling between
a defined hazard and the biological response of interest is
necessary to provide a quantitative foundation for risk-based
occupational exposure limits; and there has been considerable
work devoted to establishing reliable methods quantifying
the exposure-response relationship including methods of ex-
trapolation below the observed responses. We review several
exposure-response modeling methods available for QRA, and
demonstrate their utility with simulated data sets.
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INTRODUCTION

The industrial hygiene community is focused on limit-
ing risk, which is the probability of adverse response

in exposed occupational populations. Until now, very few
occupational exposure limits have been based on quantitative
risk assessments (QRA) that have the goal of achieving a
targeted level of risk. In the few instances where QRAs have

been available, the resulting exposure limits typically represent
decisions influenced by other factors such as economic or
measurement feasibility.(1,2) To characterize and disclose risks
so that the resulting occupational exposure limit (OEL) better
reflects the hazards involved and achieves an explicit low level
of residual risk, QRA is required.(3–5) The key step in QRA is
estimation of the exposure-response relationship. Today, there
are a variety of statistical tools available for exposure-response
modeling that should be used to characterize risks whenever
data permit.

We use “exposure” generically to refer to either the en-
vironmental concentration of a hazard or to the dose of the
same hazard in a target tissue. In animal toxicology stud-
ies, responses are often measured as dichotomous end points
(e.g., tumor presence), but can also be continuous (e.g., liver
weight) or ordinal (e.g., pathology severity scores). While the
exposure-response relationship in such studies is generally
well characterized, differences in species, routes, and duration
of exposure, and the relative potency of similar exposures in
humans, are sources of significant uncertainty.

Epidemiology studies can also be used to describe the
adverse responses of humans to workplace hazards. One major
advantage of epidemiology data is that no species extrapolation
is needed. As with animal studies, responses can be measured
on a variety of scales (continuous: lung function; ordinal:
disease severity; dichotomous: cancer incidence, mortality)
but the exposure concentrations may need to be historically
reconstructed and estimated. Humans are rarely exposed to a
single hazard, and even when they are, the appropriate mea-
sure of exposure may not be known. Confounders and effect
modifiers may need to be incorporated in exposure-response
models, the distribution of unknown host risk factors may
influence or be influenced by the exposures, and developing
health effects may influence current exposure status. Whether
animal or human studies are used as the basis, ultimately,
estimates of exposure-response relationships are required for
deriving scientifically sound risk-based OELs.(6)
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When using toxicological or epidemiological studies,
choices made in modeling the exposure-response relationship
affect OEL development. When a single statistical model is
chosen to derive the final risk estimate, while other plausible
models that produce different risk estimates go unused, model
uncertainty in the risk estimation process is effectively ignored.
Understanding the modeling process and the associated uncer-
tainties is essential when developing an OEL and has been dis-
cussed extensively in National Research Council’s (NRC) Sci-
ence and Decisions: Advancing Risk Assessment, also known
as the “Silver Book,”(5) the NRC’s Science and Judgement in
Risk Assessment, also known as the “Blue Book,”(7) and the
NRC’s Risk Assessment in the Federal Government: Managing
the Process, also known as the “Red Book.”(3). Here, we focus
on modeling and model uncertainty and describes a range
of statistical methods to characterize modeling uncertainty
in QRA. Key points of emphasis covered in this manuscript
include:

• various exposure-response assessment techniques used for
point of departure (POD) selection, usually in animal stud-
ies, each with inherent strengths and limitations; and

• new methods for OEL setting, improving on the traditional
techniques.

BACKGROUND

Establishment of Point of Departure
We define the POD as the exposure associated with ob-

served risks within or just below the range of observed data.
In practice, this risk level is selected to be 10%, well above a
typical target risk level of concern. As discussed below, using
model averaging or semiparametric methods, it is possible to
reliably estimate the dose associated with low levels of risk
that are considerably lower than 10% with no extrapolation
from a POD.

Once the POD and target risk estimate are determined,
the approach used for establishing the OEL will depend on
organizational policies and other considerations.(8) One such
consideration that we discuss in detail is the linear extrapo-
lation from the POD to an exposure associated with a target
risk level. Typically, this is performed by specifying a lin-
ear exposure-response relationship from the POD toward the
origin (i.e., the point where there is no exposure and excess
risk) and assuming the response follows this line down to
the risk level of interest. Alternatively, an allowable effect
is constructed by adjusting the POD downward through the
application of a product of uncertainty factors that attempt
to account for differences in exposure duration, variability,
sensitivity, interspecies adjustments, and a number of other
modifying factors. Derivation and application of uncertainty
factors are discussed in greater detail in Dankovic et al.(9)

NOAEL/ LOAEL-based PODs
The idea of the no observed adverse effect level was in-

troduced by Lehman and Fitzhugh.(10) The NOAEL is the

highest experimental exposure where there is no statistically
or biologically significant change in the outcome of inter-
est. Changes that are not considered adverse are not used as
the NOAEL even if they achieve statistical significance. In
contrast to the NOAEL, the lowest observed adverse effect
level (LOAEL) is the lowest dose or concentration that has been
shown to biologically or statistically increase the outcome of
interest relative to responses in unexposed individuals. In most
animal studies, the statistical power is limited for detecting the
small effect sizes that might be expected. It has been estimated
that the highest exposure group qualifying as a NOAEL is
estimated as being equivalent, on average, to model-based
benchmark dose estimates (BMD, see below) for a 10% excess
risk.(11)

One limitation in the NOAEL/LOAEL(12) approach is that
it ignores the shape of the exposure-response curve which
would inform extrapolation to lower levels; this is because
the NOAEL/LOAEL is constrained to be one of the levels
of exposure selected in the experiment. Another limitation is
that the number of replications at each level affects the ability
of the NOAEL/LOAEL to detect differences between dose
groups. In general, NOAEL/LOAELs should only be used to
set OELs if the data are not adequate for exposure-response
analyses. When it is necessary to use the NOAEL/LOAEL
approach, special attention should be paid to the limitations of
the approach and the choice of uncertainty factors.

PODs from Exposure-Response Models and the
Benchmark Dose Approach

Exposure-response models move beyond the hypothesis
testing strategy embodied by the NOAEL/LOAEL approach to
utilize all of the information in the exposure-response relation-
ship to predict risks continuously over the range of exposures.
Exposure-response models are described by an expected re-
sponse = f (d, X1,X2,. . .,Xc) and a distribution defining the
variability of the responses. The expected response is defined
as a function of dose d and possibly other risk factors of
interest represented by the variables X1,X2,. . .,Xc. In animal
toxicology studies, this is often simplified to expected response
= f (d), and this function is estimated given experimental data.

The function f (d, X1,X2,. . .,Xc) is often assumed to have
a known parametric form reflecting assumptions on the shape
of the dose response-curve. Care must be taken so that the
model describes the data adequately, where the adequacy of fit
is typically assessed using a goodness of fit statistic. Models
that do not adequately fit the data should not be used.

When multiple models adequately describe the data, the
model that is ultimately used for an occupational risk assess-
ment should be chosen on some a priori model-choice crite-
rion. The Akaike information criterion (AIC)(13) is a frequently
used criterion to pick the “best model,” although other metrics
are available. Different criteria can lead to different choices,
and, when setting an OEL from a model, the method of picking
the “best model” should be transparent.

When estimating the exposure-response relationship there
are minimum data requirements. For dichotomous data, one
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FIGURE 1. This figure shows the dichotomous specification of
the added risk specification of the benchmark dose. The quantity
P0 is the probability of that response for unexposed subjects; P0

+ BMR represents the increased probability of response at the
benchmark dose. Finally, the BMD is the dose associated with the
point on f (d) associated with the population P0 + BMR probability
of adverse response.

requires at least one dose group whose response is neither
the background rate nor 100%. If such data do not exist,
then the exposure-response relationship will not be estimable
as the data essentially miss intermediate levels of the
exposure-response curve. It is possible that no significant
exposure-response relationship has been observed and the use
of the BMD may result in doses that far exceed the maximum
experimental dose. In either situation the use of the NOAEL
may be the only viable option.

Given a suitable exposure-response model, one can use this
model to estimate the BMD,(12) which is described in Figure 1.
The BMD is the dose associated with a specified change in the
probability of response, known as the benchmark response
(BMR). In estimating the POD, the BMR is often set to a
predetermined level (typically 5% or 10%), which usually cor-
responds to the point where the BMD can be estimated without
model extrapolation. The BMD is a point estimate, which
does not reflect uncertainty in the true BMD; consequently,
the 100(1-α)% benchmark dose lower bound (BMDL) is often
used to define the POD. This quantity takes into account the
sampling variability but does not reflect the uncertainty in
the model selection process. When different models are used,
the BMDL may differ, implying there is sensitivity of risk
estimates to model form.

The process for selecting the “best” exposure-response
model involves uncertainty, especially when multiple models
adequately fit the data and the BMDLs from these mod-
els vary by a large factor. This problem, which is called
model uncertainty, has many different solutions of varying
sophistication. Classically, a single model form was chosen
a priori and was used to determine the POD.(14) When using
this approach one should follow the NRC Silver Book’s(5)

minimum recommendation of reporting alternative plausible

FIGURE 2. Graph of the continuous specification of the bench-
mark dose based upon the figure of Budtz-Jorgensen et al.(38) The
quantity X0 is the abnormal response cutoff, P0 is the probability of
that response for unexposed subjects, and P0 + BMR is represents
the increased probability of response at the benchmark dose.
Finally, the BMD is the dose associated with the point on f(d)
associated with the population P0 + BMR probability of adverse
response.

solutions to the risk manager as a context for understanding
the uncertainty involved, where plausible implies a model is
well supported by the data. The US EPA Benchmark dose
guidance document(15) recommends a decision logic approach
in picking an estimate to use as a POD.

BMD for Continuous Responses
The BMD has also been defined for continuous responses

such as weight or cholesterol.(16,17) Instead of working with the
probability of a dichotomous response, one creates probability
statements based upon distributions of continuous endpoints
and definitions of abnormal response, usually at an extreme
of the continuum of responses. If large values of a response
are considered adverse (e.g., cholesterol), the user must specify
some value X0 above which responses are considered abnormal
in the population of interest. For the unexposed group, this
response is assumed to occur with probability P0 (baseline
prevalence). The BMD is the dose where the probability of the
abnormal response is P0+BMR. This relationship is graph-
ically described in Figure 2. Here the response is assumed
to increase with dose. It is seen that the BMD is the dose
that increases the probability of an abnormal response by the
BMR. This is one method of computing the BMD, and other
specifications are possible.

POD from Model Averaging of the BMD
Model averaging(18–20) (MA) is a technique used to account

for uncertainty in model selection. The main advantage to
this method is that it explicitly accommodates the fact that
multiple models may be consistent with a set of data by forming
a BMD/BMDL as a weighted average of all of the models
considered. This approach constructs a weighted average of the
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exposure-response curve from the competing models where
weights are based upon on how well each model fits the data.

A thorough review of the reasoning behind different ap-
proximation methods can be found in Hoeting et al.(20) and
Buckland et al,(19) which describe the basis for a variety of
model averaging approaches(21–27) used in practice. In inves-
tigating approaches for estimating the BMD we focus on the
frequentist model averaging estimates used by Wheeler and
Bailer.(27)

Early uses of model averaging in risk assessment focused on
averaging individual model derived BMD/BMDLs,(22) which
we term the “average-dose” approach. In the context of QRA,
the set of BMD estimates is obtained from some finite set of
possible models together with a set of positive weights that
sum to one. The derived BMD and BMDL is then a weighted
average of individual model estimates. The “average-dose”
Bayesian MA estimate of the BMD and the BMDL can be
constructed from the use of existing software packages, and
are calculated by taking the weights formed from the AIC or
the Bayesian information criterion BIC.

Wheeler et al.(28) showed that, while in many cases average-
dose Bayesian model averaging was superior to picking the
best model, its statistical properties were not optimal. In-
stead of focusing on averaging individual model-specific BMD
estimates, other authors have investigated averaging the en-
tire exposure-response curve(27, 29) and estimating the BMD/
BMDL from this average, which we name the “average-model”
approach.

Wheeler and Bailer(27) used the frequentist MA methods of
Buckland et al.(19) to construct this average-model estimate, but
a Bayesian approach(18) can also be used. In simulation exper-
iments,(27) the BMD/BMDL average-model estimates exhib-
ited better statistical properties than the average-dose method.
Based upon this study, we recommend that a large number
of models be used for the model average, and, if cancer is
the endpoint of interest, the quantal linear model should be
included in the analysis to account for the possibility of a 1-hit
cancer model. For our example (below), we look exclusively
at model averaging for dichotomous outcomes. For continuous
outcomes, we refer the reader to Shao and Gift.(25)

POD from Semiparametric and Nonparametric Models
and the BMD

Wheeler and Bailer(30) describe a Bayesian semiparamet-
ric method that uses a flexible spline construction for BMD
analyses. In terms of its statistical properties, this method
was shown to be superior to the model averaging method of
Wheeler and Bailer.(27) The approach is fully Bayesian, which
means one can easily include prior information on such things
as the incidence of the response in historical controls. Even
though semiparametric modeling avoids many of the model
selection issues encountered in BMD modeling, significant,
informed choices must still be addressed when using this
method. Its use requires the choice of spline basis functions
located at specific knot locations which should be selected
before modeling begins.

Other fully semiparametric/nonparametric modeling
methodologies have been recently developed for dichotomous
and continuous data(31–35) some of which overcome the knot
selection problems of Wheeler and Bailer. These methods are
fully nonparametric. Of these methods we note the continuous
BMD method of Lin et al.(35) since they showed that, for large
samples, their method would converge to the true underlying
exposure-response curve, and, as a consequence, the BMD es-
timate would also converge to the true value. Wheeler et al.(34)

provide a method for continuous outcomes that accounts for
uncertainty in the specified response distribution as well as the
exposure-response relationship.

As described above, in traditional BMD analyses, linear ex-
trapolation from the POD to a target risk level is used to set the
OEL. When using the MA “average-model” approach(27) or the
semiparametric approach(30) this added linear extrapolation is
unnecessary and the exposure concentration should be chosen
directly at the level of risk specified (BMDR). When applied
to actual data and investigated in simulation studies, these
approaches have been found to well describe both the model
and statistical uncertainties at excess risk levels considerably
below the 5 or 10% level.(36)

Epidemiological Data Issues
For human studies, many of the same techniques can be used

with some modifications. Ideally, human studies have available
detailed work histories that can be mapped to an historical
exposure matrix such that each worker’s estimated exposure
history can be compiled and appropriate time-dependent ex-
posure metrics calculated. Even when exposure history is
available, significant measurement error is likely, degrading
statistical power and potentially biasing estimates. In addition
to the model uncertainty, exposure uncertainty would need to
be considered in most epidemiology studies and in some cases
it can be estimated.

Using human epidemiological data the exposure-response
for the critical adverse effect can be modeled to low exposure
levels. Here there is no need to define a POD, but uncertainty
in the exposure response at low exposures can be a problem
when the range of observed exposures is far above the range
of interest. In this case, a linear low-dose extrapolation is a
reasonable choice.(4,5,37)

In human studies, model selection is more complex due to
the presence of confounders or effect modifiers since there are
often many ways the confounders can enter the model. One
must also take into account many other considerations when
constructing the exposure-response relationship. Table I gives
a list of the most common of these.

The effect of possible confounders or covariates on the
response must be taken into account in a BMD calculation.
Bailer et al.(21) and Budtz-Jorgensen et al.(38) note that the
BMD is often dependent upon these confounders. The BMD
could be set in relation to specific confounders, and one may
compute several associated BMDs for subpopulations of in-
terest. Examples of BMD analyses in observational occupa-
tional studies includes respiratory disease in coal miners(21)
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TABLE I. Common Impediments to Inference When Developing an Exposure-Response Relationship from
Epidemiological Studies

Issue-Origins Consequences Fixes

Confounding bias -Other risk factors
(RF) for outcome are associated with
exposure(49)

Under- or over-estimation of effects of
exposure

Collect explicit information on
confounding RFs or useful surrogates
and model along with exposure effects.

Effect modification- Estimate of
exposure effect depends on other
RFs(49)

RF-specific exposure response estimates
result; response is not generalizable

Derive estimate for exposure response at
some specified level of confounders,
e.g., for population average smoking

Selection bias – Entry into study
depends jointly on exposure status and
outcome status(49)

A problem for retrospective studies only;
potentially fatal flaw when present

Achieve high participation rates; blind
potential subjects and study operatives
on study hypotheses; estimate
maximum possible bias resulting

Healthy worker effect (HWE)- A
special set of confounding RFs related
to unknown health attributes of study
participants that influence entry to
study such as through hiring or
fitness(49)

The HWE can cause substantial
underestimation of exposure effects
depending on outcomes studied; can
affect mortality and morbidity, cancer
and non-cancer. The HWE may vary
across demographic groups and over
period of employment. If disease
detection is superior in worker
population overestimation of effect can
occur.

Use internal comparison populations or,
with external comparisons (e.g.,
national rates), estimate population
differences.

Healthy worker survivor effect
(HWSE)-Confounding that is
time-dependent due to changing
composition of workforce with
duration of employment. For example,
generally healthier workers may stay
employed longer than others, long
duration workers may smoke less,
employed workers may have better
healthcare.(50)

Inappropriate comparisons may result
depending on study design and
analysis, usually causing
underestimation of exposure effects.

Sometimes, if there is sufficient variation
in exposure levels across study
population, modeling employment
duration together with exposure
metrics can reduce this bias.

Reverse Causation- A special case of
survivor bias in which the advent of the
disease or health effect itself alters a
worker’s exposure status through
employment termination or other
health-induced job changes.(51)

Cases with the outcome effect may
exhibit less cumulative exposure than
non-cases even though the outcome
was caused by the exposure; a
fundamental modeling assumption is
violated and model fitting can be
disabled.

This would be a fatal flaw in most study
designs. It is much less important with
long latency diseases where recent
exposures are discounted (lagged). It
occurs particularly with outcomes in
which there is a preclinical phase of
irritancy, impairment, or
hyper-responsiveness to the exposure
causing the outcome. Complex
analytical approaches based on
matching algorithms have been
proposed and applied.

Variable susceptibility- A wide gradient
of susceptibility resulting in a higher
incidence of health effects cases
initially from the most susceptible
subjects, possibly depleting some
high-susceptibility subpopulations over
time producing lower overall
susceptibility with advancing
cumulative exposures(52)

Exposure metrics show supra-linear
associations with outcomes – apparent
diminishing or attenuating effects with
increasing exposure. Low exposure
extrapolation pertains increasingly to
higher susceptibility subpopulations.
Similarly, a low susceptibility
subpopulation could be present whose
proportion of the population would
increase over time.

Impose a linear exposure-response for a
subset of observation time with less
cumulative exposure, or attempt to
accommodate a duration-dependent
decline in susceptibility within the
exposure-response model.
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and Parkinsonism in welders.(39) In these studies, exposure-
response models were developed, and the exposure-response
function then applied to predicting distributions of the outcome
variable.

As in animal studies, one can accommodate departures from
linearity by fitting generally specified smooth curves based
upon splines or fractional polynomials.(39, 40) Spline applica-
tions in observational occupational studies include analyses of
prostate and brain cancer mortality(41) and aerodigestive can-
cer incidence(42) in workers exposed to metalworking fluids.
Fractional polynomials accommodate non-linear exposure-
response relationships, and may be a superior basis for risk
assessment as they better account for uncertainty in the low
exposure region.

As described above, Bayesian model averaging provides an
alternative to splines as well as choosing a single model. Here,
one is concerned not only with the shape of the exposure-
response curve, but with how well the other covariates of
interest are specified and modeled and the number of models
increases exponentially as the number of covariates increase.
Examples of model averaging in human environmental or oc-
cupational studies include lung cancer associated with arsenic
in drinking water(29) and respiratory disease in coal miners.(23)

METHODS

To compare the utility and results of various exposure-
response modeling strategies for finding the critical dose when
developing an OEL, an example is followed through various
modeling options and critical exposures using several alterna-
tive techniques.

Datasets
Hypothetical animal inhalation toxicology data sets were

constructed (Tables II and III). Here the responses are dichoto-
mous, i.e., the data are represented as the number of animals
exhibiting an adverse response out of a number of animals
exposed at particular level. Inhalation doses are expressed in
ppm and incidence of adverse responses tallied as number of
animals with the adverse effect for each dose. Tables II and III
illustrate data with different exposure-response properties.

Estimating the NOAEL/LOAEL
Data from observations 1, 2, and 5 in Table II were used for

this illustration. The highest dose with no statistically signif-
icant response was determined to be the NOAEL. The lowest
dose with a statistically significant response was determined
to be the LOAEL. The Fischer’s exact test, with a Bonferoni
adjustment, at the α = 0.05 level was used to test for statistical
significance.

Estimating the BMD
For the data in Tables II and III, we perform a BMD analysis

for the probit, multistage, Weibull, gamma, log probit and
quantal linear models available in the EPA Benchmark dose
software system (BMDS 2.5)(43) using all dose levels for these

data and the Dragon Excel spreadsheet BMDS wizard that
is provided with the BMDS software. With all dose groups
considered, the BMR is set to 10% and added risk is used in
determining the BMD.

Estimating the Average-Dose Bayesian Model
Average

The average-dose model BMD and BMDL estimates are
constructed from the weights constructed using the AIC cri-
terion. This is done using seven models available in the EPA
BMDS model suite for dichotomous data described in Tables II
and III. The weights are computed using the AIC calculation
method of Wheeler and Bailer(27) and not the BMDS method.

Estimating the Average-Model Model Average
We use the model averaging for dose response (MADr)

software package(44) to compute the MA according to the
method of Wheeler and Bailer.(27) We use all of the models
that were fit using the BMDS suite described above, and
the AIC criterion for the weighting. The model choice is
done for continuity with the above examples. In practice,
we recommend the exclusion of the Multistage model and
inclusion of the logistic and log-logistic models (rationale is
fully described in Wheeler and Bailer(36)). To use this approach,
the MADr package or similar software is required.(44) The

TABLE II. Dose Response Dataset I

Observation
Concentration

(PPM) # on test

# exhibiting the
adverse
response

1 0 20 1
2 12.5 20 1
3 25 20 4
4 50 20 8
5 100 5 5

Hypothetical dichotomous data set used as an example throughout the text to
illustrate various methodologies in finding the critical dose.

TABLE III. Dose Response Dataset II

Observation
Concentration

(PPM) # on test

# exhibiting the
adverse
response

1 0 10 0
2 10 10 0
3 20 10 3
4 40 10 4
5 80 10 6

Hypothetical dichotomous data set used as an example for Benchmark Dose
estimation where there is significant model uncertainty when estimating the
dose response.
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software is relatively easy to use, but users should have a good
understanding of the implications of model selection when
attempting model averaging.

Estimating the BMD using Semiparametric
Modeling

We estimate the BMD using the semiparametric method of
Wheeler and Bailer.(30) Following that work, knots were placed
at 0, 12.5, 45, and 100% of the maximum dose. The software
code used for this analysis is freely available from the authors.

RESULTS/DISCUSSION

NOAEL/LOAEL
Given the full data set described in Table III, the NOAEL/

LOAEL approach is not appropriate, as an exposure-response
curve is estimable. However, if one were only given observa-
tions 1, 2, and 5, the NOAEL/LOAEL approach would be a
reasonable choice because the reduced data set would not be
adequate to support modeling.

Using only observations 1, 2, and 5 from Table II, the
null hypothesis of no difference in mean cannot be rejected
at dose 2.5 ppm. Consequently, the NOAEL for this data set
is 12.5 ppm, with the LOAEL being 100. Both the NOAEL
and LOAEL are dependent entirely on the dose spacing and
numbers of events in the given data.

BMD
Using the dose-response data in Table II, BMDs were

calculated (Table IV). One can see that depending on the
model, the estimated BMD is between 10.9 ppm and 26.4 ppm
with lower confidence limits on the BMD (i.e., BMDL) (here
one-sided 95% confidence intervals) being between 7.2 ppm
and 16.4 ppm. The BMDLs from this example do not vary
more than a factor of 2.3.

Using the data from Table III, however, the BMDLs vary
by almost a factor of 5 (Table V). Though one particular
model fit is dramatically different from the others, Table V

shows that all models describe the data adequately. Here, the
BMDL computed from the Probit model is 16.2 ppm which is
4.9 times greater than the BMDL from the Log Probit, which
is computed to be 3.3 ppm. As with the first data set, all of the
models fit the data (as measured by a goodness of fit statistic).
A natural question arises as to which BMD is appropriate as an
estimate of the POD dose which will then be used to establish
the OEL.

For the data given in Table II, where the BMDLs of the
plausible models differ by less than a factor of 3, the model
with the lowest AIC normally would be chosen as the basis of
the POD estimate.(18) However, in the second data example this
is not the case, and the decision logic would suggest the model
with the lowest BMDL be used. As seen in these two examples,
such an approach may lead to PODs that are not based upon
any probabilistic quantification of the true model uncertainties
involved and are based upon a very different rationale. A
typical model selection and uncertainty process is summarized
in Table VI. In this standard decision matrix for determining
PODs, model uncertainty issues remain, and selecting one
model has been found to underestimate the true BMD leading
to potential dangers in model selection approaches.(45,46)

Average Dose Bayesian Model Averaging
For the first dataset the model fits are in Table IV, we

construct the average-dose BMD and BMDL estimates from
the weights constructed using the AIC criterion. From these
weights, as well as the BMD and BMDL estimates found in
that table, the dose model average BMD can be calculated
as 22.8 ppm and the BMDL as 14.5 ppm. Table V gives the
estimates for the second data set where the BMD is calculated
to be 11.5 ppm with a BMDL of 6.3 ppm. While these estimates
are similar to the single model estimates they take into account
the model uncertainty by combining separate model fits.

Average-Model Model Averaging
As can be seen in Table IV for the first hypothetical dataset,

the MA BMD is calculated to be 23.0 ppm with the lower

TABLE IV. BMD Model Estimates

BMD BMDL X2 GOF P-Value AIC MA WeightsA AIC A

Probit 21.2 16.4 0.77 68.21 0.44 68.21
Multistage 21.9 12.1 0.76 68.49 0.14 70.49
Weibull 26.4 14.1 0.56 70.13 0.17 70.13
Gamma 25.4 13.5 0.48 70.72 0.13 70.72
Log Probit 25.4 14.3 0.40 71.31 0.09 71.31
Quantal Linear 10.9 7.2 0.19 73.54 0.03 73.54
MA Average Dose 22.8 14.5 NA NA NA NA
MA Average Model 23.0 12.3 0.50 NA NA NA
Semiparametric 18.6 9.2 NA NA NA NA

Computed benchmark doses across various estimation methodologies where the BMR = 10%, This is done using seven models available in the EPA BMDS model
suite for dichotomous data described in Table II as well as the semiparametric method of Wheeler and Bailer.(30) A The weights are computed using the AIC
calculation method of Wheeler and Bailer(27) and not the BMDS software.
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TABLE V. BMD Model Estimates

BMD BMDL X2 GOF P-Value AIC MA Weights A AIC A

Quantal Linear 8.7 5.8 0.78 43.97 0.341 45.97
Log Probit 13.0 3.3 0.66 45.30 0.176 47.38
Gamma 11.6 5.9 0.59 45.80 0.137 47.80
Weibull 11.0 5.9 0.59 45.85 0.133 47.85
Multistage 9.4 5.8 0.61 45.96 0.126 47.96
Probit 22.1 16.2 0.22 48.72 0.087 48.72
MA Average Dose 11.5 6.3 NA NA NA NA
MA Average Model 11.1 5.3 0.40 NA NA NA
Semiparametric 15.1 8.5 NA NA NA NA

Computed benchmark doses across various estimation methodologies where the BMR = 10%. This is done using seven models available in the EPA BMDS model
suite for dichotomous data described in Table III as well as the semiparametric method of Wheeler and Bailer.(30) A The weights are computed using the AIC
calculation method of Wheeler and Bailer(27) and not the BMDS software.

bound estimated at 12.3 ppm, which is comparable to the
individually estimated BMDs and BMDLs. Similarly, we look
at the model-averaged estimate of the second hypothetical
dataset, where the BMDLs differed by a factor of 5. Table V
shows the BMD estimate to be 11.1 ppm with a BMDL of
5.3 ppm. Here this approach would result in a POD estimate
greater than the approach using AIC to pick the “best” model.

Semiparametric Modeling
Using the semiparametric approach for the first hypothetical

dataset, for a BMR of 10%, the BMD is estimated to be
18.6 ppm with a BMDL of 9.2 ppm (Table IV). For the second
hypothetical dataset the BMD is estimated to be 15.1 ppm
with a BMDL of 8.5 ppm (Table V), which is similar to the

MA approach, but much greater than the BMD obtained from
the default US EPA approach. A software implementation of
the semiparametric modeling approach for dichotomous data
is available from the authors.

Comparison of Modeling Results
Comparing target risk estimates across the modeling tech-

niques applied here, the impact on the values used to po-
tentially set OELs can be seen. For the data in Table II,
estimating the exposure corresponding to a target risk level
of 1/1000 using the semiparametric and average-model aver-
aging approaches produce estimates that are very close to the
POD plus linear extrapolation approach. The average model
concentration corresponding to 1/1000 risk is estimated to be

TABLE VI. OEL Flowchart Showing Step-by-Step Process for Calculating the POD Using the BMD and a Suite
of Models

BMD Step Action

1 Choice of models to be fit Before the analysis develop a modeling approach that takes
into account possible curvature that might be realistic.
Models should be chosen on the basis of some a priori
scientific rational (e.g., biologically relevant for
carcinogenesis).

2 Fit models and estimate the
BMD/BMDL using a prespecified
BMR.

Given the model suite fit all models chosen and estimate the
BMD/ BMDL at a prespecified BMR and confidence limit
(typically taken to be BMR = 10% and confidence limit =
95%).

3 Select the best model given the data. Using a statistical test (typically the Pearson chi-squared
goodness of fit statistic) determine if the model adequately
fits the data using some significance level (often .1) chosen
prior to the analysis. Then from the remaining models use
some predefined criterion (e.g., AIC) to pick the model to
estimate the BMD/BMDL.

4 Calculate the POD from the
BMD/BMDL.

With the best model chosen, use the BMD/BMDL to calculate
the POD.
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TABLE VII. OEL Estimation Methods

Method Data Requirements Considerations for use
Epidemiological
Considerations Caveats

NOAEL Minimal data
requirements

Use if no other method
is appropriate or
available.

Location and number
of dose
groups/exposure-
strata is
important.

Does not model the
dose response curve
and suffers from
experimental design
(dose-spacing) issues.

Traditional BMD A minimum of two
non-background
responses with one
partial response (i.e.,
not 100%)

Use if following current
standard of
exposure-response
modeling.

Requires more
sophistication on the
modeler’s part.

Overly optimistic
inference poor
coverage when true
model is not known

Average Dose MA
BMD

Same as traditional
BMD

Use if output from
standard
exposure-response
software allows this
approach.

Potentiality for a large
number of models to
be averaged

Simple to implement
with existing
software but the
method has poor
coverage.

Average Model MA
BMD

Same as traditional
BMD

Use if computational
resources allow for
its implementation

Presently not extended
for observational
studies

Near nominal coverage
for most situations.
Requires
non-standard (though
readily available)
software to
implement.

Semiparametric BMD Same as traditional
BMD

Use if computational
resources allow for
its implementation.

Presently not extended
for observational
studies

Requires sophisticated
software to
implement.

Biologically Based
Methods

Depends on the model
more than empirical
models.

Sufficient information
exists on mode of
action.

Sufficient info on
biological features of
model available in
humans.

May allow better
characterization of
endpoint but requires
knowledge of the
mode of action. Still
requires specification
of which biological
component is
impacted by
exposure.

List of the methods that can be used to develop an OEL; these methods are arranged in order of complexity as well as ability to account for model uncertainty.
Here the NOAEL/LOAEL approach is the least complex and least able to account for uncertainty in the model form and the semiparametric methods are the most
complex and most able to account for model uncertainty.

0.58 ppm with lower confidence level (LCL) of 0.21 ppm.
The semiparametric approach estimates the concentration at
1/1000 risk is 0.55 ppm with the LCL being 0.11 ppm. The
linear extrapolation from the “best model” estimate of POD
(BMDL) is 0.16 ppm (these values are found, assuming linear-
ity, by dividing the 10% BMDL by 100 to get a risk estimate of
1/1000). The average model estimate is slightly higher than the
linear extrapolated estimate and the semiparametric estimate
slightly lower, but both are very much in line with the POD
plus linear extrapolation estimate.

For the data in Table III, a different result is seen. The
average model averaging estimate of the concentration cor-
responding to a 1/1000 risk is 0.15 ppm with a LCL of
0.08 ppm, while the semiparametric method estimates the
concentration at 1/1000 risk to be 3.2 ppm with a LCL of
0.28 ppm. These are compared to the value of 0.033 ppm (log-
probit), which is the concentration corresponding to 1/1000
risk using the recommended EPA approach. The EPA decision
logic approach yields a concentration that is almost three times
lower than the model average approach and 10 times lower than
the semiparametric approach.
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As shown with the examples above, even relatively simple
data sets require a number of modeling decisions before a
risk-based OEL can be derived. Table VII reviews the analysis
and modeling options and gives a summary of data require-
ments, considerations and caveats.

When using model averaging or semiparametric/nonparam
etric methods, our recommended approach is a significant
departure from past recommendations.(15) Setting the BMR
at 10% and using the BMDL as the POD with linear extrap-
olation to the risk level of interest has a long history, and
it is supported by multiple studies showing that the BMD
is often in the range of the NOAEL.(11,47) We stress that
this past recommendation is based on the observation that
this risk level is approximately the point where models can
reliably be fitted to the observed data, and, when one model is
used, model extrapolations for lower risk levels can be overly
precise.(28) Further, competing models may have orders of
magnitude difference in the BMD/BMDL only increasing the
uncertainty in the risk estimate. For an in-depth look at some
methods addressing model uncertainty, we refer the reader
to the book Uncertainty Modeling in Dose Response: Bench
Testing Environmental Toxicity.(48) However, with advent of
methods that account for uncertainty in the exposure-response
curve, direct extrapolation from the exposure-response curve
at the target risk level is well supported. As all competing
models are included based upon some probability of their
correctness given the experimental data, the estimate is based
upon combining results over a set of model forms (model
average) or possible curves (semiparametric/nonparametric),
and it is much more reliable in the low risk/low dose region.
We recommend that risk assessors directly estimate risks at
low levels using these methods.

CONCLUSION

Risk assessors have a wide array of statistical tools to
assess occupational risks. As shown with the examples

above, risk assessors should use the most appropriate statistical
methodology to estimate risks and quantify relevant uncertain-
ties. Employing techniques that explicitly take into considera-
tion the model uncertainty are preferred over selecting the “best
model” approaches. However, decisions on which exposure-
response analysis pathway to follow are often limited primarily
by the quality and characteristics of the data set.

For risk management decisions, exposure-response model-
ing should become the cornerstone of quantitative OEL de-
velopment. Advances in exposure-response modeling provide
greater confidence in resulting OELs.

DISCLAIMER

T he findings and conclusions in this report are those of the
author(s) and do not necessarily represent the views of

the National Institute for Occupational Safety and Health.
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